1
|
Aljouda NA, Shrestha D, DeVaux C, Olsen RR, Alleboina S, Walker M, Cheng Y, Freeman KW. Transcription factor 4 is a key mediator of oncogenesis in neuroblastoma by promoting MYC activity. Mol Oncol 2025; 19:808-824. [PMID: 39119816 PMCID: PMC11887674 DOI: 10.1002/1878-0261.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Super-enhancer-associated transcription factor networks define cell identity in neuroblastoma (NB). Dysregulation of these transcription factors contributes to the initiation and maintenance of NB by enforcing early developmental identity states. We report that the class I basic helix-loop-helix (bHLH) transcription factor 4 (TCF4; also known as E2-2) is a critical NB dependency gene that significantly contributes to these identity states through heterodimerization with cell-identity-specific bHLH transcription factors. Knockdown of TCF4 significantly induces apoptosis in vitro and inhibits tumorigenicity in vivo. We used genome-wide expression profiling, TCF4 chromatin immunoprecipitation sequencing (ChIP-seq) and TCF4 immunoprecipitation-mass spectrometry to determine the role of TCF4 in NB cells. Our results, along with recent findings in NB for the transcription factors T-box transcription factor TBX2, heart- and neural crest derivatives-expressed protein 2 (HAND2) and twist-related protein 1 (TWIST1), propose a role for TCF4 in regulating forkhead box protein M1 (FOXM1)/transcription factor E2F-driven gene regulatory networks that control cell cycle progression in cooperation with N-myc proto-oncogene protein (MYCN), TBX2, and the TCF4 dimerization partners HAND2 and TWIST1. Collectively, we showed that TCF4 promotes cell proliferation through direct transcriptional regulation of the c-MYC/MYCN oncogenic program that drives high-risk NB. Mechanistically, our data suggest the novel finding that TCF4 acts to support MYC activity by recruiting multiple factors known to regulate MYC function to sites of colocalization between critical NB transcription factors, TCF4 and MYC oncoproteins. Many of the TCF4-recruited factors are druggable, giving insight into potential therapies for high-risk NB. This study identifies a new function for class I bHLH transcription factors (e.g., TCF3, TCF4, and TCF12) that are important in cancer and development.
Collapse
Affiliation(s)
- Nour A. Aljouda
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Dewan Shrestha
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTNUSA
- Department of HematologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Chelsea DeVaux
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Rachelle R. Olsen
- Department of Oncological SciencesHuntsman Cancer InstituteSalt Lake CityUTUSA
| | - Satyanarayana Alleboina
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Megan Walker
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Yong Cheng
- Department of HematologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Kevin W. Freeman
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
2
|
Savchenko RR, Skryabin NA. Transcription factor TCF4: structure, function, and associated diseases. Vavilovskii Zhurnal Genet Selektsii 2024; 28:770-779. [PMID: 39722673 PMCID: PMC11667571 DOI: 10.18699/vjgb-24-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 12/28/2024] Open
Abstract
Our understanding of human genes - particularly their structure, functions, and regulatory mechanisms - is still limited. The biological role of approximately 20 % of human proteins has not been established yet, and the molecular functions of the known part of the proteome remain poorly understood. This hinders progress in basic and applied biological and medical sciences, especially in treating hereditary diseases, which are caused by mutations and polymorphic variants in individual genes. Therefore, it is crucial to comprehend the mechanisms of protein functioning to address this problem. This further emphasizes the importance of investigating gene functions and molecular pathogenetic pathways associated with single-gene inherited diseases. This review focuses on the TCF4 gene that encodes a transcription factor crucial for nervous system development and functioning. Pathogenic variants in this gene have been linked to a rare genetic disorder, Pitt-Hopkins syndrome, and TCF4 polymorphic variants are associated with several socially significant diseases, including various psychiatric disorders. The pathogenetic mechanisms of these conditions remain unexplored, and the knowledge about TCF4 upregulation and its target genes is limited. TCF4 can be expressed in various isoforms due to the complex structure and regulation of its gene, which complicates the investigation of the protein's functions. Here, we consider the structure and functions of the TCF4 transcription factor. We discuss its potential target genes and the possible loss-of-function pathogenetic mechanisms identified in animal and cellular models of Pitt-Hopkins syndrome. The review also examines the advantages and limitations of potential therapies for Pitt-Hopkins syndrome that are based on TCF4 dosage compensation or altering the activity of TCF4 target genes.
Collapse
Affiliation(s)
- R R Savchenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
3
|
Methi A, Islam MR, Kaurani L, Sakib MS, Krüger DM, Pena T, Burkhardt S, Liebetanz D, Fischer A. A Single-Cell Transcriptomic Analysis of the Mouse Hippocampus After Voluntary Exercise. Mol Neurobiol 2024; 61:5628-5645. [PMID: 38217668 PMCID: PMC11249425 DOI: 10.1007/s12035-023-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes related to enhanced synaptic plasticity. Nevertheless, the underlying molecular mechanisms are not fully understood. With the aim to further elucidate these mechanisms, we provide a comprehensive dataset of the mouse hippocampal transcriptome at the single-cell level after 4 weeks of voluntary wheel-running. Our analysis provides a number of interesting observations. For example, the results suggest that exercise affects adult neurogenesis by accelerating the maturation of a subpopulation of Prdm16-expressing neurons. Moreover, we uncover the existence of an intricate crosstalk among multiple vital signaling pathways such as NF-κB, Wnt/β-catenin, Notch, and retinoic acid (RA) pathways altered upon exercise in a specific cluster of excitatory neurons within the Cornu Ammonis (CA) region of the hippocampus. In conclusion, our study provides an important resource dataset and sheds further light on the molecular changes induced by exercise in the hippocampus. These findings have implications for developing targeted interventions aimed at optimizing cognitive health and preventing age-related cognitive decline.
Collapse
Affiliation(s)
- Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - M Sadman Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - David Liebetanz
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
- Department for Psychiatry and Psychotherapy, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany.
| |
Collapse
|
4
|
Xu DM, Zhang ZJ, Guo HK, Chen GJ, Ma YL. ERRα regulates synaptic transmission through reactive oxygen species in hippocampal neurons. Heliyon 2024; 10:e23739. [PMID: 38192817 PMCID: PMC10772171 DOI: 10.1016/j.heliyon.2023.e23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Reactive oxygen species (ROS) play multiple roles in synaptic transmission, and estrogen-related receptor α (ERRα) is involved in regulating ROS production. The purpose of our study was to explore the underlying effect of ERRα on ROS production, neurite formation and synaptic transmission. Our results revealed that knocking down ERRα expression affected the formation of neuronal neurites and dendritic spines, which are the basic structures of synaptic transmission and play important roles in learning, memory and neuronal plasticity; moreover, the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) were decreased. These abnormalities were reversed by overexpression of human ERRα. Additionally, we also found that knocking down ERRα expression increased intracellular ROS levels in neurons. ROS inhibitor PBN rescued the changes in neurite formation and synaptic transmission induced by ERRα knockdown. These results indicate a new possible cellular mechanism by which ERRα affects intracellular ROS levels, which in turn regulate neurite and dendritic spine formation and synaptic transmission.
Collapse
Affiliation(s)
- De-Mei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhi-Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Hao-Kun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
5
|
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
6
|
Chen HY, Phan BN, Shim G, Hamersky GR, Sadowski N, O'Donnell TS, Sripathy SR, Bohlen JF, Pfenning AR, Maher BJ. Psychiatric risk gene Transcription Factor 4 (TCF4) regulates the density and connectivity of distinct inhibitory interneuron subtypes. Mol Psychiatry 2023; 28:4679-4692. [PMID: 37770578 PMCID: PMC11144438 DOI: 10.1038/s41380-023-02248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor that is implicated in a variety of psychiatric disorders including autism spectrum disorder (ASD), major depression, and schizophrenia. Autosomal dominant mutations in TCF4 are causal for a specific ASD called Pitt-Hopkins Syndrome (PTHS). However, our understanding of etiological and pathophysiological mechanisms downstream of TCF4 mutations is incomplete. Single cell sequencing indicates TCF4 is highly expressed in GABAergic interneurons (INs). Here, we performed cell-type specific expression analysis (CSEA) and cellular deconvolution (CD) on bulk RNA sequencing data from 5 different PTHS mouse models. Using CSEA we observed differentially expressed genes (DEGs) were enriched in parvalbumin expressing (PV+) INs and CD predicted a reduction in the PV+ INs population. Therefore, we investigated the role of TCF4 in regulating the development and function of INs in the Tcf4+/tr mouse model of PTHS. In Tcf4+/tr mice, immunohistochemical (IHC) analysis of subtype-specific IN markers and reporter mice identified reductions in PV+, vasoactive intestinal peptide (VIP+), and cortistatin (CST+) expressing INs in the cortex and cholinergic (ChAT+) INs in the striatum, with the somatostatin (SST+) IN population being spared. The reduction of these specific IN populations led to cell-type specific alterations in the balance of excitatory and inhibitory inputs onto PV+ and VIP+ INs and excitatory pyramidal neurons within the cortex. These data indicate TCF4 is a critical regulator of the development of specific subsets of INs and highlight the inhibitory network as an important source of pathophysiology in PTHS.
Collapse
Affiliation(s)
- Huei-Ying Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - BaDoi N Phan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Gregory R Hamersky
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Norah Sadowski
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Thomas S O'Donnell
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joseph F Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andreas R Pfenning
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Liu H, Sun Z, Luo G, Hu Y, Ruan H, Tu B, Li J, Fan C. lncRNA MEG3 Promotes Osteogenic Differentiation of Tendon Stem Cells Via the miR-129-5p/TCF4/β-Catenin Axis and thus Contributes to Trauma-Induced Heterotopic Ossification. Stem Cell Rev Rep 2023; 19:2311-2328. [PMID: 37284914 DOI: 10.1007/s12015-023-10562-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) is one of the most intractable conditions following injury to the musculoskeletal system. In recent years, much attention has been paid to the role of lncRNA in musculoskeletal disorders, but its role in HO was still unclear. Therefore, this study attempted to determine the role of lncRNA MEG3 in the formation of post-traumatic HO and further explore the underlying mechanisms. RESULTS On the basis of high-throughput sequencing and qPCR validation, elevated expression of the lncRNA MEG3 was shown during traumatic HO formation. Accordingly, in vitro experiments demonstrated that lncRNA MEG3 promoted aberrant osteogenic differentiation of tendon-derived stem cells (TDSCs). Mechanical exploration through RNA pulldown, luciferase reporter gene assay and RNA immunoprecipitation assay identified the direct binding relationship between miR-129-5p and MEG3, or miR-129-5p and TCF4. Further rescue experiments confirmed the miR-129-5p/TCF4/β-catenin axis to be downstream molecular cascade responsible for the osteogenic-motivating effects of MEG3 on the TDSCs. Finally, experiments in a mouse burn/tenotomy model corroborated the promoting effects of MEG3 on the formation of HO through the miR-129-5p/TCF4/β-catenin axis. CONCLUSIONS Our study demonstrated that the lncRNA MEG3 promoted osteogenic differentiation of TDSCs and thus the formation of heterotopic ossification, which could be a potential therapeutic target.
Collapse
Affiliation(s)
- Hang Liu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, People's Republic of China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, People's Republic of China
| | - Gang Luo
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, People's Republic of China
| | - Yuehao Hu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Hongjiang Ruan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, People's Republic of China
| | - Bing Tu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, People's Republic of China
| | - Juehong Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, People's Republic of China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
8
|
Talley MJ, Nardini D, Ehrman LA, Lu QR, Waclaw RR. Distinct requirements for Tcf3 and Tcf12 during oligodendrocyte development in the mouse telencephalon. Neural Dev 2023; 18:5. [PMID: 37684687 PMCID: PMC10485956 DOI: 10.1186/s13064-023-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND E-proteins encoded by Tcf3, Tcf4, and Tcf12 are class I basic helix-loop-helix (bHLH) transcription factors (TFs) that are thought to be widely expressed during development. However, their function in the developing brain, specifically in the telencephalon remains an active area of research. Our study examines for the first time if combined loss of two E-proteins (Tcf3 and Tcf12) influence distinct cell fates and oligodendrocyte development in the mouse telencephalon. METHODS We generated Tcf3/12 double conditional knockouts (dcKOs) using Olig2Cre/+ or Olig1Cre/+ to overcome compensatory mechanisms between E-proteins and to understand the specific requirement for Tcf3 and Tcf12 in the ventral telencephalon and during oligodendrogenesis. We utilized a combination of in situ hybridization, immunohistochemistry, and immunofluorescence to address development of the telencephalon and oligodendrogenesis at embryonic and postnatal stages in Tcf3/12 dcKOs. RESULTS We show that the E-proteins Tcf3 and Tcf12 are expressed in progenitors of the embryonic telencephalon and throughout the oligodendrocyte lineage in the postnatal brain. Tcf3/12 dcKOs showed transient defects in progenitor cells with an enlarged medial ganglionic eminence (MGE) region which correlated with reduced generation of embryonic oligodendrocyte progenitor cells (OPCs) and increased expression of MGE interneuron genes. Postnatal Tcf3/12 dcKOs showed a recovery of OPCs but displayed a sustained reduction in mature oligodendrocytes (OLs). Interestingly, Tcf4 remained expressed in the dcKOs suggesting that it cannot compensate for the loss of Tcf3 and Tcf12. Generation of Tcf3/12 dcKOs with Olig1Cre/+ avoided the MGE morphology defect caused by Olig2Cre/+ but dcKOs still exhibited reduced embryonic OPCs and subsequent reduction in postnatal OLs. CONCLUSION Our data reveal that Tcf3 and Tcf12 play a role in controlling OPC versus cortical interneuron cell fate decisions in MGE progenitors in addition to playing roles in the generation of embryonic OPCs and differentiation of postnatal OLs in the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
9
|
Chan JM, Quintanal-Villalonga Á, Gao VR, Xie Y, Allaj V, Chaudhary O, Masilionis I, Egger J, Chow A, Walle T, Mattar M, Yarlagadda DVK, Wang JL, Uddin F, Offin M, Ciampricotti M, Qeriqi B, Bahr A, de Stanchina E, Bhanot UK, Lai WV, Bott MJ, Jones DR, Ruiz A, Baine MK, Li Y, Rekhtman N, Poirier JT, Nawy T, Sen T, Mazutis L, Hollmann TJ, Pe'er D, Rudin CM. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 2021; 39:1479-1496.e18. [PMID: 34653364 PMCID: PMC8628860 DOI: 10.1016/j.ccell.2021.09.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.
Collapse
Affiliation(s)
- Joseph M Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vianne Ran Gao
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Viola Allaj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Jacklynn Egger
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Walle
- Department of Medical Oncology; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marissa Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dig V K Yarlagadda
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - James L Wang
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Offin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Besnik Qeriqi
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amber Bahr
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Umesh K Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - W Victoria Lai
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arvin Ruiz
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10065, USA
| | - Tal Nawy
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Linas Mazutis
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
10
|
Yousefi S, Deng R, Lanko K, Salsench EM, Nikoncuk A, van der Linde HC, Perenthaler E, van Ham TJ, Mulugeta E, Barakat TS. Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Med 2021; 13:162. [PMID: 34663447 PMCID: PMC8524963 DOI: 10.1186/s13073-021-00980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation, and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains challenging. METHODS Here we performed an integrative computational analysis of virtually all currently available epigenome data sets related to human fetal brain. RESULTS Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic rearrangement during early stages of human brain development, indicating likely biological function. Many of these DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic variation found in individuals with neurodevelopmental disorders, including autism. CONCLUSION This compendium of high-confidence enhancers will assist in deciphering the mechanism behind developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain disorders.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Sarkar D, Shariq M, Dwivedi D, Krishnan N, Naumann R, Bhalla US, Ghosh HS. Adult brain neurons require continual expression of the schizophrenia-risk gene Tcf4 for structural and functional integrity. Transl Psychiatry 2021; 11:494. [PMID: 34564703 PMCID: PMC8464606 DOI: 10.1038/s41398-021-01618-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
The schizophrenia-risk gene Tcf4 has been widely studied in the context of brain development using mouse models of haploinsufficiency, in utero knockdown and embryonic deletion. However, Tcf4 continues to be abundantly expressed in adult brain neurons where its functions remain unknown. Given the importance of Tcf4 in psychiatric diseases, we investigated its role in adult neurons using cell-specific deletion and genetic tracing in adult animals. Acute loss of Tcf4 in adult excitatory neurons in vivo caused hyperexcitability and increased dendritic complexity of neurons, effects that were distinct from previously observed effects in embryonic-deficiency models. Interestingly, transcriptomic analysis of genetically traced adult-deleted FACS-sorted Tcf4-knockout neurons revealed that Tcf4 targets in adult neurons are distinct from those in the embryonic brain. Meta-analysis of the adult-deleted neuronal transcriptome from our study with the existing datasets of embryonic Tcf4 deficiencies revealed plasma membrane and ciliary genes to underlie Tcf4-mediated structure-function regulation specifically in adult neurons. The profound changes both in the structure and excitability of adult neurons upon acute loss of Tcf4 indicates that proactive regulation of membrane-related processes underlies the functional and structural integrity of adult neurons. These findings not only provide insights for the functional relevance of continual expression of a psychiatric disease-risk gene in the adult brain but also identify previously unappreciated gene networks underpinning mature neuronal regulation during the adult lifespan.
Collapse
Affiliation(s)
- Dipannita Sarkar
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Mohammad Shariq
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Deepanjali Dwivedi
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Nirmal Krishnan
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Ronald Naumann
- grid.419537.d0000 0001 2113 4567MPI of Molecular Cell Biology and Genetics, Dresden, 01307 Germany
| | - Upinder Singh Bhalla
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Hiyaa Singhee Ghosh
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India.
| |
Collapse
|
12
|
Chen HY, Bohlen JF, Maher BJ. Molecular and Cellular Function of Transcription Factor 4 in Pitt-Hopkins Syndrome. Dev Neurosci 2021; 43:159-167. [PMID: 34134113 DOI: 10.1159/000516666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factor 4 (TCF4, also known as ITF2 or E2-2) is a type I basic helix-loop-helix transcription factor. Autosomal dominant mutations in TCF4 cause Pitt-Hopkins syndrome (PTHS), a rare syndromic form of autism spectrum disorder. In this review, we provide an update on the progress regarding our understanding of TCF4 function at the molecular, cellular, physiological, and behavioral levels with a focus on phenotypes and therapeutic interventions. We examine upstream and downstream regulatory networks associated with TCF4 and discuss a range of in vitro and in vivo data with the aim of understanding emerging TCF4-specific mechanisms relevant for disease pathophysiology. In conclusion, we provide comments about exciting future avenues of research that may provide insights into potential new therapeutic targets for PTHS.
Collapse
Affiliation(s)
- Huei-Ying Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,
| | - Joseph F Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Teixeira JR, Szeto RA, Carvalho VMA, Muotri AR, Papes F. Transcription factor 4 and its association with psychiatric disorders. Transl Psychiatry 2021; 11:19. [PMID: 33414364 PMCID: PMC7791034 DOI: 10.1038/s41398-020-01138-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The human transcription factor 4 gene (TCF4) encodes a helix-loop-helix transcription factor widely expressed throughout the body and during neural development. Mutations in TCF4 cause a devastating autism spectrum disorder known as Pitt-Hopkins syndrome, characterized by a range of aberrant phenotypes including severe intellectual disability, absence of speech, delayed cognitive and motor development, and dysmorphic features. Moreover, polymorphisms in TCF4 have been associated with schizophrenia and other psychiatric and neurological conditions. Details about how TCF4 genetic variants are linked to these diseases and the role of TCF4 during neural development are only now beginning to emerge. Here, we provide a comprehensive review of the functions of TCF4 and its protein products at both the cellular and organismic levels, as well as a description of pathophysiological mechanisms associated with this gene.
Collapse
Affiliation(s)
- José R. Teixeira
- grid.411087.b0000 0001 0723 2494Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Ryan A. Szeto
- grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital, School of Medicine, University of California San Diego, La Jolla, CA USA
| | - Vinicius M. A. Carvalho
- grid.411087.b0000 0001 0723 2494Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital, School of Medicine, University of California San Diego, La Jolla, CA USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital, School of Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Center for Academic Research and Training in Anthropogeny (CARTA), University of California San Diego, La Jolla, CA USA
| | - Fabio Papes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil. .,Department of Pediatrics/Rady Children's Hospital, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Tubbs JD, Ding J, Baum L, Sham PC. Systemic neuro-dysregulation in depression: Evidence from genome-wide association. Eur Neuropsychopharmacol 2020; 39:1-18. [PMID: 32896454 DOI: 10.1016/j.euroneuro.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
Depression is the world's leading cause of disability. Greater understanding of the neurobiological basis of depression is necessary for developing novel treatments with improved efficacy and acceptance. Recently, major advances have been made in the search for genetic variants associated with depression which may help to elucidate etiological mechanisms. The present review has two major objectives. First, we offer a brief review of two major biological systems with strong evidence for involvement in depression pathology: neurotransmitter systems and the stress response. Secondly, we provide a synthesis of the functions of the 269 genes implicated by the most recent genome-wide meta-analysis, supporting the importance of these systems in depression and providing insights into other possible mechanisms involving neurodevelopment, neurogenesis, and neurodegeneration. Our goal is to undertake a broad, preliminary stock-taking of the most recent hypothesis-free findings and examine the weight of the evidence supporting these existing theories and highlighting novel directions. This qualitative review and accompanying gene function table provides a valuable resource and guide for basic and translational researchers, with suggestions for future mechanistic research, leveraging genetics to prioritize studies on the neurobiological processes involved in depression etiology and treatment.
Collapse
Affiliation(s)
- Justin D Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Tamberg L, Jaago M, Säälik K, Sirp A, Tuvikene J, Shubina A, Kiir CS, Nurm K, Sepp M, Timmusk T, Palgi M. Daughterless, the Drosophila orthologue of TCF4, is required for associative learning and maintenance of the synaptic proteome. Dis Model Mech 2020; 13:dmm042747. [PMID: 32641419 PMCID: PMC7406316 DOI: 10.1242/dmm.042747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian transcription factor 4 (TCF4) has been linked to schizophrenia and intellectual disabilities, such as Pitt-Hopkins syndrome (PTHS). Here, we show that similarly to mammalian TCF4, fruit fly orthologue Daughterless (Da) is expressed widely in the Drosophila brain. Furthermore, silencing of da, using several central nervous system-specific Gal4 driver lines, impairs appetitive associative learning of the larvae and leads to decreased levels of the synaptic proteins Synapsin (Syn) and Discs large 1 (Dlg1), suggesting the involvement of Da in memory formation. Here, we demonstrate that Syn and dlg1 are direct target genes of Da in adult Drosophila heads, as Da binds to the regulatory regions of these genes and the modulation of Da levels alter the levels of Syn and dlg1 mRNA. Silencing of da also affects negative geotaxis of the adult flies, suggesting the impairment of locomotor function. Overall, our findings suggest that Da regulates Drosophila larval memory and adult negative geotaxis, possibly via its synaptic target genes Syn and dlg1 These behavioural phenotypes can be further used as a PTHS model to screen for therapeutics.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Laura Tamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Mariliis Jaago
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Kristi Säälik
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Anastassia Shubina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Carl Sander Kiir
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Mari Palgi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
16
|
Kim H, Berens NC, Ochandarena NE, Philpot BD. Region and Cell Type Distribution of TCF4 in the Postnatal Mouse Brain. Front Neuroanat 2020; 14:42. [PMID: 32765228 PMCID: PMC7379912 DOI: 10.3389/fnana.2020.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factor 4 is a class I basic helix-loop-helix transcription factor regulating gene expression. Altered TCF4 gene expression has been linked to non-syndromic intellectual disability, schizophrenia, and a severe neurodevelopmental disorder known as Pitt-Hopkins syndrome. An understanding of the cell types expressing TCF4 protein in the mouse brain is needed to help identify potential pathophysiological mechanisms and targets for therapeutic delivery in TCF4-linked disorders. Here we developed a novel green fluorescent protein reporter mouse to visualize TCF4-expressing cells throughout the brain. Using this TCF4 reporter mouse, we observed prominent expression of TCF4 in the pallial region and cerebellum of the postnatal brain. At the cellular level, both glutamatergic and GABAergic neurons express TCF4 in the cortex and hippocampus, while only a subset of GABAergic interneurons express TCF4 in the striatum. Among glial cell groups, TCF4 is present in astrocytes and immature and mature oligodendrocytes. In the cerebellum, cells in the granule and molecular layer express TCF4. Our findings greatly extend our knowledge of the spatiotemporal and cell type-specific expression patterns of TCF4 in the brain, and hence, lay the groundwork to better understand TCF4-linked neurological disorders. Any effort to restore TCF4 functions through small molecule or genetic therapies should target these brain regions and cell groups to best recapitulate TCF4 expression patterns.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Noah C. Berens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicole E. Ochandarena
- MD-Ph.D. Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. Philpot
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Schoof M, Hellwig M, Harrison L, Holdhof D, Lauffer MC, Niesen J, Virdi S, Indenbirken D, Schüller U. The basic helix-loop-helix transcription factor TCF4 impacts brain architecture as well as neuronal morphology and differentiation. Eur J Neurosci 2020; 51:2219-2235. [PMID: 31919899 DOI: 10.1111/ejn.14674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Germline mutations in the basic helix-loop-helix transcription factor 4 (TCF4) cause the Pitt-Hopkins syndrome (PTHS), a developmental disorder with severe intellectual disability. Here, we report findings from a new mouse model with a central nervous system-specific truncation of Tcf4 leading to severe phenotypic abnormalities. Furthermore, it allows the study of a complete TCF4 knockout in adult mice, circumventing early postnatal lethality of previously published mouse models. Our data suggest that a TCF4 truncation results in an impaired hippocampal architecture affecting both the dentate gyrus as well as the cornu ammonis. In the cerebral cortex, loss of TCF4 generates a severe differentiation delay of neural precursors. Furthermore, neuronal morphology was critically affected with shortened apical dendrites and significantly increased branching of dendrites. Our data provide novel information about the role of Tcf4 in brain development and may help to understand the mechanisms leading to intellectual deficits observed in patients suffering from PTHS.
Collapse
Affiliation(s)
- Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Marlen C Lauffer
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Sanamjeet Virdi
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Quevedo M, Meert L, Dekker MR, Dekkers DHW, Brandsma JH, van den Berg DLC, Ozgür Z, van IJcken WFJ, Demmers J, Fornerod M, Poot RA. Mediator complex interaction partners organize the transcriptional network that defines neural stem cells. Nat Commun 2019; 10:2669. [PMID: 31209209 PMCID: PMC6573065 DOI: 10.1038/s41467-019-10502-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/10/2019] [Indexed: 01/13/2023] Open
Abstract
The Mediator complex regulates transcription by connecting enhancers to promoters. High Mediator binding density defines super enhancers, which regulate cell-identity genes and oncogenes. Protein interactions of Mediator may explain its role in these processes but have not been identified comprehensively. Here, we purify Mediator from neural stem cells (NSCs) and identify 75 protein-protein interaction partners. We identify super enhancers in NSCs and show that Mediator-interacting chromatin modifiers colocalize with Mediator at enhancers and super enhancers. Transcription factor families with high affinity for Mediator dominate enhancers and super enhancers and can explain genome-wide Mediator localization. We identify E-box transcription factor Tcf4 as a key regulator of NSCs. Tcf4 interacts with Mediator, colocalizes with Mediator at super enhancers and regulates neurogenic transcription factor genes with super enhancers and broad H3K4me3 domains. Our data suggest that high binding-affinity for Mediator is an important organizing feature in the transcriptional network that determines NSC identity. The Mediator complex regulates transcription by connecting enhancers to promoters. Here, the authors purify Mediator from neural stem cells (NSCs), identify 75 novel protein-protein interaction partners and characterize the Mediator-interacting network that regulates transcription and establishes NSC identity.
Collapse
Affiliation(s)
- Marti Quevedo
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Lize Meert
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Dick H W Dekkers
- Center for Proteomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | - Johannes H Brandsma
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | | | - Zeliha Ozgür
- Center for Biomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | | | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands.
| |
Collapse
|
19
|
Hellwig M, Lauffer MC, Bockmayr M, Spohn M, Merk DJ, Harrison L, Ahlfeld J, Kitowski A, Neumann JE, Ohli J, Holdhof D, Niesen J, Schoof M, Kool M, Kraus C, Zweier C, Holmberg D, Schüller U. TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma. Acta Neuropathol 2019; 137:657-673. [PMID: 30830316 DOI: 10.1007/s00401-019-01982-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
The TCF4 gene encodes for the basic helix-loop-helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.
Collapse
Affiliation(s)
- Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Marlen C Lauffer
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Merk
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Research Unit Neurobiology of Diabetes, Helmholtz Center Munich, Neuherberg, Germany
| | - Julia Ahlfeld
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Annabel Kitowski
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia E Neumann
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dan Holmberg
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany.
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
20
|
Dewari PS, Southgate B, Mccarten K, Monogarov G, O'Duibhir E, Quinn N, Tyrer A, Leitner MC, Plumb C, Kalantzaki M, Blin C, Finch R, Bressan RB, Morrison G, Jacobi AM, Behlke MA, von Kriegsheim A, Tomlinson S, Krijgsveld J, Pollard SM. An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein. eLife 2018; 7:e35069. [PMID: 29638216 PMCID: PMC5947990 DOI: 10.7554/elife.35069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here, we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5-30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain-tumor-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of 60 different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells.
Collapse
Affiliation(s)
- Pooran Singh Dewari
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Benjamin Southgate
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Katrina Mccarten
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - German Monogarov
- German Cancer Research CenterUniversity of HeidelbergHeidelbergGermany
| | - Eoghan O'Duibhir
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Niall Quinn
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
| | - Ashley Tyrer
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Marie-Christin Leitner
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Colin Plumb
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Maria Kalantzaki
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Carla Blin
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Rebecca Finch
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Raul Bardini Bressan
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Gillian Morrison
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Mark A Behlke
- Integrated DNA Technologies, Inc.CoralvilleUnited States
| | - Alex von Kriegsheim
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
| | - Simon Tomlinson
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Jeroen Krijgsveld
- German Cancer Research CenterUniversity of HeidelbergHeidelbergGermany
| | - Steven M Pollard
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
21
|
Jung M, Häberle BM, Tschaikowsky T, Wittmann MT, Balta EA, Stadler VC, Zweier C, Dörfler A, Gloeckner CJ, Lie DC. Analysis of the expression pattern of the schizophrenia-risk and intellectual disability gene TCF4 in the developing and adult brain suggests a role in development and plasticity of cortical and hippocampal neurons. Mol Autism 2018; 9:20. [PMID: 29588831 PMCID: PMC5863811 DOI: 10.1186/s13229-018-0200-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Haploinsufficiency of the class I bHLH transcription factor TCF4 causes Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder, while common variants in the TCF4 gene have been identified as susceptibility factors for schizophrenia. It remains largely unknown, which brain regions are dependent on TCF4 for their development and function. Methods We systematically analyzed the expression pattern of TCF4 in the developing and adult mouse brain. We used immunofluorescent staining to identify candidate regions whose development and function depend on TCF4. In addition, we determined TCF4 expression in the developing rhesus monkey brain and in the developing and adult human brain through analysis of transcriptomic datasets and compared the expression pattern between species. Finally, we morphometrically and histologically analyzed selected brain structures in Tcf4-haploinsufficient mice and compared our morphometric findings to neuroanatomical findings in PTHS patients. Results TCF4 is broadly expressed in cortical and subcortical structures in the developing and adult mouse brain. The TCF4 expression pattern was highly similar between humans, rhesus monkeys, and mice. Moreover, Tcf4 haploinsufficiency in mice replicated structural brain anomalies observed in PTHS patients. