1
|
Shang S, Wang L, Lu X. β-Hydroxybutyrate enhances astrocyte glutamate uptake through EAAT1 expression regulation. Mol Cell Neurosci 2024; 131:103959. [PMID: 39179164 DOI: 10.1016/j.mcn.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
β-Hydroxybutyrate (BHB) has been reported to exert neuroprotective functions and is considered a promising treatment for neurodegenerative diseases such as Parkinson's and Alzheimer's. Numerous studies have revealed BHB's multifaceted roles, including anti-senescence, anti-oxidative, and anti-inflammatory activities. However, the underlying mechanisms warrant further investigation. Astrocytes, the most abundant glial cells in the central nervous system, play a pivotal role in the development and progression of neurodegenerative diseases. While BHB is known to alter neuronal metabolism and function, its effects on astrocytes remain poorly understood. In this study, we conducted transcriptome sequencing analysis to identify differentially expressed genes induced by BHB in astrocytes and found that the gene Solute carrier family 1 member 3 (Slc1a3), encoding the glutamate transporter EAAT1, was significantly upregulated by BHB treatment. Cellular and animal-based experiments confirmed an increase in EAAT1 protein expression in primary astrocytes and the hippocampus of mice treated with BHB. This upregulation may be due to the activation of the Ca2+/CAMKII pathway by BHB. Furthermore, BHB improved astrocytes' glutamate uptake and partially restored neuronal viability impaired by glutamate-induced excitotoxicity when astrocytes were functionalized. Our results suggest that BHB may alleviate neuronal damage caused by excessive glutamate by enhancing the glutamate absorption and uptake capacity of astrocytes. This study proposes a novel mechanism for the neuroprotective effects of BHB and reinforces its beneficial impact on the central nervous system (CNS).
Collapse
Affiliation(s)
- Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Leilei Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
2
|
Badini F, Mirshekar MA, Shahraki S, Fanaei H, Bayrami A. Neuroprotective effects of levothyroxine on cognition deficits and memory in an experimental model of Huntington's disease in rats: An electrophysiological study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5939-5951. [PMID: 38372755 DOI: 10.1007/s00210-024-03006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by cognitive deficits and motor function. Levothyroxine (L-T4) is a synthetic form of Thyroxine (T4), which can improve cognitive ability. The aim of the present study was to determine the neuroprotective effect of L-T4 administration in rats with 3-nitropropionic acid (3-NP)-induced Huntington's disease. Forty-eight Wistar male rats were divided into six groups (n = 8): Group 1 control group that received physiological saline, Group 2 and 3: which received L-T4 (30 and 100 μg/kg), Group 4: HD group that received 3-NP and Groups 5 and 6: The treatment of the HD rats with L-T4 (30 and 100 μg/kg). Spatial memory, locomotor activity, and frequency of neuronal firing were assessed. After decapitation, the Brain-Derived Neurotrophic Factor (BDNF) and Total antioxidant capacity (TAC) levels in the striatum was measured. The results showed that the indices of spatial memory (mean path length and latency time) and motor dysfunction (immobility time) significantly increased, while time spent in the goal quadrant, swimming speed, spike rate, and striatum levels of BDNF significantly decreased in the HD group compared to the control group. L-T4 treatment significantly enhanced time spent in the goal quadrant, swimming speed, motor activity (number of line crossing and rearing), spike rate and striatal BDNF level. This research showed that L-T4 prevented the disruption of motor activity and cognitive deficiencies induced by 3-NP. The beneficial effects of L-T4 may be due to an increase in the concentration of BDNF and enhancement of the spike rate in the striatum.
Collapse
Affiliation(s)
- Fereshteh Badini
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
3
|
Yuan L, Xiao D, Yang R, Ge L, Wan Y, Jiang L. Screening of liothyronine network pharmacology role in the treatment of ischemic stroke and molecular mechanism. ENVIRONMENTAL TOXICOLOGY 2024; 39:1641-1649. [PMID: 38018869 DOI: 10.1002/tox.24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The present study aimed to elucidate mechanisms of liothyronine on the treatment of ischemic stroke (IS). METHODS Differential analysis based on R limma package was used to identify differentially expressed genes, which were then mapped into the connectivity map database for identification of liothyronine associated with IS. Tumor necrosis factor (TNF) signaling pathway was verified through pathway enrichment analysis via Enrichr online. Ischemia stroke mouse model was built up for further analysis. Infarct area and regional cerebral blood flow (rCBF) were measured by 2, 3, 5-triphenyltetrazolium chloride and laser Doppler flowmetry, respectively. Light microscope was used for the evaluation of body weight and dark neurons. Serum TXB2 , 6-Keto-PGF1a , TNF-α, and interleukin-6 (IL-6) levels in mice were measured using enzyme-linked immuno sorbent assay. In addition, relative protein expression levels of brain-derived neurotrophic factor, nestin, and Sox2 were detected by Western blot analysis. RESULTS Liothyronine with a negative connectivity was identified as one promising treatment for IS through TNF signaling pathway. The experimental results showed that liothyronine treatment significantly meliorated infarct area and the number of dark neurons in IS mice. Liothyronine greatly ameliorated the expression levels of TXB2 and 6-Keto-PGF1a . Besides, rCBF and body weight change of IS mice were increased gradually with increase of drug concentration. Based on pathway enrichment analysis, anti-inflammatory response (TNF-α and IL-6) relevant to TNF signaling pathway was identified, which was further validated in vitro. Furthermore, proteins as neural stem cell markers made a difference with liothyronine treatment. CONCLUSION Liothyronine may be a novel therapeutic component to exploit an effective medicine for the treatment of IS.
