1
|
Sanson A, Krieg P, Schramm MM, Kellner K, Maloumby R, Klampfl SM, Brunton PJ, Bosch OJ. CRF binding protein activity in the hypothalamic paraventricular nucleus is essential for stress adaptations and normal maternal behaviour in lactating rats. Neurobiol Stress 2024; 30:100631. [PMID: 38601362 PMCID: PMC11004997 DOI: 10.1016/j.ynstr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
To ensure the unrestricted expression of maternal behaviour peripartum, activity of the corticotropin-releasing factor (CRF) system needs to be minimised. CRF binding protein (CRF-BP) might be crucial for this adaptation, as its primary function is to sequester freely available CRF and urocortin1, thereby dampening CRF receptor (CRF-R) signalling. So far, the role of CRF-BP in the maternal brain has barely been studied, and a potential role in curtailing activation of the stress axis is unknown. We studied gene expression for CRF-BP and both CRF-R within the paraventricular nucleus (PVN) of the hypothalamus. In lactating rats, Crh-bp expression in the parvocellular PVN was significantly higher and Crh-r1 expression in the PVN significantly lower compared to virgin rats. Acute CRF-BP inhibition in the PVN with infusion of CRF(6-33) increased basal plasma corticosterone concentrations under unstressed conditions in dams. Furthermore, while acute intra-PVN infusion of CRF increased corticosterone secretion in virgin rats, it was ineffective in vehicle (VEH)-pre-treated lactating rats, probably due to a buffering effect of CRF-BP. Indeed, pre-treatment with CRF(6-33) reinstated a corticosterone response to CRF in lactating rats, highlighting the critical role of CRF-BP in maintaining attenuated stress reactivity in lactation. To our knowledge, this is the first study linking hypothalamic CRF-BP activity to hypothalamic-pituitary-adrenal axis regulation in lactation. In terms of behaviour, acute CRF-BP inhibition in the PVN under non-stress conditions reduced blanket nursing 60 min and licking/grooming 90 min after infusion compared to VEH-treated rats, while increasing maternal aggression towards an intruder. Lastly, chronic intra-PVN inhibition of CRF-BP strongly reduced maternal aggression, with modest effects on maternal motivation and care. Taken together, intact activity of the CRF-BP in the PVN during the postpartum period is essential for the dampened responsiveness of the stress axis, as well as for the full expression of appropriate maternal behaviour.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula Krieg
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Milena M. Schramm
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Kerstin Kellner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Stefanie M. Klampfl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Galaj E, Barrera ED, Persaud K, Nisanov R, Vashisht A, Goldberg H, Patel N, Lenhard H, You ZB, Gardner EL, Ranaldi R. The Impact of Heroin Self-Administration and Environmental Enrichment on Ventral Tegmental CRF1 Receptor Expression. Int J Neuropsychopharmacol 2023; 26:828-839. [PMID: 37864842 PMCID: PMC10726410 DOI: 10.1093/ijnp/pyad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Rudolf Nisanov
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Hindy Goldberg
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Nima Patel
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NYUSA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
3
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-induced alcohol craving: A human laboratory study. Addict Biol 2023; 28:e13288. [PMID: 37369125 PMCID: PMC10313137 DOI: 10.1111/adb.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023]
Abstract
Preclinical and clinical work suggests that mifepristone may be a viable treatment for alcohol use disorder (AUD). This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD (N = 32). We assessed safety, alcohol craving and consumption, after 1-week mifepristone 600 mg/day administration, in a human laboratory study comprised of a single oral yohimbine administration (32.4 mg), a cue-reactivity procedure and alcohol self-administration. Safety was monitored by adverse events and hemodynamic parameters, alcohol craving by alcohol craving questionnaire and cue-induced saliva output. During the alcohol self-administration, we assessed alcohol pharmacokinetics, subjective effects and consumption. Outcomes were assessed using Generalized Estimating Equations and mediation analysis. Mild-moderate adverse events were reported in both conditions. There was no statistically significant difference between mifepristone and placebo in alcohol pharmacokinetics and subjective effects. Furthermore, blood pressure increased only in the placebo condition after the stress-induced laboratory procedures. Mifepristone, compared to placebo, significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a developed preclinical procedure to a human laboratory study, confirming the safety of mifepristone in people with AUD and providing evidence to its role in reducing alcohol craving under stress procedures. The lack of effects on alcohol drinking may be related to the selection of non-treatment seekers and suggests future treatment-oriented trials should investigate mifepristone in people with AUD.
Collapse
Affiliation(s)
- Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Providence RI, Brown University
| | - Molly Magill
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | | | - Joshua C. Brown
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elie G. Aoun
- Division of Law, Ethics and Psychiatry, Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Patricia A. Cioe
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | - Rajita Sinha
- Yale Stress Center, Department of Psychiatry, Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, NIDA IRP and NIAAA DICBR, Baltimore and Bethesda, MD, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
4
|
Nikbakhtzadeh M, Ranjbar H, Moradbeygi K, Zahedi E, Bayat M, Soti M, Shabani M. Cross-talk between the HPA axis and addiction-related regions in stressful situations. Heliyon 2023; 9:e15525. [PMID: 37151697 PMCID: PMC10161713 DOI: 10.1016/j.heliyon.2023.e15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Addiction is a worldwide problem that has a negative impact on society by imposing significant costs on health care, public security, and the deactivation of the community economic cycle. Stress is an important risk factor in the development of addiction and relapse vulnerability. Here we review studies that have demonstrated the diverse roles of stress in addiction. Term searches were conducted manually in important reference journals as well as in the Google Scholar and PubMed databases, between 2010 and 2022. In each section of this narrative review, an effort has been made to use pertinent sources. First, we will provide an overview of changes in the Hypothalamus-Pituitary-Adrenal (HPA) axis component following stress, which impact reward-related regions including the ventral tegmental area (VTA) and nucleus accumbens (NAc). Then we will focus on internal factors altered by stress and their effects on drug addiction vulnerability. We conclude that alterations in neuro-inflammatory, neurotrophic, and neurotransmitter factors following stress pathways can impact related mechanisms on craving and relapse susceptibility.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monavareh Soti
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| |
Collapse
|
5
|
Sleep Deprivation Induces Dopamine System Maladaptation and Escalated Corticotrophin-Releasing Factor Signaling in Adolescent Mice. Mol Neurobiol 2023; 60:3190-3209. [PMID: 36813955 DOI: 10.1007/s12035-023-03258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Sleep disruption is highly associated with the pathogenesis and progression of a wild range of psychiatric disorders. Furthermore, appreciable evidence shows that experimental sleep deprivation (SD) on humans and rodents evokes anomalies in the dopaminergic (DA) signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Since adolescence is a vital period for the maturation of the DA system as well as the occurrence of mental disorders, the present studies aimed to investigate the impacts of SD on the DA system of adolescent mice. We found that 72 h SD elicited a hyperdopaminergic status, with increased sensitivity to the novel environment and amphetamine (Amph) challenge. Also, altered neuronal activity and expression of striatal DA receptors were noticed in the SD mice. Moreover, 72 h SD influenced the immune status in the striatum, with reduced microglial phagocytic capacity, primed microglial activation, and neuroinflammation. The abnormal neuronal and microglial activity were putatively provoked by the enhanced corticotrophin-releasing factor (CRF) signaling and sensitivity during the SD period. Together, our findings demonstrated the consequences of SD in adolescents including aberrant neuroendocrine, DA system, and inflammatory status. Sleep insufficiency is a risk factor for the aberration and neuropathology of psychiatric disorders.
Collapse
|
6
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-Induced alcohol craving: a translational crossover randomized trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.02.23284122. [PMID: 36711869 PMCID: PMC9882427 DOI: 10.1101/2023.01.02.23284122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Preclinical and clinical work suggests that mifepristone (glucocorticoid receptor antagonist), may be a viable treatment for alcohol use disorder (AUD). The aim of this work was to translate our preclinical mifepristone study using yohimbine (α2 receptor antagonist) stress-induced reinstatement of alcohol-seeking to a clinical setting. This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD ( N =32). We investigated the safety, alcohol craving and consumption after oral administration of mifepristone (600mg daily for a week) in a human laboratory study comprised of administration of yohimbine in a cue-reactivity procedure and alcohol self-administration. Outcomes were assessed using Generalized Estimating Equations and mediation and moderation analyses assessed mechanisms of action and precision medicine targets. We did not observe serious adverse events related to the study drugs or study procedure and mild to moderate non-serious adverse events were reported by both study conditions. Also, there was no statistically-significant difference between the mifepristone and placebo in the hemodynamic response, alcohol subjective effects and pharmacokinetics parameters. Mifepristone significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Moderation analysis with family history density of AUD (FHDA) and mifepristone, suggested that reduced craving was present in individuals with low , but not high FHDA. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a preclinical paradigm to a human laboratory study confirming safety, tolerability and efficacy of mifepristone in an alcohol paradigm. Mediation analysis showed that the effect of mifepristone on craving was not related to mifepristone-induced increases in cortisol and moderation of FHDA suggested the importance of evaluating AUD endophenotypes for pharmacotherapies. Clinical trial registration Clinicaltrials.gov ; NCT02243709. IND/FDA 121984, mifepristone and yohimbine (Holder: Haass-Koffler).
Collapse
|
7
|
Ray SK, Mukherjee S. Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets. Curr Neuropharmacol 2023; 21:119-132. [PMID: 35959616 PMCID: PMC10193758 DOI: 10.2174/1570159x20666220811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh 462020, India
| |
Collapse
|
8
|
Haass-Koffler CL, Francis TC, Gandhi P, Patel R, Naemuddin M, Nielsen CK, Bartlett SE, Bonci A, Vasile S, Hood BL, Suyama E, Hedrick MP, Smith LH, Limpert AS, Roberto M, Cosford NDP, Sheffler DJ. Development and use of a high-throughput screen to identify novel modulators of the corticotropin releasing factor binding protein. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:448-459. [PMID: 36210051 PMCID: PMC9762412 DOI: 10.1016/j.slasd.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Department of Psychiatry and Human Behavior, Alpert Medical School; Department of Behavioral and Social Sciences, School of Public Health; Center for Alcohol and Addiction Studies; Carney Institute for Brain Science, Brown University, Providence RI, United States.
| | - T Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States; Intramural Research Program, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Baltimore, MD, United States
| | - Pauravi Gandhi
- The Scripps Research Institute, La Jolla, CA, United States
| | - Reesha Patel
- The Scripps Research Institute, La Jolla, CA, United States
| | - Mohammad Naemuddin
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Carsten K Nielsen
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Selena E Bartlett
- Translational Research Institute, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia
| | | | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Becky L Hood
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Eigo Suyama
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Layton H Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Allison S Limpert
- NCI Designated Cancer Center, La Jolla, CA, United States; Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States
| | - Nicholas D P Cosford
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States; NCI Designated Cancer Center, La Jolla, CA, United States; Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Douglas J Sheffler
- NCI Designated Cancer Center, La Jolla, CA, United States; Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
| |
Collapse
|
9
|
Curley DE, Vasaturo-Kolodner TR, Cannella N, Ciccocioppo R, Haass-Koffler CL. Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies. Neuropsychopharmacology 2022; 47:2111-2122. [PMID: 35760866 PMCID: PMC9556614 DOI: 10.1038/s41386-022-01363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Alcohol use disorder (AUD) is a significant public health concern, contributing to a myriad of social, psychological, and physiological issues. Despite substantial efforts within the alcohol research field, promising preclinical findings have failed to translate to clinical use, highlighting the necessity to develop safe and effective pharmacological probes with the ability to be used in preclinical and clinical research. Yohimbine, an α2 adrenergic receptor antagonist, is a well-validated pharmacological tool that has been widely employed in alcohol studies to evaluate noradrenergic activation. This scoping systematic review examines published literature in rodent and human studies involving the use of yohimbine relevant to alcohol research. We conducted a systematic literature review of MEDLINE, Embase, Web of Science Core Collection, CINAHL, PsycInfo, and Cochrane Central Register of Controlled Trials to identify: (1) Experimental Characteristics and Methodology, (2) Sex Differences, (3) Neurochemical Systems and Brain Regions, and (4) Discussion of Applications for Medication Development. Sixty-seven (62 preclinical and 5 clinical) studies were identified meeting the stated criteria, comprising extensive evidence supporting the use of yohimbine as a safe, titratable pharmacological agent for translational alcohol research. Support for the use of yohimbine as a fully translational tool, however, is hindered by limited available findings from human laboratory studies, as well as a dearth of studies examining sex differences in yohimbine's mechanistic actions. Additional consideration should be given to further translational modeling, ideally allowing for parallel preclinical and clinical assessment of yohimbine, methodological assessment of neurochemical systems and brain regions.
