1
|
Thomas A, Guo J, Reyes-Dumeyer D, Sanchez D, Scarmeas N, Manly JJ, Brickman AM, Lantigua RA, Mayeux R, Gu Y. Inflammatory biomarkers profiles and cognition among older adults. Sci Rep 2025; 15:2265. [PMID: 39824904 PMCID: PMC11748720 DOI: 10.1038/s41598-025-86309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Inflammation plays a major role in cognitive aging. Most studies on peripheral inflammation and cognitive aging focused on selected major inflammatory biomarkers. However, inflammatory markers are regulated and influenced by each other, and it is therefore important to consider a more comprehensive panel of markers to better capture diverse immune pathways and characterize the overall inflammatory profile of individuals. We explored 23 circulating inflammatory biomarkers using data from 1,743 participants without dementia (≥ 65 years-old) from the community-based, multiethnic Washington Heights Inwood Columbia Aging Project. Using principal component analysis (PCA), we developed six inflammatory profiles (PC-1 to PC-6) based on these 23 biomarkers and tested the association of resulting inflammatory profile with cognitive decline, over up to 12 years of follow-up. PC-1 described a pro-inflammatory profile characterized by high positive loadings for pro-inflammatory biomarkers. A higher PC-1 score was associated with lower baseline cognitive performances. No association of this profile with cognitive decline was observed in longitudinal analysis. However, PC-5 characterized by high PDGF-AA and RANTES was associated with a faster cognitive decline. Among older adults, a circulating pro-inflammatory immune profile is associated with lower baseline cognitive performance, and some specific pro-inflammatory cytokines might be associated with faster cognitive decline.
Collapse
Affiliation(s)
- Aline Thomas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jing Guo
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Danurys Sanchez
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Jennifer J Manly
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Adam M Brickman
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Rafael A Lantigua
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Yian Gu
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.
- Departments of Neurology and Epidemiology, Taub Institute, and Sergievsky Center, Columbia University Irving Medical Center, 622 W 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
2
|
Agarwood Pill Enhances Immune Function in Cyclophosphamide-induced Immunosuppressed Mice. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Acrylamide Neurotoxicity as a Possible Factor Responsible for Inflammation in the Cholinergic Nervous System. Int J Mol Sci 2022; 23:ijms23042030. [PMID: 35216144 PMCID: PMC8880090 DOI: 10.3390/ijms23042030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Acrylamide (ACR) is a chemical compound that exhibits neurotoxic and genotoxic effects. It causes neurological symptoms such as tremors, general weakness, numbness, tingling in the limbs or ataxia. Numerous scientific studies show the effect of ACR on nerve endings and its close connection with the cholinergic system. The cholinergic system is part of the autonomic nervous system that regulates higher cortical functions related to memory, learning, concentration and attention. Within the cholinergic system, there are cholinergic neurons, anatomical cholinergic structures, the neurotransmitter acetylcholine (ACh) and cholinergic receptors. Some scientific reports suggest a negative effect of ACR on the cholinergic system and inflammatory reactions within the body. The aim of the study was to review the current state of knowledge on the influence of acrylamide on the cholinergic system and to evaluate its possible effect on inflammatory processes. The cholinergic anti-inflammatory pathway (CAP) is a neuroimmunomodulatory pathway that is located in the blood and mucous membranes. The role of CAP is to stop the inflammatory response in the appropriate moment. It prevents the synthesis and the release of pro-inflammatory cytokines and ultimately regulates the local and systemic immune response. The cellular molecular mechanism for inhibiting cytokine synthesis is attributed to acetylcholine (ACh), the major vagal neurotransmitter, and the α7 nicotinic receptor (α7nAChR) subunit is a key receptor for the cholinergic anti-inflammatory pathway. The combination of ACh with α7nAChR results in inhibition of the synthesis and release of pro-inflammatory cytokines. The blood AChE is able to terminate the stimulation of the cholinergic anti-inflammatory pathway due to splitting ACh. Accordingly, cytokine production is essential for pathogen protection and tissue repair, but over-release of cytokines can lead to systemic inflammation, organ failure, and death. Inflammatory responses are precisely regulated to effectively protect against harmful stimuli. The central nervous system dynamically interacts with the immune system, modulating inflammation through the humoral and nervous pathways. The stress-induced rise in acetylcholine (ACh) level acts to ease the inflammatory response and restore homeostasis. This signaling process ends when ACh is hydrolyzed by acetylcholinesterase (AChE). There are many scientific reports indicating the harmful effects of ACR on AChE. Most of them indicate that ACR reduces the concentration and activity of AChE. Due to the neurotoxic effect of acrylamide, which is related to the disturbance of the secretion of neurotransmitters, and its influence on the disturbance of acetylcholinesterase activity, it can be concluded that it disturbs the normal inflammatory response.