Collapse
Affiliation(s)
- Li Yuan
- Department of Neurology, Institute of Neurology, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rumei Yang
- Nursing Department, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Ge
- Special Ward, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuye Wan
- Department of Neurology, Institute of Neurology, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianglei Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Weil BR, Allen SE, Barbaccia T, Wong K, Beaver AM, Slabinski EA, Mellott JG, Taylor Dickinson PC, Mousa SA. Preclinical evaluation of triiodothyronine nanoparticles as a novel therapeutic intervention for resuscitation from cardiac arrest. Resuscitation 2023; 186:109735. [PMID: 36806653 PMCID: PMC11154885 DOI: 10.1016/j.resuscitation.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Given emerging evidence of rapid non-genomic cytoprotective effects of triiodothyronine (T3), we evaluated the resuscitative efficacy of two nanoparticle formulations of T3 (T3np) designed to prolong cell membrane receptor-mediated signaling. METHODS Swine (n = 40) were randomized to intravenous vehicle (empty np), EPI (0.015 mg/kg), T3np (0.125 mg/kg), or T3np loaded with phosphocreatine (T3np + PCr; 0.125 mg/kg) during CPR following 7-min cardiac arrest (n = 10/group). Hemodynamics and biomarkers of heart (cardiac troponin I; cTnI) and brain (neuron-specific enolase; NSE) injury were assessed for up to 4-hours post-ROSC, at which time the heart and brain were collected for post-mortem analysis. RESULTS Compared with vehicle (4/10), the rate of ROSC was higher in swine receiving T3np (10/10; p < 0.01), T3np + PCr (8/10; p = 0.08) or EPI (10/10; p < 0.01) during CPR. Although time to ROSC and survival duration were comparable between groups, EPI was associated with a ∼2-fold higher post-ROSC concentration of cTnI vs T3np and T3np + PCr and the early post-ROSC rise in NSE and neuronal injury were attenuated in T3np-treated vs EPI-treated animals. Analysis of hippocampal ultrastructure revealed deterioration of mitochondrial integrity, reduced active zone length, and increased axonal vacuolization in EPI-treated animals vs controls. However, the frequency of these abnormalities was diminished in animals resuscitated with T3np. CONCLUSIONS T3np achieved a ROSC rate and post-ROSC survival that was superior to vehicle and comparable to EPI. The attenuation of selected biomarkers of cardiac and neurologic injury at individual early post-ROSC timepoints in T3np-treated vs EPI-treated animals suggests that T3np administration during CPR may lead to more favorable outcomes in cardiac arrest.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA.
| | - Shannon E Allen
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA
| | - Thomas Barbaccia
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA
| | - Kimberly Wong
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA
| | - Abigail M Beaver
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA
| | - Elizabeth A Slabinski
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA
| | - Jeffrey G Mellott
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA
| | - Peter C Taylor Dickinson
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA
| | - Shaker A Mousa
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY, USA; the Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pro-Al Medico Technologies Inc., Suffern, NY, USA.
| |
Collapse
|
5
|
Higher thyroid function is associated with accelerated hippocampal volume loss in Alzheimer's disease. Psychoneuroendocrinology 2022; 139:105710. [PMID: 35278981 DOI: 10.1016/j.psyneuen.2022.105710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND In epidemiological studies, higher thyroid hormone (TH) levels have been associated with lower brain volume and increased risk of Alzheimer's disease (AD) in elderly individuals. However, the relationships between serum THs and hippocampal atrophy rates have previously not been investigated. METHODS A prospective study of patients with AD (n = 55), stable mild cognitive impairment (sMCI; n = 84) and healthy controls (n = 29) recruited at a single memory clinic. We investigated whether serum THs were associated with magnetic resonance imaging (MRI)-estimated hippocampal volumes at baseline and with longitudinal alterations, defined as annualized percent changes. RESULTS Serum levels of free triiodothyronine (FT3) and FT3/free thyroxine (FT4) ratio were reduced in AD and sMCI patients compared with the controls (p < 0.05). Hierarchical linear regression analyses showed that higher serum FT3/FT4 ratio was associated with greater baseline hippocampal volume in all study groups. Only in AD patients, higher serum FT4 was associated with lower baseline volume of the left hippocampus. Finally, exclusively in the AD group, higher serum levels of FT3 and FT3/FT4 ratio, and lower serum TSH levels, were associated with greater annual hippocampal volume loss. CONCLUSIONS In all study groups, FT3/FT4 ratio was related to baseline hippocampal volume. However, only in AD patients, higher levels of THs were associated with greater annual loss of hippocampal volume, suggesting that excessive TH levels exert a deleterious effect on the hippocampus in the presence of existing AD neuropathology.
Collapse
|
6
|
Development of Triiodothyronine Polymeric Nanoparticles for Targeted Delivery in the Cardioprotection against Ischemic Insult. Biomedicines 2021; 9:biomedicines9111713. [PMID: 34829942 PMCID: PMC8615924 DOI: 10.3390/biomedicines9111713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic heart disease is the main cause of death globally. Cardioprotection is the process whereby mechanisms that reduce myocardial damage, and activate protective factors, contribute to the preservation of the heart. Targeting these processes could be a new strategy in the treatment of post-ischemic heart failure (HF). Triiodothyronine (T3) and thyroxine (T4), which have multiple effects on the heart, prevent myocardial damage. This study describes the formulation, and characterization, of chemically modified polymeric nanoparticles incorporating T3, to target the thyroid hormone receptors. Modified T3 was conjugated to polylactide-co-glycolide (PLGA) to facilitate T3 delivery and restrict its nuclear translocation. Modified T3 and PLGA-T3 was characterized with 1H-NMR. The protective role of synthesized phosphocreatine (PCr) encapsulated PLGA-T3 nanoparticles (PLGA-T3/PCr NPs) and PLGA-T3 nanoparticles (PLGA-T3 NPs) in hypoxia-mediated cardiac cell insults was investigated. The results showed that PLGA-T3/PCr NPs represent a potentially new therapeutic agent for the control of tissue damage in cardiac ischemia and resuscitation.