Collapse
Affiliation(s)
- Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, USA
| | - Talia R Vasaturo-Kolodner
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
11
|
Pokhrel P, Elwir T, Mettias H, Kawamoto CT, Oli N, Okamoto SK. The Effects of E-Cigarette Use on Alcohol and Marijuana Abuse Symptoms in an Ethnically Diverse Sample of Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413159. [PMID: 34948769 PMCID: PMC8701290 DOI: 10.3390/ijerph182413159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND We examined e-cigarette use as a prospective predictor of alcohol and marijuana abuse symptoms in a sample consisting of Native Hawaiian and Other Pacific Islander (NHPI), Filipino, Asian (i.e., Japanese, Chinese, Korean), and White young adults. NHPI represent a highly vulnerable group with regard to substance use and are severely understudied. METHODS Data were collected from 1463 young adults (M age = 22.2, SD = 3.2; 59.5% women) enrolled across community colleges in Hawai'i at two time-points six months apart. RESULTS Higher frequency of e-cigarette use at baseline was predictive of higher alcohol (B = 0.06, SE = 0.02, p < 0.01) and marijuana (B = 0.06, SE = 0.02, p < 0.01) use problems at six-month follow up, adjusting for baseline cigarette smoking, problem alcohol/marijuana use, sensation seeking, and demographic variables. Ethnicity was found to significantly moderate the relationship between baseline e-cigarette use and problem marijuana use later, such that White and NHPI ethnicities were particularly vulnerable to the effects of e-cigarette use on problem marijuana use. CONCLUSION NHPI are often combined with Asians in national surveys, which obfuscates the higher risks faced by NHPI compared with groups that are routinely classified as Asians (e.g., Chinese, Japanese, Filipinos). The current research highlights the NHPI's vulnerability in terms of the effects of e-cigarette use on marijuana and alcohol abuse symptoms.
Collapse
Affiliation(s)
- Pallav Pokhrel
- Population Sciences in the Pacific Program, University of Hawai‘i Cancer Center, University of Hawaii at Manoa, 701 Ilalo St., Honolulu, HI 96813, USA; (T.E.); (C.T.K.); (S.K.O.)
- Correspondence: ; Tel.: +1-808-441-7711
| | - Taha Elwir
- Population Sciences in the Pacific Program, University of Hawai‘i Cancer Center, University of Hawaii at Manoa, 701 Ilalo St., Honolulu, HI 96813, USA; (T.E.); (C.T.K.); (S.K.O.)
| | - Hannah Mettias
- John A. Burns School of Medicine, University of Hawai‘i at Manoa, 651 Ilalo St., Honolulu, HI 96813, USA;
| | - Crissy T. Kawamoto
- Population Sciences in the Pacific Program, University of Hawai‘i Cancer Center, University of Hawaii at Manoa, 701 Ilalo St., Honolulu, HI 96813, USA; (T.E.); (C.T.K.); (S.K.O.)
| | - Nabin Oli
- Kokua Kalihi Valley Comprehensive Family Services, 2239 N School St., Honolulu, HI 96819, USA;
| | - Scott K. Okamoto
- Population Sciences in the Pacific Program, University of Hawai‘i Cancer Center, University of Hawaii at Manoa, 701 Ilalo St., Honolulu, HI 96813, USA; (T.E.); (C.T.K.); (S.K.O.)