Collapse
|
4
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
5
|
Winn NC, Cottam MA, Wasserman DH, Hasty AH. Exercise and Adipose Tissue Immunity: Outrunning Inflammation. Obesity (Silver Spring) 2021; 29:790-801. [PMID: 33899336 DOI: 10.1002/oby.23147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is considered a precipitating factor and possibly an underlying cause of many noncommunicable diseases, including cardiovascular disease, metabolic diseases, and some cancers. Obesity, which manifests in more than 650 million people worldwide, is the most common chronic inflammatory condition, with visceral adiposity thought to be the major inflammatory hub that links obesity and chronic disease. Adipose tissue (AT) inflammation is triggered or heightened in large part by (1) accelerated immune cell recruitment, (2) reshaping of the AT stromal-immuno landscape (e.g., immune cells, endothelial cells, fibroblasts, adipocyte progenitors), and (3) perturbed AT immune cell function. Exercise, along with diet management, is a cornerstone in promoting weight loss and preventing weight regain. This review focuses on evidence that increased physical activity reduces AT inflammation caused by hypercaloric diets or genetic obesity. The precise cell types and mechanisms responsible for the therapeutic effects of exercise on AT inflammation remain poorly understood. This review summarizes what is known about obesity-induced AT inflammation and immunomodulation and highlights mechanisms by which aerobic exercise combats inflammation by remodeling the AT immune landscape. Furthermore, key areas are highlighted that require future exploration and novel discoveries into the burgeoning field of how the biology of exercise affects AT immunity.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Ijabi J, Afrisham R, Moradi-Sardareh H, Roozehdar P, Seifi F, Sahebkar A, Ijabi R. The Shift of HbF to HbA under Influence of SKA2 Gene; A Possible Link between Cortisol and Hematopoietic Maturation in Term and Preterm Newborns. Endocr Metab Immune Disord Drug Targets 2021; 21:485-494. [PMID: 32364083 DOI: 10.2174/1871530320666200504091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We hypothesized that the SKA2 gene can convert hemoglobin F to A leading to the maturity of the hematopoietic system by glucocorticoid hormone; so, the present study aimed to investigate the health outcome of newborns by using the effect of SKA2 gene on hematopoietic maturation. METHODS At first, 142 samples were divided into term and preterm. After sampling from the umbilical cord blood, the expression of SKA2 genes and HbA and F were evaluated by quantitative RT-PCR. The blood gases were measured by Campact 3 device. Finally, the cortisol level was measured by ELISA method and HbA and F levels were investigated by capillary electrophoresis. RESULTS The blood gases and Apgar scores were more favorable in term newborns (P <0.001). Levels of protein/expression of HbF in newborns with Apgar score greater than 7 was lower than that of the newborns with Apgar score below 7 (P <0.001). Cortisol and HbA levels were considerably higher in term newborns compared to the preterm ones (P <0.001). In the preterm and term groups, SKA2 gene expression had a positive and significant relationship with cortisol and HbA levels as well as a negative relationship with the HbF level. In the preterm group, a positive and significant relationship was observed between the expression of SKA2 and HbF genes. CONCLUSION The results revealed that the SKA2 gene affected hematopoietic maturation in preterm and term newborns and the health outcome of newborns improved by increasing HbA level.