Collapse
|
7
|
Głombik K, Detka J, Budziszewska B. Venlafaxine and L-Thyroxine Treatment Combination: Impact on Metabolic and Synaptic Plasticity Changes in an Animal Model of Coexisting Depression and Hypothyroidism. Cells 2021; 10:cells10061394. [PMID: 34198731 PMCID: PMC8227539 DOI: 10.3390/cells10061394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical effectiveness of supportive therapy with thyroid hormones in drug-resistant depression is well-known; however, the mechanisms of action of these hormones in the adult brain have not been fully elucidated to date. We determined the effects of venlafaxine and/or L-thyroxine on metabolic parameters and markers involved in the regulation of synaptic plasticity and cell damage in an animal model of coexisting depression and hypothyroidism, namely, Wistar Kyoto rats treated with propylthiouracil. In this model, in relation to the depression model itself, the glycolysis process in the brain was weakened, and a reduction in pyruvate dehydrogenase in the frontal cortex was normalized only by the combined treatment with L-thyroxine and venlafaxine, whereas changes in pyruvate and lactate levels were affected by all applied therapies. None of the drugs improved the decrease in the expression of mitochondrial respiratory chain enzymes. No intensification of glucocorticoid action was shown, while an unfavorable change caused by the lack of thyroid hormones was an increase in the caspase-1 level, which was not reversed by venlafaxine alone. The results indicated that the combined administration of drugs was more effective in normalizing glycolysis and the transition to the Krebs cycle than the use of venlafaxine or L-thyroxine alone.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Correspondence: ; Tel.: +48-12-662-33-94
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Stanculescu D, Larsson L, Bergquist J. Theory: Treatments for Prolonged ICU Patients May Provide New Therapeutic Avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:672370. [PMID: 34026797 PMCID: PMC8137963 DOI: 10.3389/fmed.2021.672370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
We here provide an overview of treatment trials for prolonged intensive care unit (ICU) patients and theorize about their relevance for potential treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these treatment trials generally target: (a) the correction of suppressed endocrine axes, notably through a "reactivation" of the pituitary gland's pulsatile secretion of tropic hormones, or (b) the interruption of the "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. There are significant parallels in the treatment trials for prolonged critical illness and ME/CFS; this is consistent with the hypothesis of an overlap in the mechanisms that prevent recovery in both conditions. Early successes in the simultaneous reactivation of pulsatile pituitary secretions in ICU patients-and the resulting positive metabolic effects-could indicate an avenue for treating ME/CFS. The therapeutic effects of thyroid hormones-including in mitigating O&NS and inflammation and in stimulating the adreno-cortical axis-also merit further studies. Collaborative research projects should further investigate the lessons from treatment trials for prolonged critical illness for solving ME/CFS.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry–Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Sinha P, Chakrabarti N, Ghosh N, Mitra S, Dalui S, Bhattacharyya A. Alterations of thyroidal status in brain regions and hypothalamo-pituitary-blood-thyroid-axis associated with dopaminergic depletion in substantia nigra and ROS formation in different brain regions after MPTP treatment in adult male mice. Brain Res Bull 2020; 156:131-140. [PMID: 31891753 DOI: 10.1016/j.brainresbull.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
MPTP produces oxidative stress, damages niagrostriatal dopaminergic neurons and develops Parkinsonism in rodents. Due to paucity of information, the thyroidal status in brain regions and peripheral tissues during different post-treatment days in MPTP-induced mice had been executed in the present study. MPTP depleted tyrosine hydroxylase protein expressions that signify the dopaminergic neuronal damage in substantia nigra. MPTP elevated ROS formation differentially in brain regions (cerebral cortex, hippocampus, substantia nigra) with maximal elevation at hippocampus. The changes in thyroid hormone (T4 and T3) levels indicate that brain regions might combat the adverse situation by keeping the levels of thyroid hormones either unchanged or in the elevated conditions in the latter phases (day-3 and day-7), apart from the depletion of thyroid hormones in certain brain regions (T4 in SN and hippocampus, T3 in hippocampus) as the immediate (day-1) effects after MPTP treatment. MPTP caused alterations of cellular morphology, RNA:Protein ratio and TPO protein expression, concomitantly depleted TPO mRNA expression and elevated TSH levels in the thyroid gland. Although T4 levels changed differentially, T3 levels remained unaltered in thyroid gland throughout the post-treatment days. Results have been discussed mentioning the putative role of T4 and TSH in apoptosis and/or proliferation/differentiation of thyrocytes. In blood, T4 levels remained unchanged while the changes in T3 and TSH levels did not signify the clinical feature of hypo/hyperthyroidism of animals. In the pituitary, both T4 and T3 levels remained elevated where TSH differentially altered (elevated followed by depletion) during post-treatment days. Notably, T4, T3 and TSH levels did not alter in hypothalamus except initial (day-1) depletion of the T4 level. Therefore, the feedback control mechanism of hypothalamo-pituitary-blood-thyroid-axis failed to occur after MPTP treatment. Overall, MPTP altered thyroidal status in the brain and peripheral tissues while both events might occur in isolation as well.