- School of Social Work, College of Health & Society, Hawai‘i Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| |
Collapse
|
12
|
Curley DE, Webb AE, Sheffler DJ, Haass-Koffler CL. Corticotropin Releasing Factor Binding Protein as a Novel Target to Restore Brain Homeostasis: Lessons Learned From Alcohol Use Disorder Research. Front Behav Neurosci 2021; 15:786855. [PMID: 34912198 PMCID: PMC8667027 DOI: 10.3389/fnbeh.2021.786855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Stress is well-known to contribute to the development of many psychiatric illnesses including alcohol and substance use disorder (AUD and SUD). The deleterious effects of stress have also been implicated in the acceleration of biological age, and age-related neurodegenerative disease. The physio-pathology of stress is regulated by the corticotropin-releasing factor (CRF) system, the upstream component of the hypothalamic-pituitary-adrenal (HPA) axis. Extensive literature has shown that dysregulation of the CRF neuroendocrine system contributes to escalation of alcohol consumption and, similarly, chronic alcohol consumption contributes to disruption of the stress system. The CRF system also represents the central switchboard for regulating homeostasis, and more recent studies have found that stress and aberrations in the CRF pathway are implicated in accelerated aging and age-related neurodegenerative disease. Corticotropin releasing factor binding protein (CRFBP) is a secreted glycoprotein distributed in peripheral tissues and in specific brain regions. It neutralizes the effects of CRF by sequestering free CRF, but may also possess excitatory function by interacting with CRF receptors. CRFBP's dual role in influencing CRF bioavailability and CRF receptor signaling has been shown to have a major part in the HPA axis response. Therefore, CRFBP may represent a valuable target to treat stress-related illness, including: development of novel medications to treat AUD and restore homeostasis in the aging brain. This narrative review focuses on molecular mechanisms related to the role of CRFBP in the progression of addictive and psychiatric disorders, biological aging, and age-related neurodegenerative disease. We provide an overview of recent studies investigating modulation of this pathway as a potential therapeutic target for AUD and age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Dallece E. Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, United States
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Douglas J. Sheffler
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, United States
| |
Collapse
|
13
|
Calarco CA, Fox ME, Van Terheyden S, Turner MD, Alipio JB, Chandra R, Lobo MK. Mitochondria-Related Nuclear Gene Expression in the Nucleus Accumbens and Blood Mitochondrial Copy Number After Developmental Fentanyl Exposure in Adolescent Male and Female C57BL/6 Mice. Front Psychiatry 2021; 12:737389. [PMID: 34867530 PMCID: PMC8637046 DOI: 10.3389/fpsyt.2021.737389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
The potency of the synthetic opioid fentanyl and its increased clinical availability has led to the rapid escalation of use in the general population, increased recreational exposure, and subsequently opioid-related overdoses. The wide-spread use of fentanyl has, consequently, increased the incidence of in utero exposure to the drug, but the long-term effects of this type of developmental exposure are not yet understood. Opioid use has also been linked to reduced mitochondrial copy number in blood in clinical populations, but the link between this peripheral biomarker and genetic or functional changes in reward-related brain circuitry is still unclear. Additionally, mitochondrial-related gene expression in reward-related brain regions has not been examined in the context of fentanyl exposure, despite the growing literature demonstrating drugs of abuse impact mitochondrial function, which subsequently impacts neuronal signaling. The current study uses exposure to fentanyl via dam access to fentanyl drinking water during gestation and lactation as a model for developmental drug exposure. This perinatal drug-exposure is sufficient to impact mitochondrial copy number in circulating blood leukocytes, as well as mitochondrial-related gene expression in the nucleus accumbens (NAc), a reward-related brain structure, in a sex-dependent manner in adolescent offspring. Specific NAc gene expression is correlated with both blood mitochondrial copy number and with anxiety related behaviors dependent on developmental exposure to fentanyl and sex. These data indicate that developmental fentanyl exposure impacts mitochondrial function in both the brain and body in ways that can impact neuronal signaling and may prime the brain for altered reward-related behavior in adolescence and later into adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
15
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
16
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Randesi M, Contoreggi NH, Zhou Y, Rubin BR, Bellamy JR, Yu F, Gray JD, McEwen BS, Milner TA, Kreek MJ. Sex Differences in Neuroplasticity- and Stress-Related Gene Expression and Protein Levels in the Rat Hippocampus Following Oxycodone Conditioned Place Preference. Neuroscience 2019; 410:274-292. [PMID: 31071414 DOI: 10.1016/j.neuroscience.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Prescription opioid abuse is a serious public health issue. Recently, we showed that female and male Sprague-Dawley rats acquire conditioned place preference (CPP) to the mu opioid receptor agonist oxycodone. Anatomical analysis of the hippocampus from these rats unveiled sex differences in the opioid system in a way that would support excitation and opiate associative learning processes especially in females. In this study, we examined the expression and protein densities of opioid, plasticity, stress and related kinase and signaling molecules in the hippocampus of female and male rats following oxycodone CPP. Oxycodone CPP females have: a) increases in ARC (activity regulated cytoskeletal-associated protein)-immunoreactivity (ir) in CA3 pyramidal cells; b) decreases in Npy (neuropeptide Y) gene expression in the medial hippocampus but higher numbers of NPY-containing hilar interneurons compared to males; c) increases in Crhr2 (corticotropin releasing factor receptor 2) expression in CA2/3; d) increases in Akt1 (AKT serine/threonine kinase 1) expression in medial hippocampus; and e) decreases in phosphorylated MAPK (mitogen activated protein kinase)-ir in CA1 and dentate gyrus. Oxycodone CPP males have: a) increases in Bdnf (brain derived-neurotrophic factor) expression, which is known to be produced in granule cells, relative to females; b) elevated Mapk1 expression and pMAPK-ir in the dentate hilus which harbors newly generated granule cells; and c) increases in CRHR1-ir in CA3 pyramidal cell soma. These sex-specific changes in plasticity, stress and kinase markers in hippocampal circuitry parallel previously observed sex differences in the opioid system after oxycodone CPP.
Collapse
Affiliation(s)
- Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Julia R Bellamy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| |
Collapse
|
18
|
Ruisoto P, Contador I. The role of stress in drug addiction. An integrative review. Physiol Behav 2019; 202:62-68. [PMID: 30711532 DOI: 10.1016/j.physbeh.2019.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The high prevalence and burden to society of drug abuse and addiction is undisputed. However, its conceptualisation as a brain disease is controversial, and available interventions insufficient. Research on the role of stress in drug addiction may bridge positions and develop more effective interventions. AIM The aim of this paper is to integrate the most influential literature to date on the role of stress in drug addiction. METHODS A literature search was conducted of the core collections of Web of Science and Semantic Scholar on the topic of stress and addiction from a neurobiological perspective in humans. The most frequently cited articles and related references published in the last decade were finally redrafted into a narrative review based on 130 full-text articles. RESULTS AND DISCUSSION First, a brief overview of the neurobiology of stress and drug addiction is provided. Then, the role of stress in drug addiction is described. Stress is conceptualised as a major source of allostatic load, which result in progressive long-term changes in the brain, leading to a drug-prone state characterized by craving and increased risk of relapse. The effects of stress on drug addiction are mainly mediated by the action of corticotropin-releasing factor and other stress hormones, which weaken the hippocampus and prefrontal cortex and strengthen the amygdala, leading to a negative emotional state, craving and lack of executive control, increasing the risk of relapse. Both, drugs and stress result in an allostatic overload responsible for neuroadaptations involved in most of the key features of addiction: reward anticipation/craving, negative affect, and impaired executive functions, involved in three stages of addiction and relapse. CONCLUSION This review elucidates the crucial role of stress in drug addiction and highlights the need to incorporate the social context where brain-behaviour relationships unfold into the current model of addition.
Collapse
Affiliation(s)
- Pablo Ruisoto
- Department of Psychobiology, Methodology and Behavioral Sciences, Faculty of Psychology, University of Salamanca, Spain.
| | - Israel Contador
- Department of Psychobiology, Methodology and Behavioral Sciences, Faculty of Psychology, University of Salamanca, Spain
| |
Collapse
|
19
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
20
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
21
|
Haass-Koffler CL. The corticotropin releasing factor binding protein: A strange case of Dr. Jekyll and Mr. Hyde in the stress system? Alcohol 2018; 72:3-8. [PMID: 29510883 DOI: 10.1016/j.alcohol.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 11/28/2022]
Abstract
The corticotropin releasing factor (CRF) exerts its effects by acting on its receptors and on the binding protein (CRFBP). Extensive literature suggests a role of CRF in alcohol use disorder (AUD). Less is known about the specific role, if any, of CRFBP in AUD. In this review, we summarize recent interdisciplinary efforts toward identifying the contribution of CRFBP in mediating CRF activation. The role of CRFBP in alcohol-related behaviors has been evaluated with the ultimate goal of designing effective novel therapeutic strategies for AUD. A series of in vitro, in vivo, ex vivo, and genetic studies presented here provides initial evidence that CRFBP may possess both inhibitory and excitatory roles, and supports the original hypothesis that it represents a novel pharmacological target for the treatment of AUD. This report summarizes the proceedings of one of the talks at the Young Investigator Award symposium at the Alcoholism and Stress: A Framework for Future Treatment Strategies Conference, Volterra, Italy.
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Department of Behavioral and Social Sciences, 121 South Main Street, Brown University, Providence, RI 02919, USA; Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, NIAAA and NIDA, NIH, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
23
|
McAlinn HR, Reich B, Contoreggi NH, Kamakura RP, Dyer AG, McEwen BS, Waters EM, Milner TA. Sex Differences in the Subcellular Distribution of Corticotropin-Releasing Factor Receptor 1 in the Rat Hippocampus following Chronic Immobilization Stress. Neuroscience 2018; 383:98-113. [PMID: 29753863 PMCID: PMC5994383 DOI: 10.1016/j.neuroscience.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Corticotropin-releasing factor receptors (CRFR1) contribute to stress-induced adaptations in hippocampal structure and function that can affect learning and memory processes. Our prior studies showed that female rats with elevated estrogens compared to males have more plasmalemmal CRFR1 in CA1 pyramidal cells, suggesting a greater sensitivity to stress. Here, we examined the distribution of hippocampal CRFR1 following chronic immobilization stress (CIS) in female and male rats using immuno-electron microscopy. Without stress, total CRFR1 dendritic levels were higher in females in CA1 and in males in the hilus; moreover, plasmalemmal CRFR1 was elevated in pyramidal cell dendrites in CA1 in females and in CA3 in males. Following CIS, near-plasmalemmal CRFR1 increased in CA1 pyramidal cell dendrites in males but not to levels of control or CIS females. In CA3 and the hilus, CIS decreased cytoplasmic and total CRFR1 in dendrites in males only. These results suggest that in naive rats, CRF could induce a greater activation of CA1 pyramidal cells in females than males. Moreover, after CIS, which leads to even greater sex differences in CRFR1 by trafficking it to different subcellular compartments, CRF could enhance activation of CA1 pyramidal cells in males but to a lesser extent than either unstressed or CIS females. Additionally, CA3 pyramidal cells and inhibitory interneurons in males have heightened sensitivity to CRF, regardless of stress state. These sex differences in CRFR1 distribution and trafficking in the hippocampus may contribute to reported sex differences in hippocampus-dependent learning processes in baseline conditions and following chronic stress.
Collapse
Affiliation(s)
- Helena R McAlinn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Andreina G Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
24
|
The involvement of CRF1 receptor within the basolateral amygdala and dentate gyrus in the naloxone-induced conditioned place aversion in morphine-dependent mice. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:102-114. [PMID: 29407532 DOI: 10.1016/j.pnpbp.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Drug withdrawal-associated aversive memories trigger relapse to drug-seeking behavior. Corticotrophin-releasing factor (CRF) is an important mediator of the reinforcing properties of drugs of abuse. However, the involvement of CRF1 receptor (CRF1R) in aversive memory induced by opiate withdrawal has yet to be elucidated. We used the conditioned-place aversion (CPA) paradigm to evaluate the role of CRF1R on opiate withdrawal memory acquisition, along with plasticity-related processes that occur after CPA within the basolateral amygdala (BLA) and dentate gyrus (DG). Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The CPA scores as well as the number of TH-positive neurons (in the NTS-A2 noradrenergic cell group), and the expression of the transcription factors Arc and pCREB (in the BLA and DG) were measured with and without CRF1R blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal robustly expressed CPA. Pre-treatment with the selective CRF1R antagonist CP-154,526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition. CP-154,526 also antagonized the enhanced number of TH-positive neurons in the NTS-A2 that was seen after CPA. Increased Arc expression and Arc-pCREB co-localization were seen in the BLA after CPA, which was not modified by CP-154,526. In the DG, CPA was accompanied by a decrease of Arc expression and no changes in Arc-pCREB co-localization, whereas pre-treatment with CP-154,526 induced an increase in both parameters. These results indicate that CRF-CRF1R pathway could be a critical factor governing opiate withdrawal memory storage and retrieval and might suggest a role for TH-NA pathway in the effects of withdrawal on memory. Our results might indicate that the blockade of CRF1R could represent a promising pharmacological treatment strategy approach for the attenuation of the relapse to drug-seeking/taking behavior triggered by opiate withdrawal-associated aversive memories.