Collapse
Affiliation(s)
- Janat Ijabi
- Department of Hematology, School of Allied Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hemen Moradi-Sardareh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Roozehdar
- Department of Medical Veterinary, Azad University, Garmsar Branch, Garmsar, Iran
| | - Fatemeh Seifi
- Counseling and Reproductive Health Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Ijabi
- Counseling and Reproductive Health Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
8
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
9
|
Jaguezeski AM, da Silva AS, Gomes TMA, Bottari NB, Lopes TF, Cechin RA, Morsch VM, Schetinger MRC, Giongo JL, de A Vaucher R. Experimental listeriosis: A study of purinergic and cholinergic inflammatory pathway. Vet Microbiol 2019; 241:108528. [PMID: 31882365 DOI: 10.1016/j.vetmic.2019.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
Abstract
The cholinergic, purinergic and oxidative stress systems were related to nervous system damage in some pathologies, as well as being involved in pro-inflammatory and anti-inflammatory pathways. The objective was to investigate changes in purinergic, cholinergic systems and oxidative stress related to the neuropathology of listeriosis. Gerbils were used as experimental models. The animals were divided in two groups: control and infected. The animals were orally infected with 5 × 108 CFU/animal of the pathogenic strain of Listeria monocytogenes. Collected of material was 6 and 12th days post-infection (PI). Infected animals showed moderate mixed inflammatory infiltrates in the liver. The spleen and brain was used for PCR analyses, confirming infection by L. monocytogenes. Increase in number of total leukocytes because of an increase in lymphocytes in infected (P < 0.001). ATP and ADP hydrolysis by NTPDase was lower at 6 and 12th days PI in infected animals than in the control group. ADA (adenosine deaminase) activity was higher on the 6th day PI (P < 0.05) and decreased on the 12th day PI (P < 0.05) in infected animals. AChE (acetylcholinesterase) activity did not differ between groups on the 6th day PI; however, activity decreased in infected group on the 12th day PI (P < 0.05). On the 12th day PI, an increase of oxygen-reactive species levels and lower catalase and superoxide dismutase activities in the infected group was observed, characterizing a situation of cerebral oxidative stress. The inflammatory and oxidative mechanisms are present in listeriosis in asymptomatic animals, and that ectonucleotidases and cholinesterase's are involved in immunomodulation.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil
| | - Aleksandro S da Silva
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil.
| | - Teane M A Gomes
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense - IFC, Concórdia, Santa Catarina, Brazil
| | - Nathieli B Bottari
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thalisson F Lopes
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renan A Cechin
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense - IFC, Concórdia, Santa Catarina, Brazil
| | - Vera M Morsch
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria R C Schetinger
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Janice L Giongo
- Pharmacy Laboratory, Faculdade Anhanguera, Pelotas, RS, Brazil
| | | |
Collapse
|
10
|
Xu ML, Luk WK, Liu EY, Kong XP, Wu QY, Xia YJ, Dong TT, Tsim KW. Differentiation of erythroblast requires the dimeric form of acetylcholinesterase: Interference with erythropoietin receptor. Chem Biol Interact 2019; 308:317-322. [DOI: 10.1016/j.cbi.2019.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
|
11
|
Xu ML, Luk WKW, Bi CWC, Liu EYL, Wu KQY, Yao P, Dong TTX, Tsim KWK. Erythropoietin regulates the expression of dimeric form of acetylcholinesterase during differentiation of erythroblast. J Neurochem 2018; 146:390-402. [PMID: 29675901 DOI: 10.1111/jnc.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 01/28/2023]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) is known to hydrolyze acetylcholine at cholinergic synapses. In mammalian erythrocyte, AChE exists as a dimer (G2 ) and is proposed to play role in erythropoiesis. To reveal the regulation of AChE during differentiation of erythroblast, erythroblast-like cells (TF-1) were induced to differentiate by application of erythropoietin (EPO). The expression of AChE was increased in parallel to the stages of differentiation. Application of EPO in cultured TF-1 cells induced transcriptional activity of ACHE gene, as well as its protein product. This EPO-induced event was in parallel with erythrocytic proteins, for example, α- and β-globins. The EPO-induced AChE expression was mediated by phosphorylations of Akt and GATA-1; because the application of Akt kinase inhibitor blocked the gene activation. Erythroid transcription factor also known as GATA-1, a downstream transcription factor of EPO signaling, was proposed here to account for regulation of AChE in TF-1 cell. A binding sequence of GATA-1 was identified in ACHE gene promoter, which was further confirmed by chromatin immunoprecipitation (ChIP) assay. Over-expression of GATA-1 in TF-1 cultures induced AChE expression, as well as activity of ACHE promoter tagged with luciferase gene (pAChE-Luc). The deletion of GATA-1 sequence on the ACHE promoter, pAChEΔGATA-1 -Luc, reduced the promoter activity during erythroblastic differentiation. On the contrary, the knock-down of AChE in TF-1 cultures could lead to a reduction in EPO-induced expression of erythrocytic proteins. These findings indicated specific regulation of AChE during maturation of erythroblast, which provided an insight into elucidating possible mechanisms in regulating erythropoiesis.
Collapse
Affiliation(s)
- Miranda L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| | - Wilson K W Luk
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kevin Q Y Wu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
12
|
Sulatskaya AI, Rychkov GN, Sulatsky MI, Rodina NP, Kuznetsova IM, Turoverov KK. Thioflavin T Interaction with Acetylcholinesterase: New Evidence of 1:1 Binding Stoichiometry Obtained with Samples Prepared by Equilibrium Microdialysis. ACS Chem Neurosci 2018; 9:1793-1801. [PMID: 29652131 DOI: 10.1021/acschemneuro.8b00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of the present work was investigation of the fluorescent dye thioflavin T (ThT) binding to acetylcholinesterase (AChE). ThT is an effective test for protease activity, as well as a probe for amyloid fibril formation. Despite the extended and active investigation of ThT-AChE binding, there is still no common view on the stoichiometry of this interaction. In particular, there is a hypothesis explaining the spectral properties of bound to AChE dye and high quantum yield of its fluorescence by formation of dimers or excimers of ThT. In order to confirm or deny this hypothesis, we proposed a new experimental approach for examination of ThT-AChE interaction based on spectroscopic investigation of samples prepared by equilibrium microdialysis. This approach allowed us to prove 1/1 ThT/AChE binding stoichiometry. The increase of ThT fluorescence quantum yield and lifetime accompanying its binding to AChE can be explained by the molecular rotor nature of this dye. Together with the coincidence of the positions of free and AChE-bound ThT fluorescence spectra, the obtained results prove the groundlessness of the hypotheses about ThT aggregation while binding to AChE. The model of ThT localization in the active site of AChE was proposed by using molecular docking simulations. These results also allowed us to suggest the key role of aromatic residues in ThT-AChE interaction, as observed for some amyloid fibrils.
Collapse
Affiliation(s)
- A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - G. N. Rychkov
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Orlova Roscha, Gatchina, Leningrad District, 188300, Russia
| | - M. I. Sulatsky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - N. P. Rodina
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| |
Collapse
|
13
|
Central Nervous System Responses of the Oriental migratory, Locusta migratoria manilensis, to Fungal Infection. Sci Rep 2017; 7:10340. [PMID: 28871168 PMCID: PMC5583336 DOI: 10.1038/s41598-017-10622-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023] Open
Abstract
Responses of the central nervous system (CNS) to microbial challenge and the interplay between the CNS and the immune system are important for defending against pathogen attack. We have examined the CNS transcriptional response of Locusta migratoria manilensis to infection by the locust-specific fungal pathogen, Metarhizium acridum. CNS responses were examined during spore attachment, fungal germination and pre-penetration of the cuticle, and cuticle penetration/hemocoel ingress and proliferation. Effects were seen at the earliest time points (4 h post-infection) and the number of differentially expressed genes (DEGs) was highest during late mycosis (72 h post-infection). Significantly affected neurological pathways included genes involved in serotonergic, cholinergic, dopaminergic, GABAergic, and glutamergic synapse responses, as well as pathways responsible for synaptic vesicle cycle, long-term potentiation and depression, and neurotrophin and retrograde endocannabinoid signaling. In addition, a significant number of immune related DEGs were identified. These included components of the Toll, Imd and JAK/STAT pathways, consistent with interactions between the CNS and immune systems. The activation of immune response related CNS genes during early stage infection highlights the rapid detection of microbial pathogens and suggests an important role for the CNS in modulating immunity potentially via initiating behavioral adaptations along with innate immune responses.
Collapse
|
14
|
Hernández AF, Menéndez P. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms. Int J Mol Sci 2016; 17:461. [PMID: 27043530 PMCID: PMC4848917 DOI: 10.3390/ijms17040461] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs) and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides) include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs) in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations) may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation). Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada 18016, Spain.
| | - Pablo Menéndez
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona 08036, Spain.
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
15
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Zhang QH, Li AM, He SL, Yao XD, Zhu J, Zhang ZW, Sheng ZY, Yao YM. Serum Total Cholinesterase Activity on Admission Is Associated with Disease Severity and Outcome in Patients with Traumatic Brain Injury. PLoS One 2015; 10:e0129082. [PMID: 26107885 PMCID: PMC4479571 DOI: 10.1371/journal.pone.0129082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the leading causes of neurological disability. In this retrospective study, serum total cholinesterase (ChE) activities were analyzed in 188 patients for diagnostic as well as predictive values for mortality. METHODS AND FINDINGS Within 72 hours after injury, serum ChE activities including both acetylcholinesterase and butyrylcholinesterase were measured. Disease severity was evaluated with Acute Physiology and Chronic Health Evaluation (APACHE) II score, Glasgow Coma Score, length of coma, post-traumatic amnesia and injury feature. Neurocognitive and functional scores were assessed using clinical records. Of 188 patients, 146 (77.7%) survived and 42 (22.3%) died within 90 days. Lower ChE activities were noted in the non-survivors vs. survivors (5.94±2.19 vs. 7.04±2.16 kU/L, p=0.023), in septic vs. non-infected patients (5.93±1.89 vs. 7.31±2.45 kU/L, p=0.0005) and in patients with extremely severe injury vs. mild injury (6.3±1.98 vs. 7.57±2.48 kU/L, p=0.049). The trajectories of serum ChE levels were also different between non-survivors and survivors, septic and non-infected patients, mild and severely injured patients, respectively. Admission ChE activities were closely correlated with blood cell counts, neurocognitive and functional scores both on admission and at discharge. Receiver operating characteristic analysis showed that the area under the curve for ChE was inferior to that for either APACHE II or white blood cell (WBC) count. However, at the optimal cutoff value of 5 kU/L, the sensitivity of ChE for correct prediction of 90-day mortality was 65.5% and the specificity was 86.4%. Kaplan-Meier analysis showed that lower ChE activity (<5 kU/L) was more closely correlated with poor survival than higher ChE activity (>5 kU/L) (p=0.04). After adjusting for other variables, ChE was identified as a borderline independent predictor for mortality as analyzed by Binary logistic regression (P=0.078). CONCLUSIONS Lowered ChE activity measured on admission appears to be associated with disease severity and outcome for TBI patients.