Collapse
Affiliation(s)
- Priyobrata Sinha
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India; Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India; Centres with Potential for Excellence in Particular Areas (CPEPA, UGC), Centre for "Electrophysiology & Neuroimaging Studies Including Mathematical Modeling" India.
| | - Nabanita Ghosh
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Soham Mitra
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Shauryabrota Dalui
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
11
|
Ozaki T, Muramatsu R, Nakamura H, Kinoshita M, Kishima H, Yamashita T. Proteomic analysis of protein changes in plasma by balloon test occlusion. J Clin Neurosci 2019; 72:397-401. [PMID: 31875829 DOI: 10.1016/j.jocn.2019.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
Transient ischemia provides the tolerance against prolonged ischemia in the brain. In mouse experimental model, transient ischemia changes the composition ratio of circulating proteins, which associate with neuroprotection; however, the human evidence is lacking. Here we mimicked balloon test occlusion (BTO) of carotid artery as a transient ischemia and investigated the change of composition ratio of the circulating protein in the human plasma. We collected blood samples from nine patients (5 men and 4 women; mean age 64.2 years; range 45 to 77 years) before and 48 h after BTO and investigated the changes of circulating molecules level in the proteome using LC-MS/MS analysis. Leucine-rich alpha-2-glycoprotein and serum amyloid A-1 increased and protein AMBP decreased in the blood samples after BTO. Transient change of blood flow in the brain alters molecular expression in the plasma. Because the alteration of plasma protein composition is involved in ischemic tolerance in animal models, the proteins whose level was changed by BTO may be also involved in neuroprotection against ischemia in human.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan; Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Rieko Muramatsu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Japan; Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Neurology and Psychiatry, Kodaira, Japan.
| | - Hajime Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Japan
| |
Collapse
|
12
|
Quinlan P, Horvath A, Wallin A, Svensson J. Low serum concentration of free triiodothyronine (FT3) is associated with increased risk of Alzheimer's disease. Psychoneuroendocrinology 2019; 99:112-119. [PMID: 30223192 DOI: 10.1016/j.psyneuen.2018.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND In epidemiological studies, thyroid hormones (THs) have been associated with the risk of dementia. However, little is known of the relation between THs and risk of Alzheimer's disease (AD) or vascular dementia (VaD) in a memory clinic population. METHODS In a mono-center study, serum concentrations of thyroid-stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3) were assessed in 302 patients. All patients had subjective or objective mild cognitive impairment and none received treatment with THs. Cox proportional hazards regression analyses was used to determine whether THs at baseline were associated with the risk of conversion to all-cause dementia, AD or VaD. RESULTS During the follow-up (mean 2.8 years), 82 (28%) of the patients progressed to dementia [AD, n = 55 (18%) and VaD, n = 17 (6%)]. Serum concentrations of TSH, FT4, and FT3 did not associate with all-cause dementia or VaD. Higher serum FT3 was associated with lower risk of conversion to AD [hazard ratio (HR) = 054; 95% confidence interval (CI): 0.32-0.92 per 1 pmol/L increase]. Furthermore, patients in the lowest serum FT3 quartile had a twofold increased risk of AD compared to those in the highest quartile (HR = 2.63; 95% CI: 1.06-6.47). These associations remained after adjustment for multiple covariates. CONCLUSIONS In a memory clinic population, there was an inverse, linear association between serum FT3 and risk of AD whereas THs did not associate with all-cause dementia or VaD. Further studies are needed to determine the underlying mechanisms as well as the clinical significance of these findings.
Collapse
Affiliation(s)
- Patrick Quinlan
- Institute of Medicine, Department of Internal Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Alexandra Horvath
- Institute of Medicine, Department of Internal Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Institute of Medicine, Department of Internal Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Tong Q, Xiang W, Ye H, Zhang H, Chen Y, Chen W, Liu C. T3 level may be a helpful marker to predict disease prognosis of acute central nervous system viral infections. Int J Neurosci 2018; 129:139-145. [PMID: 30102112 DOI: 10.1080/00207454.2018.1510833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM OF THE STUDY Acute central nervous system viral infections are progressive and inflammatory diseases with inflammatory cells infiltrating into the central nervous system (CNS), and thyroid hormone (TH) level is associated with the oxidative and antioxidant status. Variations in oxidative stress and antioxidant status are related to the pathogenesis of inflammatory diseases. Our study aimed to investigate the possible correlation between viral infections in CNS and TH levels of thyroid stimulating hormone (TSH), free thyroxine (fT4) and free triiodothyronine (fT3). MATERIALS AND METHODS We measured serum concentrations of TSH, fT4, and fT3 in 206 individuals, including 59 viral meningitis (VM) patients, 60 viral encephalitis (VE) patients, and 87 healthy controls. RESULTS Our findings showed that VE and VM patients had lower levels of fT3 and higher levels of fT4 compared with healthy controls, whether male or female. Moreover, levels of TSH and fT3 in patients with viral infections in CNS were inversely correlated with disease prognosis measured by the Glasgow Outcome Scale. CONCLUSIONS Variations in TH level may represent the oxidative status and are surrogate biomarkers for disease prognosis of acute central nervous system viral infections.
Collapse
Affiliation(s)
- Qiaowen Tong
- a Department of Neurology , The Second Affiliated Hospital of Soochow University , Suzhou , China.,b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Weiwei Xiang
- c Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Hua Ye
- b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Hehui Zhang
- b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Yiyi Chen
- b Department of Neurology , Wenzhou People's Hospital , Wenzhou , China
| | - Weian Chen
- c Department of Neurology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chunfeng Liu
- a Department of Neurology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
14
|
Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6316059. [PMID: 30112410 PMCID: PMC6077516 DOI: 10.1155/2018/6316059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/12/2018] [Indexed: 01/30/2023]
Abstract
Following cerebral ischemia/reperfusion (I/R) injury, a series of pathophysiological processes are stimulated in both the central nervous system (CNS) and the periphery, including, but not limited to, the peripheral immune and endocrine systems and underregulation of the neuroendocrine-immune network. Glutamate (Glu) is an important excitatory neurotransmitter in the CNS; its excitotoxicity following cerebral ischemia has been a focus of study for several decades. In addition, as a novel immunoregulator, Glu also regulates immune activity in both the CNS and periphery and may connect the CNS and periphery through regulation of the neuroendocrine-immune network. Ischemic postconditioning (IPostC) is powerful and activates various endogenous neuroprotective mechanisms following cerebral I/R, but only a few studies have focused on the mechanisms associated with Glu to date. Given that Glu plays an important and complex pathophysiological role, the understanding of Glu-related mechanisms of IPostC is an interesting area of research, which we review here.