Collapse
|
25
|
Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A. Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep 2018; 8:1759. [PMID: 29379100 PMCID: PMC5789078 DOI: 10.1038/s41598-018-19816-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Studies of personality have suggested that dissimilarities in ability to cope with stressful situations results in differing tendency to develop addictive behaviors. The present study used selectively bred stress-resilient, socially-dominant (Dom) and stress-vulnerable, socially-submissive (Sub) mice to investigate the interaction between environmental stress and inbred predisposition to develop addictive behavior to cocaine. In a Conditioned Place Preference (CPP) paradigm using cocaine, Sub mice displayed an aversion to drug, whereas Dom mice displayed drug attraction. Following a 4-week regimen of Chronic Mild Stress (CMS), Sub mice in CPP displayed a marked increase (>400%) in cocaine attraction, whereas Dom mice did not differ in attraction from their non-stressed state. Examination of hippocampal gene expression revealed in Sub mice, exposure to external stimuli, stress or cocaine, increased CRH expression (>100%), which was evoked in Dom mice only by cocaine exposure. Further, stress-induced decreases in DRD1 (>60%) and DRD2 (>50%) expression in Sub mice differed markedly from a complete lack of change in Dom mice. From our findings, we propose that social stratification dictates vulnerability to stress-induced attraction that may lead to addiction via differential regulation of hippocampal response to dopaminergic input, which in turn may influence differing tendency to develop addictive behaviors.
Collapse
Affiliation(s)
- Chen Yanovich
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Michael L Kirby
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Gal Yadid
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
26
|
Abstract
Pain is essential for avoidance of tissue damage and for promotion of healing. Notwithstanding the survival value, pain brings about emotional suffering reflected in fear and anxiety, which in turn augment pain thus giving rise to a self-sustaining feedforward loop. Given such reciprocal relationships, the present article uses neuroscientific conceptualizations of fear and anxiety as a theoretical framework for hitherto insufficiently understood pathophysiological mechanisms underlying chronic pain. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain and nociception plus amygdala, anxiety, cognitive, fear, sensory, and unconscious. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) parallelism between acute pain and fear and between chronic pain and anxiety; (2) all are related to the evasion of sensory-perceived threats and are subserved by subcortical circuits mediating automatic threat-induced physiologic responses and defensive actions in conjunction with higher order corticolimbic networks (e.g., thalamocortical, thalamo-striato-cortical and amygdalo-cortical) generating conscious representations and valuation-based adaptive behaviors; (3) some instances of chronic pain and anxiety conditions are driven by the failure to diminish or block respective nociceptive information or unconscious treats from reaching conscious awareness; and (4) the neural correlates of pain-related conscious states and cognitions may become autonomous (i.e., dissociated) from the subcortical activity/function leading to the eventual chronicity. Identifying relative contributions of the diverse neuroanatomical sources, thus, offers prospects for the development of novel preventive, diagnostic, and therapeutic strategies in chronic pain patients.
Collapse
Affiliation(s)
- Igor Elman
- Boonshoft School of Medicine, Wright State University, Dayton VA Medical Center, Dayton, OH, United States
| | - David Borsook
- Harvard Medical School, Center for Pain and the Brain, Boston Children's Hospital, Massachusetts General Hospital, McLean Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Compton P, Chang YP. Substance Abuse and Addiction: Implications for Pain Management in Patients With Cancer. Clin J Oncol Nurs 2017; 21:203-209. [DOI: 10.1188/17.cjon.203-209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Defining the role of corticotropin releasing factor binding protein in alcohol consumption. Transl Psychiatry 2016; 6:e953. [PMID: 27845775 PMCID: PMC5314120 DOI: 10.1038/tp.2016.208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
The corticotropin releasing factor (CRF) exerts its effects by acting on its receptors and on the binding protein (CRFBP), and has been implicated in alcohol use disorder (AUD). Therefore, identification of the exact contribution of each protein that mediates CRF effects is necessary to design effective therapeutic strategies for AUD. A series of in vitro/in vivo experiments across different species were performed to define the biological discrete role of CRFBP in AUD. First, to establish the CRFBP role in receptor signaling, we developed a novel chimeric cell-based assay and showed that CFRBP full length can stably be expressed on the plasma membrane. We discovered that only CRFBP(10 kD) fragment is able to potentiate CRF-intracellular Ca2+ release. We provide evidence that CRHBP gene loss increased ethanol consumption in mice. Then, we demonstrate that selective reduction of CRHBP expression in the center nucleus of the amygdala (CeA) decreases ethanol consumption in ethanol-dependent rats. CRFBP amygdalar downregulation, however, does not attenuate yohimbine-induced ethanol self-administration. This effect was associated with decreased hemodynamic brain activity in the CRFBP-downregulated CeA and increased hemodynamic activity in the caudate putamen during yohimbine administration. Finally, in alcohol-dependent patients, genetic variants related to the CRFBP(10 kD) fragment were associated with greater risk for alcoholism and anxiety, while other genetic variants were associated with reduced risk for anxiety. Taken together, our data provide evidence that CRFBP may possess both inhibitory and excitatory roles and may represent a novel pharmacological target for the treatment of AUD.
Collapse
|
29
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
30
|
In Search of Concomitant Alterations of Dopaminergic and Neurotensinergic Systems in Stress Conditions. Neurochem Res 2016; 41:423-30. [DOI: 10.1007/s11064-016-1849-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/03/2023]
|
31
|
Wscieklica T, de Barros Viana M, Le Sueur Maluf L, Pouza KCP, Spadari RC, Céspedes IC. Alcohol consumption increases locomotion in an open field and induces Fos-immunoreactivity in reward and approach/withdrawal-related neurocircuitries. Alcohol 2016; 50:73-82. [PMID: 26786746 DOI: 10.1016/j.alcohol.2015.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take the drug, loss of control in limiting intake and, eventually, the emergence of a negative emotional state when access to the drug is prevented. Both dopamine and corticotropin-releasing factor (CRF)-mediated systems seem to play important roles in the modulation of alcohol abuse and dependence. The present study investigated the effects of alcohol consumption on anxiety and locomotor parameters and on the activation of dopamine and CRF-innervated brain regions. Male Wistar rats were given a choice of two bottles for 31 days, one containing water and the other a solution of saccharin + alcohol. Control animals only received water and a solution of 0.2% saccharin. On the 31st day, animals were tested in the elevated plus-maze and open field, and euthanized immediately after the behavioral tests. An independent group of animals was treated with ethanol and used to measure blood ethanol concentration. Results showed that alcohol intake did not alter behavioral measurements in the plus-maze, but increased the number of crossings in the open field, an index of locomotor activity. Additionally, alcohol intake increased Fos-immunoreactivity (Fos-ir) in the prefrontal cortex, in the shell region of the nucleus accumbens, in the medial and central amygdala, in the bed nucleus of the stria terminalis, in the septal region, and in the paraventricular and dorsomedial hypothalamus, structures that have been linked to reward and to approach/withdrawal behavior. These observations might be relevant to a better understanding of the behavioral and physiological alterations that follow alcohol consumption.
Collapse
Affiliation(s)
- Tatiana Wscieklica
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, Brazil
| | - Luciana Le Sueur Maluf
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, Brazil
| | | | - Regina Célia Spadari
- Departamento de Biociências, Universidade Federal de São Paulo, 11060-001 Santos, Brazil
| | | |
Collapse
|
32
|
García-Carmona JA, Camejo DM, Almela P, Jiménez A, Milanés MV, Sevilla F, Laorden ML. CP-154,526 Modifies CREB Phosphorylation and Thioredoxin-1 Expression in the Dentate Gyrus following Morphine-Induced Conditioned Place Preference. PLoS One 2015; 10:e0136164. [PMID: 26313266 PMCID: PMC4551807 DOI: 10.1371/journal.pone.0136164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/31/2015] [Indexed: 12/31/2022] Open
Abstract
Corticotropin-releasing factor (CRF) acts as neuro-regulator of the behavioral and emotional integration of environmental and endogenous stimuli associated with drug dependence. Thioredoxin-1 (Trx-1) is a functional protein controlling the redox status of several proteins, which is involved in addictive processes. In the present study, we have evaluated the role of CRF1 receptor (CRF1R) in the rewarding properties of morphine by using the conditioned place preference (CPP) paradigm. We also investigate the effects of the CRF1R antagonist, CP-154,526, on the morphine CPP-induced activation of CRF neurons, CREB phosphorylation and Trx expression in paraventricular nucleus (PVN) and dentate gyrus (DG) of the mice brain. CP-154,526 abolished the acquisition of morphine CPP and the increase of CRF/pCREB positive neurons in PVN. Moreover, this CRF1R antagonist prevented morphine-induced CRF-immunoreactive fibers in DG, as well as the increase in pCREB expression in both the PVN and DG. In addition, morphine exposure induced an increase in Trx-1 expression in DG without any alterations in PVN. We also observed that the majority of pCREB positive neurons in DG co-expressed Trx-1, suggesting that Trx-1 could activate CREB in the DG, a brain region involved in memory consolidation. Altogether, these results support the idea that CRF1R antagonist blocked Trx-1 expression and pCREB/Trx-1 co-localization, indicating a critical role of CRF, through CRF1R, in molecular changes involved in morphine associated behaviors.
Collapse
Affiliation(s)
| | - Daymi M. Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Pilar Almela
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- * E-mail:
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | | | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - María-Luisa Laorden
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
33
|
Romanova EV, Rubakhin SS, Ossyra JR, Zombeck JA, Nosek MR, Sweedler JV, Rhodes JS. Differential peptidomics assessment of strain and age differences in mice in response to acute cocaine administration. J Neurochem 2015. [PMID: 26223348 DOI: 10.1111/jnc.13265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurochemical differences in the hypothalamic-pituitary axis between individuals and between ages may contribute to differential susceptibility to cocaine abuse. This study measured peptide levels in the pituitary gland (Pit) and lateral hypothalamus (LH) in adolescent (age 30 days) and adult (age 65 days) mice from four standard inbred strains, FVB/NJ, DBA/2J, C57BL/6J, and BALB/cByJ, which have previously been characterized for acute locomotor responses to cocaine. Individual peptide profiles were analyzed using mass spectrometric profiling and principal component analysis. Sequences of assigned peptides were verified by tandem mass spectrometry. Principal component analysis classified all strains according to their distinct peptide profiles in Pit samples from adolescent mice, but not adults. Select pro-opiomelanocortin-derived peptides were significantly higher in adolescent BALB/cByJ and DBA/2J mice than in FVB/NJ or C57BL/6J mice. A subset of peptides in the LH, but not in the Pit, was altered by cocaine in adolescents. A 15 mg/kg dose of cocaine induced greater peptide alterations than a 30 mg/kg dose, particularly in FVB/NJ animals, with larger differences in adolescents than adults. Neuropeptides in the LH affected by acute cocaine administration included pro-opiomelanocortin-, myelin basic protein-, and glutamate transporter-derived peptides. The observed peptide differences could contribute to differential behavioral sensitivity to cocaine among strains and ages. Peptides were measured using mass spectrometry (MALDI-TOF) in individual lateral hypothalamus and pituitary samples from four strains and two ages of inbred mice in response to acute cocaine administration. Principal component analyses (PCA) classified the strains according to their peptide profiles from adolescent mice, and a subset of peptides in the lateral hypothalamus was altered by cocaine in adolescents.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stanislav S Rubakhin
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John R Ossyra
- Department of Psychology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan A Zombeck
- Department of Psychology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael R Nosek
- Department of Psychology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Justin S Rhodes
- Department of Psychology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
34
|
Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders. Brain Sci 2015; 5:258-74. [PMID: 26136145 PMCID: PMC4588139 DOI: 10.3390/brainsci5030258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.
Collapse
|
35
|
P7, a novel antagonist of corticotropin releasing factor receptor type 1 (CRFR1) screened from phage display library. Biochem Biophys Res Commun 2015; 463:200-4. [PMID: 25998380 DOI: 10.1016/j.bbrc.2015.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 11/23/2022]
Abstract
The corticotropin releasing factor (CRF) plays a central role in regulating the activities of hypothalamic-pituitary-adrenal (HPA) axis in the presence of a variety of stressful stimuli via binding to its type 1 receptors (CRFR1). Despite that many peptidic or non-peptidic antagonists of CRFR1 have been developed to serve as therapeutic tools to CRF-related pathologies, none of them have been utilized clinically. Targeting the extracellular domain 1 (EC1) of CRFR1, the CRF-binding site, represents a new strategy to inhibit the function of the receptor. However, no such agents have been identified up to now. Herein, by using an 87-amino acid fragment corresponding to the EC1 region as the bait, we screened the binding polypeptides from a phage display (Ph.D.-12) peptide library. After 3-round biopanning, positive clones were selected and the polypeptides carried by them were identified. 5 polypeptides were found to bind with the target specifically. Among them, the P7 exhibited the highest affinity. By evaluating the cAMP accumulation in the CRFR1 or CRFR2-expressing HEK293 cells, we demonstrated that P7 blocking the function of CRFR1, but not CRFR2. In addition, we also found that P7 and CRF act on CRFR1 competitively. Taken together, we reveal that P7, a novel polypeptide identified from phage display library, inhibits the function of CRFR1 effectively and specifically by binding at its EC1 domain. The new polypeptide might provide a promising agent for diagnostic or therapeutic utilities in CRF-related disorders.
Collapse
|
36
|
Phillips TJ, Reed C, Pastor R. Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation. GENES, BRAIN, AND BEHAVIOR 2015; 14:98-135. [PMID: 25565358 PMCID: PMC4851463 DOI: 10.1111/gbb.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF(1)) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF(1) antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.
Collapse
Affiliation(s)
- T. J. Phillips
- VA Portland Health Care System, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C. Reed
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - R. Pastor
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Area de Psicobiología, Universitat Jaume I, 12071 Castellón, Spain
- Department of Psychology, Reed College, Portland, OR, USA
| |
Collapse
|
37
|
CRF1 receptor antagonists do not reverse pharmacological disruption of prepulse inhibition in rodents. Psychopharmacology (Berl) 2014; 231:1289-303. [PMID: 24186076 DOI: 10.1007/s00213-013-3315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE As enhanced corticotropin-releasing factor (CRF) transmission is associated with induction of sensorimotor gating deficits, CRF₁ receptor antagonists may reverse disrupted prepulse inhibition (PPI), an operational measure of sensorimotor gating. OBJECTIVES To determine the effects of CRF₁ receptor antagonists in pharmacological models of disrupted PPI and to determine if long-term elevated central CRF levels alter sensitivity towards PPI disrupting drugs. METHODS CP154,526 (10-40 mg/kg), SSR125543 (3-30 mg/kg) and DMP695 (40 mg/kg) were tested on PPI disruption provoked by D-amphetamine (2.5, 3 mg/kg), ketamine (5, 30 mg/kg) and MK801 (0.2, 0.5 mg/kg) in Wistar rats, C57Bl/6J and CD1 mice, and on spontaneously low PPI in Iffa Credo rats and DBA/2J mice. PPI-disrupting effects of D-amphetamine (2.5-5 mg/kg) and MK801 (0.3-1 mg/kg) were examined in CRF-overexpressing (CRFtg) mice, which display PPI deficits. Finally, we determined the influence of CP154,526 on D-amphetamine-induced dopamine outflow in nucleus accumbens and prefrontal cortex of CRFtg mice using in vivo microdialysis. RESULTS No CRF₁-antagonists improved PPI deficits in any test. CRFtg mice showed blunted PPI disruption in response to MK801, but not D-amphetamine. Further, D-amphetamine-induced dopamine release was less pronounced in CRFtg versus wild-type mice, a response normalized by pretreatment with CP154,526. CONCLUSION The inability of CRF₁ receptor antagonists to block pharmacological disruption of sensorimotor gating suggests that the involvement of CRF₁ receptors in the modulation of dopaminergic and glutamatergic neurotransmission relevant for sensory gating is limited. Furthermore, the alterations observed in CRFtg mice support the notion that long-term elevated central CRF levels induce changes in these neurotransmitter systems.
Collapse
|
38
|
Affiliation(s)
- Ildikó Rácz
- Institute of Molecular Psychiatry, University of Bonn Bonn, Germany
| |
Collapse
|
39
|
Silberman Y, Winder DG. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward. Front Psychiatry 2013; 4:42. [PMID: 23755023 PMCID: PMC3665954 DOI: 10.3389/fpsyt.2013.00042] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022] Open
Abstract
Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.
Collapse
Affiliation(s)
- Yuval Silberman
- Neuroscience Program in Substance Abuse, Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute , Nashville, TN , USA
| | | |
Collapse
|
40
|
Abstract
Stress has long been suggested to be an important correlate of uncontrolled drinking and relapse. An important hormonal response system to stress-the hypothalamic-pituitary-adrenal (HPA) axis-may be involved in this process, particularly stress hormones known as glucocorticoids and primarily cortisol. The actions of this hormone system normally are tightly regulated to ensure that the body can respond quickly to stressful events and return to a normal state just as rapidly. The main determinants of HPA axis activity are genetic background, early-life environment, and current life stress. Alterations in HPA axis regulation are associated with problematic alcohol use and dependence; however, the nature of this dysregulation appears to vary with respect to stage of alcohol dependence. Much of this research has focused specifically on the role of cortisol in the risk for, development of, and relapse to chronic alcohol use. These studies found that cortisol can interact with the brain's reward system, which may contribute to alcohol's reinforcing effects. Cortisol also can influence a person's cognitive processes, promoting habit-based learning, which may contribute to habit formation and risk of relapse. Finally, cortisol levels during abstinence may be useful clinical indicators of relapse vulnerability in alcohol-dependent people.
Collapse
|