Collapse
Affiliation(s)
- Qing-Hong Zhang
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
- * E-mail: (QHZ); (YMY)
| | - An-Min Li
- Department of Neurosurgery, Hainan Branch of the Chinese PLA General Hospital, Sanya, Hainan, 572013, P. R. China
| | - Sai-Lin He
- Department of Neurosurgery, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Xu-Dong Yao
- Department of Emergency, First Hospital Affiliated to Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Jing Zhu
- Department of Laboratory Medicine, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Zhi-Wen Zhang
- Department of Neurosurgery, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Zhi-Yong Sheng
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Yong-Ming Yao
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
- * E-mail: (QHZ); (YMY)
| |
Collapse
|
17
|
Wang X, Zhong J, Gao Y, Ju Z, Huang J. A SNP in intron 8 of CD46 causes a novel transcript associated with mastitis in Holsteins. BMC Genomics 2014; 15:630. [PMID: 25070150 PMCID: PMC4124149 DOI: 10.1186/1471-2164-15-630] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 07/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background The membrane protein CD46, a ubiquitous cell surface pathogen receptor, can bind Streptococcus to trigger cell autophagy, which is a critical step in the control of infection. Results In this study, we found a new splice variant designated CD46 transcript variant (CD46-TV). The splice variant is characterized by the retention of a 48 bp sequence from intron 8 of the bovine CD46 gene, which encodes a putative protein enlarged by 16 amino acids. CD46-TV mRNA was found to be over expressed in mastitis-infected mammary gland tissues relative to healthy tissues. A single nucleotide polymorphism (c. 1033 + 2184 C > T) in the exonic splicing enhancer (ESE) motif region was shown to result in the CD46-TV aberrant splice variant through constructing alternative alleles using the pSPL3 exon capturing vector and transfecting these into 293 T cells. Allelic frequency in 56,682 individuals belonging to 112 Bos taurus, Bos indicus, Bos javanicus, Bos grunniens and Bos mutus, etc. suggests that the C allele (80.09%) is the ancestral allele. Association analysis found that the mean genomic estimated breeding values (gEBV) for milk somatic cell score and the occurrence of clinical mastitis, as well as the milk somatic cell score of Chinese Holsteins with the CT genotype was lower than those of individuals with either the CC or TT genotypes. The mean gEBV for udder health synthesis for the TT genotype was greater than those for the CC or CT genotypes. Conclusions Our findings suggest that the CD46 gene likely plays a critical role in the risk of mastitis caused by Streptococcus in dairy cows via an alternative splicing mechanism caused by a functional mutation in intron 8. Our data also underline the importance of variation within ESEs in regulating transcript processing. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-630) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No,159 North of Industry Road, Jinan, Shandong 250131, China.
| |
Collapse
|
18
|
Lv Y, Hu S, Lu J, Dong N, Liu Q, Du M, Zhang H. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators Inflamm 2014; 2014:873728. [PMID: 24733966 PMCID: PMC3964895 DOI: 10.1155/2014/873728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 01/03/2014] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh) could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS) stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT) expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.
Collapse
Affiliation(s)
- Yi Lv
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Sen Hu
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Jiangyang Lu
- Department of Pathology, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Ning Dong
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Qian Liu
- Department of Pathology, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Minghua Du
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Huiping Zhang
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| |
Collapse
|
19
|
Oxime-type acetylcholinesterase reactivators in pregnancy: an overview. Arch Toxicol 2013; 88:575-84. [DOI: 10.1007/s00204-013-1160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
20
|
AChE and RACK1 promote the anti-inflammatory properties of fluoxetine. J Mol Neurosci 2013; 53:306-15. [PMID: 24258317 DOI: 10.1007/s12031-013-0174-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) show anti-inflammatory effects, suggesting a possible interaction with both Toll-like-receptor 4 (TLR4) responses and cholinergic signaling through as yet unclear molecular mechanism(s). Our results of structural modeling support the concept that the antidepressant fluoxetine physically interacts with the TLR4-myeloid differentiation factor-2 complex at the same site as bacterial lipopolysaccharide (LPS). We also demonstrate reduced LPS-induced pro-inflammatory interleukin-6 and tumor necrosis factor alpha in human peripheral blood mononuclear cells preincubated with fluoxetine. Furthermore, we show that fluoxetine intercepts the LPS-induced decreases in intracellular acetylcholinesterase (AChE-S) and that AChE-S interacts with the nuclear factor kappa B (NFκB)-activating intracellular receptor for activated C kinase 1 (RACK1). This interaction may prevent NFκB activation by residual RACK1 and its interacting protein kinase PKCβII. Our findings attribute the anti-inflammatory properties of SSRI to surface membrane interference with leukocyte TLR4 activation accompanied by intracellular limitation of pathogen-inducible changes in AChE-S, RACK1, and PKCβII.
Collapse
|
21
|
Carvalho LA, Nobrega AF, Soares ID, Carvalho SL, Allodi S, Baetas-da-Cruz W, Cavalcante LA. The mannose receptor is expressed by olfactory ensheathing cells in the rat olfactory bulb. J Neurosci Res 2013; 91:1572-80. [DOI: 10.1002/jnr.23285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Litia A. Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Laboratory of Comparative and Developmental Neurobiology; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Alberto F. Nobrega
- Instituto de Microbiologia Prof. Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Igor D.P. Soares
- Instituto de Biofísica Carlos Chagas Filho, Laboratory of Comparative and Developmental Neurobiology; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Sergio L. Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Laboratory of Comparative and Developmental Neurobiology; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Laboratory of Comparative and Developmental Neurobiology; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Wagner Baetas-da-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Laboratory of Comparative and Developmental Neurobiology; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Centro de Cirurgia Experimental, Departamento de Cirurgia; Universidade Federal do Rio de Janeiro, Faculdade de Medicina; Rio de Janeiro Brazil
| | - Leny A. Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, Laboratory of Comparative and Developmental Neurobiology; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
22
|
Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-like expression in zebrafish (Danio rerio) larvae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:205183. [PMID: 23991412 PMCID: PMC3748442 DOI: 10.1155/2013/205183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
Abstract
Metal nanosolicoparticles are suspected to cause diseases in a number of organisms, including man. In this paper, we report the effects of nanosilver (Ag, 1-20 nm particles) on the early development of the zebrafish, a well-established vertebrate model. Embryos at the midgastrula stage were exposed to concentrations ranging from 100 to 0.001 mg/L to verify the effects on different endpoints: lethality, morphology, expression of cholinergic molecules, and development of the immune system. (1) Relative risk of mortality was exponential in the range between 0.001 and 10 mg/L. Exposure to 100 mg/L caused 100% death of embryos before reaching the tail-bud stage. (2) Developmental anomalies were present in the 72 h larvae obtained from embryos exposed to nanosilver: whole body length, decreased eye dimension, and slow response to solicitation by gentle touch with a needle tip, with a significant threshold at 0.1 mg/L. (3) Dose-dependent inhibition of acetylcholinesterase activity was significant among the exposures, except between 1 mg/L and 10 mg/L. (4) The distribution of CD41+ cells and of CDF/LIF-like immunoreactivity was altered according to the Ag concentration. The possible effect of nanosilver in impairing immune system differentiation through the inhibition of molecules related to the cholinergic system is discussed.
Collapse
|
23
|
Ferreira AC, Pinto V, Dá Mesquita S, Novais A, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci 2013; 7:122. [PMID: 23908604 PMCID: PMC3725407 DOI: 10.3389/fncel.2013.00122] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/11/2013] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-2 (LCN2), an iron-related protein well described to participate in the innate immune response, has been shown to modulate spine morphology and to regulate neuronal excitability. In accordance, LCN2-null mice are reported to have stress-induced anxiety. Here we show that, under standard housing conditions, LCN2-null mice display anxious and depressive-like behaviors, as well as cognitive impairment in spatial learning tasks. These behavioral alterations were associated with a hyperactivation of the hypothalamic-pituitary-adrenal axis and with an altered brain cytoarchitecture in the hippocampus. More specifically, we found that the granular and pyramidal neurons of the ventral hippocampus, a region described to be associated with emotion, were hypertrophic, while neurons from the dorsal hippocampus, a region implicated in memory and cognition, were atrophic. In addition, LCN2-null mice presented synaptic impairment in hippocampal long-term potentiation. Whether the LCN2 effects are mediated through modulation of the level of corticosteroids or through a novel mechanism, the present observations bring further into light this immune-related protein as a player in the fine-tuning of behavior and of synaptic activity.
Collapse
Affiliation(s)
- Ana C Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Temeyer KB, Tuckow AP, Brake DK, Li AY, Pérez de León AA. Acetylcholinesterases of blood-feeding flies and ticks. Chem Biol Interact 2013; 203:319-22. [DOI: 10.1016/j.cbi.2012.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 12/31/2022]
|
25
|
Tsim K, Soreq H. Acetylcholinesterase: old questions and new developments. Front Mol Neurosci 2013; 5:101. [PMID: 23316131 PMCID: PMC3540815 DOI: 10.3389/fnmol.2012.00101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/14/2012] [Indexed: 11/20/2022] Open
Affiliation(s)
- Karl Tsim
- Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology Hong Kong, China
| | | |
Collapse
|
26
|
Rezin GT, Scaini G, Ferreira GK, Cardoso MR, Gonçalves CL, Constantino LS, Deroza PF, Ghedim FV, Valvassori SS, Resende WR, Quevedo J, Zugno AI, Streck EL. Inhibition of acetylcholinesterase activity in brain and behavioral analysis in adult rats after chronic administration of fenproporex. Metab Brain Dis 2012; 27:453-8. [PMID: 22832793 DOI: 10.1007/s11011-012-9331-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022]
Abstract
Fenproporex is an amphetamine-based anorectic and it is rapidly converted in vivo into amphetamine. It elevates the levels of extracellular dopamine in the brain. Acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine. Thus, we investigated whether the effects of chronic administration of fenproporex in adult rats alters acquisition and retention of avoidance memory and acetylcholinesterase activity. Adult male Wistar rats received repeated (14 days) intraperitoneal injection of vehicle or fenproporex (6.25, 12.5 or 25 mg/kg i.p.). For behavioral assessment, animals were submitted to inhibitory avoidance (IA) tasks and continuous multiple trials step-down inhibitory avoidance (CMIA). Acetylcholinesterase activity was measured in the prefrontal cortex, hippocampus, hypothalamus and striatum. The administration of fenproporex (6.25, 12.5 and 25 mg/kg) did not induce impairment in short and long-term IA or CMIA retention memory in rats. In addition, longer periods of exposure to fenproporex administration decreased acetylcholinesterase activity in prefrontal cortex and striatum of rats, but no alteration was verified in the hippocampus and hypothalamus. In conclusion, the present study showed that chronic fenproporex administration decreased acetylcholinesterase activity in the rat brain. However, longer periods of exposure to fenproporex did not produce impairment in short and long-term IA or CMIA retention memory in rats.
Collapse
Affiliation(s)
- Gislaine T Rezin
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang X, Huang J, Zhao L, Wang C, Ju Z, Li Q, Qi C, Zhang Y, Zhang Z, Zhang W, Hou M, Yuan J, Zhong J. The exon 29 c.3535A>T in the alpha-2-macroglobulin gene causing aberrant splice variants is associated with mastitis in dairy cattle. Immunogenetics 2012; 64:807-16. [PMID: 22923050 DOI: 10.1007/s00251-012-0639-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Alpha-2-macroglobulin (A2M) binds proteases, thereby acting as defense barriers against pathogens in the plasma and tissues of vertebrates and invertebrates. Quantitative real-time polymerase chain reaction (PCR) and the isobaric tags for relative and absolute quantitation method were used to determine the expression levels of A2M mRNA and proteins in mastitis-infected mammary tissues. A2M mRNA and protein expression were significantly higher in mastitis-infected mammary tissues than those in healthy tissues. We also identified 23 novel A2M splice variants in the bovine mammary tissues using reverse transcription PCR combined with clone sequencing. These splice variants predominantly affected the bait region, the inhibitory region, and the thioester region of the protein, which have the functional key roles in inhibiting the proteases of pathogens. Genomic sequencing analysis revealed a nonsynonymous c.3535A>T single-nucleotide polymorphism (SNP) in exon 29, which is located within a putative exonic splice enhancer and may be the reason why the A2M gene produces the aberrant splice variant A2M-AS4. Our findings suggest that the A2M gene can play its role by alternative splicing mechanism and it may be of significance against mastitis. This study provides clues to better understand the function of the bovine A2M gene and the effects of the exonic SNP on the production of aberrant splice variants.
Collapse
Affiliation(s)
- Xiuge Wang
- Laboratory of Molecular Genetics and Breeding, Center of Dairy Cattle Research, Shandong Academy of Agricultural Sciences, Industry North Road 159, Jinan 250131, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|