Collapse
|
15
|
Jiang X, Xing H, Wu J, Du R, Liu H, Chen J, Wang J, Wang C, Wu Y. Prognostic value of thyroid hormones in acute ischemic stroke - a meta analysis. Sci Rep 2017; 7:16256. [PMID: 29176727 PMCID: PMC5701186 DOI: 10.1038/s41598-017-16564-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022] Open
Abstract
Previous studies on the association between thyroid hormones and prognosis of acute ischemic stroke (AIS) reported conflicting results. We conducted a meta-analysis to assess the prognostic value of thyroid hormones in AIS. The PubMed, EMBASE, and Cochrane library databases were searched through May 12, 2017 to identify eligible studies on this subject. Out of 2,181 studies retrieved, 11 studies were finally included with a total number of 3,936 acute stroke patients for analysis. Odds ratio (OR) for predicting poor outcome or standardized mean difference (SMD) of thyroid hormone levels with 95% confidence intervals (95% CI) obtained from the studies were pooled using Review Manager 5.3. From the results, in AIS, patients with a poor outcome had lower levels of triiodothyronine (T3) and higher thyroxine (T4). Pooled OR confirmed the same association. Our study provides statistical evidence supporting the utility of thyroid hormone levels in prognosis of acute stroke.
Collapse
Affiliation(s)
- Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyi Xing
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Wu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruofei Du
- University of New Mexico Comprehensive Cancer Center, Albuquerque, 87131, USA
| | - Houfu Liu
- School of Public Health, Shandong University, Jinan, 250100, China
| | - Jixiang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Bargi-Souza P, Goulart-Silva F, Nunes MT. Novel aspects of T 3 actions on GH and TSH synthesis and secretion: physiological implications. J Mol Endocrinol 2017; 59:R167-R178. [PMID: 28951438 DOI: 10.1530/jme-17-0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Thyroid hormones (THs) classically regulate the gene expression by transcriptional mechanisms. In pituitary, the encoding genes for growth hormone (GH) and thyroid-stimulating hormone (TSH) are examples of genes regulated by triiodothyronine (T3) in a positive and negative way, respectively. Recent studies have shown a rapid adjustment of GH and TSH synthesis/secretion induced by T3 posttranscriptional actions. In somatotrophs, T3 promotes an increase in Gh mRNA content, poly(A) tail length and binding to the ribosome, associated with a rearrangement of actin cytoskeleton. In thyrotrophs, T3 reduces Tshb mRNA content, poly(A) tail length and its association with the ribosome. In parallel, it promotes a redistribution of TSH secretory granules to more distal regions of the cell periphery, indicating a rapid effect of T3 inhibition of TSH secretion. T3 was shown to affect the content of tubulin and the polymerization of actin and tubulin cytoskeletons in the whole anterior pituitary gland, and to increase intracellular alpha (CGA) content. This review summarizes genomic and non-genomic/posttranscriptional actions of TH on the regulation of several steps of GH and TSH synthesis and secretion. These distinct mechanisms induced by T3 can occur simultaneously, even though non-genomic effects are promptly elicited and precede the genomic actions, coexisting in a functional network within the cells.
Collapse
Affiliation(s)
| | | | - M T Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical SciencesUniversity of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Mokhtari T, Akbari M, Malek F, Kashani IR, Rastegar T, Noorbakhsh F, Ghazi-Khansari M, Attari F, Hassanzadeh G. Improvement of memory and learning by intracerebroventricular microinjection of T3 in rat model of ischemic brain stroke mediated by upregulation of BDNF and GDNF in CA1 hippocampal region. ACTA ACUST UNITED AC 2017; 25:4. [PMID: 28202057 PMCID: PMC5312580 DOI: 10.1186/s40199-017-0169-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022]
Abstract
Background Ischemic stroke is a common leading cause of death and disability with lack of effective therapies. In this study, T3 was intra-ventricularly injected to evaluate gene expression and protein concentration of and brain-derived neurotrophic factor (BDNF) and Glial cell-derived neurotrophic factor (GDNF) in hippocampal CA1 region in rat model of brain ischemia/reperfusion (I/R). Methods In this study, transient middle cerebral artery occlusion (tMCAo) was used as model of ischemic brain stroke. Rats were randomly divided in four groups of Co, Sh, tMCAo and tMCAo + T3. Then, a single dose of intra-ventricular T3 was administered via a Hamilton syringe. Passive avoidance test was used as behavioral investigations. After 21 days, the animals were sacrificed and their brains were used for molecular and histopathological studies. Results T3 significantly improved the learning and memory compared with tMCAo group according to Morris water maze findings (P < 0.05). Step-through latency (STL) significantly decreased in tMCAo group (P < 0.05). There were significant increase in the STL of T3 group compared with tMCAo group (P < 0.05).A significant reduction in BDNF mRNAs and protein levels were observed in the tMCAo compared with Co and Sh group (P < 0.05). A significant increase of BDNF and GDNF mRNAs and proteins was recorded in tMCAo + T3 group compared with Co, Sh and tMCAO groups (P < 0.05). Conclusions The results of current study demonstrated that T3 had therapeutic effects on cerebral ischemic stroke by increasing the neurotrophic factors (BDNF, GDNF) in CA1 region of hippocampus. Graphical abstract The effects of intracerebroventricular microinjection of T3on memory and learning in rat model of ischemic brain stroke.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Malek
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Attari
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Liu K, Khan H, Geng X, Zhang J, Ding Y. Pharmacological hypothermia: a potential for future stroke therapy? Neurol Res 2017; 38:478-90. [PMID: 27320243 DOI: 10.1080/01616412.2016.1187826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.
Collapse
Affiliation(s)
- Kaiyin Liu
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Hajra Khan
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jun Zhang
- c China-America Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
19
|
Duntas LH. Predictions on the Role of Thyronamines in the Setting of The Oracle of Delphi. Thyroid 2016; 26:1653-1655. [PMID: 27852155 DOI: 10.1089/thy.2016.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Leonidas H Duntas
- Unit of Endocrinology, Diabetes and Metabolism, Evgenideion Hospital, University of Athens , Athens, Greece
| |
Collapse
|
20
|
Vidali S, Chéret J, Giesen M, Haeger S, Alam M, Watson REB, Langton AK, Klinger M, Knuever J, Funk W, Kofler B, Paus R. Thyroid Hormones Enhance Mitochondrial Function in Human Epidermis. J Invest Dermatol 2016; 136:2003-2012. [PMID: 27349864 DOI: 10.1016/j.jid.2016.05.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Since it is unknown whether thyroid hormones (THs) regulate mitochondrial function in human epidermis, we treated organ-cultured human skin, or isolated cultured human epidermal keratinocytes, with triiodothyronine (100 pmol/L) or thyroxine (100 nmol/L). Both THs significantly increased protein expression of the mitochondrially encoded cytochrome C oxidase I (MTCO1), complex I activity, and the number of perinuclear mitochondria. Triiodothyronine also increased mitochondrial transcription factor A (TFAM) protein expression, and thyroxine stimulated complex II/IV activity. Increased mitochondrial function can correlate with increased reactive oxygen species production, DNA damage, and accelerated tissue aging. However, THs neither raised reactive oxygen species production or matrix metalloproteinase-1, -2 and -9 activity nor decreased sirtuin1 (Sirt1) immunoreactivity. Instead, triiodothyronine increased sirtuin-1, fibrillin-1, proliferator-activated receptor-gamma 1-alpha (PGC1α), collagen I and III transcription, and thyroxine decreased cyclin-dependent kinase inhibitor 2A (p16(ink4)) expression in organ-cultured human skin. Moreover, TH treatment increased intracutaneous fibrillin-rich microfibril and collagen III deposition and decreased mammalian target of rapamycin (mTORC1/2) expression ex vivo. This identifies THs as potent endocrine stimulators of mitochondrial function in human epidermis, which down-regulates rather than enhance the expression of skin aging-related biomarkers ex vivo. Therefore, topically applied THs deserve further exploration as candidate agents for treating skin conditions characterized by reduced mitochondrial function.
Collapse
Affiliation(s)
- Silvia Vidali
- Department of Dermatology, University of Luebeck, Luebeck, Germany; Research Program for Receptor Biochemistry and Tumor Metabolism, Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Jérémy Chéret
- Department of Dermatology, University of Münster, Münster, Germany
| | - Melanie Giesen
- Henkel Beauty Care, Henkel AG and Co. KgaA, Düsseldorf, Germany
| | - Swantje Haeger
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Majid Alam
- Department of Dermatology, University of Münster, Münster, Germany
| | - Rachel E B Watson
- Center for Dermatology Research, University of Manchester, Manchester, UK
| | - Abigail K Langton
- Center for Dermatology Research, University of Manchester, Manchester, UK
| | | | - Jana Knuever
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | | | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Ralf Paus
- Department of Dermatology, University of Münster, Münster, Germany; Center for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
22
|
Thyroid hormone in the frontier of cell protection, survival and functional recovery. Expert Rev Mol Med 2015; 17:e10. [DOI: 10.1017/erm.2015.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) exerts important actions on cellular energy metabolism, accelerating O2consumption with consequent reactive oxygen species (ROS) generation and redox signalling affording cell protection, a response that is contributed by redox-independent mechanisms. These processes underlie genomic and non-genomic pathways, which are integrated and exhibit hierarchical organisation. ROS production led to the activation of the redox-sensitive transcription factors nuclear factor-κB, signal transducer and activator of transcription 3, activating protein 1 and nuclear factor erythroid 2-related factor 2, promoting cell protection and survival by TH. These features involve enhancement in the homeostatic potential including antioxidant, antiapoptotic, antiinflammatory and cell proliferation responses, besides higher detoxification capabilities and energy supply through AMP-activated protein kinase upregulation. The above aspects constitute the molecular basis for TH-induced preconditioning of the liver that exerts protection against ischemia-reperfusion injury, a strategy also observed in extrahepatic organs of experimental animals and with other types of injury, which awaits application in the clinical setting. Noteworthy, re-adjusting TH to normal levels results in several beneficial effects; for example, it lengthens the cold storage time of organs for transplantation from brain-dead donors; allows a superior neurological outcome in infants of <28 weeks of gestation; reduces the cognitive side-effects of lithium and improves electroconvulsive therapy in patients with bipolar disorders.
Collapse
|
23
|
Thyroid function tests and early outcomes of acute ischemic stroke in older euthyroid patients. Exp Gerontol 2015; 61:8-14. [DOI: 10.1016/j.exger.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/05/2014] [Accepted: 11/16/2014] [Indexed: 11/23/2022]
|
24
|
Yoshikawa A, Nakamachi T, Shibato J, Rakwal R, Shioda S. Comprehensive analysis of neonatal versus adult unilateral decortication in a mouse model using behavioral, neuroanatomical, and DNA microarray approaches. Int J Mol Sci 2014; 15:22492-517. [PMID: 25490135 PMCID: PMC4284721 DOI: 10.3390/ijms151222492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 01/29/2023] Open
Abstract
Previously, studying the development, especially of corticospinal neurons, it was concluded that the main compensatory mechanism after unilateral brain injury in rat at the neonatal stage was due in part to non-lesioned ipsilateral corticospinal neurons that escaped selection by axonal elimination or neuronal apoptosis. However, previous results suggesting compensatory mechanism in neonate brain were not correlated with high functional recovery. Therefore, what is the difference among neonate and adult in the context of functional recovery and potential mechanism(s) therein? Here, we utilized a brain unilateral decortication mouse model and compared motor functional recovery mechanism post-neonatal brain hemisuction (NBH) with adult brain hemisuction (ABH). Three analyses were performed: (1) Quantitative behavioral analysis of forelimb movements using ladder walking test; (2) neuroanatomical retrograde tracing analysis of unlesioned side corticospinal neurons; and (3) differential global gene expressions profiling in unlesioned-side neocortex (rostral from bregma) in NBH and ABH on a 8 × 60 K mouse whole genome Agilent DNA chip. Behavioral data confirmed higher recovery ability in NBH over ABH is related to non-lesional frontal neocortex including rostral caudal forelimb area. A first inventory of differentially expressed genes genome-wide in the NBH and ABH mouse model is provided as a resource for the scientific community.
Collapse
Affiliation(s)
- Akira Yoshikawa
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Tomoya Nakamachi
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Junko Shibato
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Randeep Rakwal
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| |
Collapse
|
25
|
Khajavi N, Reinach PS, Slavi N, Skrzypski M, Lucius A, Strauß O, Köhrle J, Mergler S. Thyronamine induces TRPM8 channel activation in human conjunctival epithelial cells. Cell Signal 2014; 27:315-25. [PMID: 25460045 DOI: 10.1016/j.cellsig.2014.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
3-Iodothyronamine (T1AM), an endogenous thyroid hormone (TH) metabolite, induces numerous responses including a spontaneously reversible body temperature decline. As such an effect is associated in the eye with increases in basal tear flow and thermosensitive transient receptor potential melastatin 8 (TRPM8) channel activation, we determined in human conjunctival epithelial cells (IOBA-NHC) if T1AM also acts as a cooling agent to directly affect TRPM8 activation at a constant temperature. RT-PCR and quantitative real-time PCR (qPCR) along with immunocytochemistry probed for TRPM8 gene and protein expression whereas functional activity was evaluated by comparing the effects of T1AM with those of TRPM8 mediators on intracellular Ca(2+) ([Ca(2+)]i) and whole-cell currents. TRPM8 gene and protein expression was evident and icilin (20μM), a TRPM8 agonist, increased Ca(2+) influx as well as whole-cell currents whereas BCTC (10μM), a TRPM8 antagonist, suppressed these effects. Similarly, either temperature lowering below 23°C or T1AM (1μM) induced Ca(2+) transients that were blocked by this antagonist. TRPM8 activation by both 1µM T1AM and 20μM icilin prevented capsaicin (CAP) (20μM) from inducing increases in Ca(2+) influx through TRP vanilloid 1 (TRPV1) activation, whereas BCTC did not block this response. CAP (20μM) induced a 2.5-fold increase in IL-6 release whereas during exposure to 20μM capsazepine this rise was completely blocked. Similarly, T1AM (1μM) prevented this response. Taken together, T1AM like icilin is a cooling agent since they both directly elicit TRPM8 activation at a constant temperature. Moreover, there is an inverse association between changes in TRPM8 and TRPV1 activity since these cooling agents blocked both CAP-induced TRPV1 activation and downstream rises in IL-6 release.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter S Reinach
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Nefeli Slavi
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Alexander Lucius
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Olaf Strauß
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Stefan Mergler
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
26
|
Failure of thyroid hormone treatment to prevent inflammation-induced white matter injury in the immature brain. Brain Behav Immun 2014; 37:95-102. [PMID: 24240022 PMCID: PMC3969588 DOI: 10.1016/j.bbi.2013.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022] Open
Abstract
Preterm birth is very strongly associated with maternal/foetal inflammation and leads to permanent neurological deficits. These deficits correlate with the severity of white matter injury, including maturational arrest of oligodendrocytes and hypomyelination. Preterm birth and exposure to inflammation causes hypothyroxinemia. As such, supplementation with thyroxine (T4) seems a good candidate therapy for reducing white matter damage in preterm infants as oligodendrocyte maturation and myelination is regulated by thyroid hormones. We report on a model of preterm inflammation-induced white matter damage, in which induction of systemic inflammation by exposure from P1 to P5 to interleukin-1β (IL-1β) causes oligodendrocyte maturational arrest and hypomyelination. This model identified transient hypothyroidism and wide-ranging dysfunction in thyroid hormone signalling pathways. To test whether a clinically relevant dose of T4 could reduce inflammation-induced white matter damage we concurrently treated mice exposed to IL-1β from P1 to P5 with T4 (20 μg/kg/day). At P10, we isolated O4-positive pre-oligodendrocytes and gene expression analysis revealed that T4 treatment did not recover the IL-1β-induced blockade of oligodendrocyte maturation. Moreover, at P10 and P30 immunohistochemistry for markers of oligodendrocyte lineage (NG2, PDGFRα and APC) and myelin (MBP) similarly indicated that T4 treatment did not recover IL-1β-induced deficits in the white matter. In summary, in this model of preterm inflammation-induced white matter injury, a clinical dose of T4 had no therapeutic efficacy. We suggest that additional pre-clinical trials with T4 covering the breadth and scope of causes and outcomes of perinatal brain injury are required before we can correctly evaluate clinical trials data and understand the potential for thyroid hormone as a widely implementable clinical therapy.
Collapse
|
27
|
Remaud S, Gothié JD, Morvan-Dubois G, Demeneix BA. Thyroid hormone signaling and adult neurogenesis in mammals. Front Endocrinol (Lausanne) 2014; 5:62. [PMID: 24808891 PMCID: PMC4009442 DOI: 10.3389/fendo.2014.00062] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 12/31/2022] Open
Abstract
The vital roles of thyroid hormone in multiple aspects of perinatal brain development have been known for over a century. In the last decades, the molecular mechanisms underlying effects of thyroid hormone on proliferation, differentiation, migration, synaptogenesis, and myelination in the developing nervous system have been gradually dissected. However, recent data reveal that thyroid signaling influences neuronal development throughout life, from early embryogenesis to the neurogenesis in the adult brain. This review deals with the latter phase and analyses current knowledge on the role of T3, the active form of thyroid hormone, and its receptors in regulating neural stem cell function in the hippocampus and the subventricular zone, the two principal sites harboring neurogenesis in the adult mammalian brain. In particular, we discuss the critical roles of T3 and TRα1 in commitment to a neuronal phenotype, a process that entails the repression of a number of genes notably that encoding the pluripotency factor, Sox2. Furthermore, the question of the relevance of thyroid hormone control of adult neurogenesis is considered in the context of brain aging, cognitive decline, and neurodegenerative disease.
Collapse
Affiliation(s)
- Sylvie Remaud
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Paris, France
| | - Jean-David Gothié
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Paris, France
| | - Ghislaine Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Paris, France
| | - Barbara A. Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Paris, France
- *Correspondence: Barbara A. Demeneix, UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Paris 75231, France e-mail:
| |
Collapse
|
28
|
Transthyretin is a key regulator of myoblast differentiation. PLoS One 2013; 8:e63627. [PMID: 23717457 PMCID: PMC3661549 DOI: 10.1371/journal.pone.0063627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/04/2013] [Indexed: 12/25/2022] Open
Abstract
Transthyretin (TTR) is a known carrier protein for thyroxine (T4) and retinol-binding protein in the blood that is primarily synthesized in the liver and choroid plexus of the brain. Herein, we report that the TTR gene is expressed in skeletal muscle tissue and up-regulated during myotube formation in C2C12 cells. TTR silencing (TTRkd) significantly reduced myogenin expression and myotube formation, whereas myogenin silencing (MYOGkd) did not have any effect on TTR gene expression. Both TTRkd and MYOGkd led to a decrease in calcium channel related genes including Cav1.1, STIM1 and Orai1. A significant decrease in intracellular T4 uptake during myogenesis was observed in TTRkd cells. Taken together, the results of this study suggest that TTR initiates myoblast differentiation via affecting expression of the genes involved during early stage of myogenesis and the genes related to calcium channel.
Collapse
|
29
|
Genovese T, Impellizzeri D, Ahmad A, Cornelius C, Campolo M, Cuzzocrea S, Esposito E. Post-ischaemic thyroid hormone treatment in a rat model of acute stroke. Brain Res 2013; 1513:92-102. [PMID: 23500636 DOI: 10.1016/j.brainres.2013.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 12/15/2022]
Abstract
Stroke is a devastating brain injury that is a leading cause of adult disability with limited treatment options. We examined the effects of prohormone thyroxine (T4) and the underlying mechanisms in the post-ischaemic rat brain after transient focal cerebral ischemia-induced brain injury. Ischaemic injury was induced for 2h by middle cerebral artery occlusion (MCAo) followed by 24-h reperfusion. T4 (1.1μg/100g BW) was administered by intraperitoneally injection twice, at 1 after the onset of ischemia and 6h after reperfusion. Cerebral infarct area and infarct volume were measured 24h after MCAo. Furthermore, the mechanism of neuroprotective effect of T4 was investigated with a focus on inflammatory cells, neurotrophins, and transcriptional factors. T4 significantly reduced cerebral infarction, which were accompanied by decreased expression of proapotptic Bax and increased antiapoaptotic Bcl-2 protein. T4 suppressed the activation of astrocytes and microglia, increased the expression of neurotrophic factors (BDNF, GDNF), and altered inflammatory-related prooxidative enzymes (iNOS and COX-2) in ischaemic brain. Moreover, T4 downregulated the phosphorylation of p38 and prevented injury-induced increase of PKCδ. These results revealed that T4 has a promising therapeutic effect in ischaemic stroke treatment protecting the brain from I/R injury, probably by its anti-apoptotic, and anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Salama M, Helmy B, El-Gamal M, Reda A, Ellaithy A, Tantawy D, Mohamed M, El-Gamal A, Sheashaa H, Sobh M. Role of L-thyroxin in counteracting rotenone induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:270-277. [PMID: 23357603 DOI: 10.1016/j.etap.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/07/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
A key feature of Parkinson's disease is the dopaminergic neuronal cell loss in the substantia nigra pars compacta. Many triggering pathways have been incriminated in the pathogenesis of this disease including inflammation, oxidative stress, excitotoxicity and apoptosis. Thyroid hormone is an essential agent for the growth and maturation of neurons; moreover, it has variable mechanisms for neuroprotection. So, we tested the efficacy of (L)-thyroxin as a neuroprotectant in rotenone model of Parkinson's disease in rats. Thirty Sprague Dawley rats aged 3 months were divided into 3 equal groups. The first received daily intraperitoneal injections of 0.5% carboxymethyl cellulose (CMC) 3 mL/Kg. The second group received rotenone suspended in 0.5% CMC intraperitoneally at a dose of 3 mg/kg, daily. The third group received the same rotenone regimen subcutaneous l-thyroxine at a dose of 7.5 μg daily. All animals were evaluated regarding locomotor disturbance through blinded investigator who monitored akinesia, catalepsy, tremors and performance in open field test. After 35 days the animals were sacrificed and their brains were immunostained against anti-tyrosine hydroxylase and iba-1. Photomicrographs for coronal sections of the substantia nigra and striatum were taken and analyzed using image J software to evaluate cell count in SNpc and striatal fibers density and number of microglia in the nigrostriatal system. The results were then analyzed statistically. Results showed selective protective effects of thyroxin against rotenone induced neurotoxicity in striatum, however, failed to exert similar protection on SN. Moreover, microglial elevated number in nigrostriatal system that was induced by rotenone injections was diminished selectively in striatum only in the l-thyroxin treated group. One of the possible mechanisms deduced from this work was the selective regulation of microglia in striatal tissues. Thus, this study provides an insight into thyroxin neuroprotection warranting further investigation as therapeutic option for Parkinson's disease patients.
Collapse
Affiliation(s)
- Mohamed Salama
- Toxicology Department, Mansoura University, 35111, Mansoura, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|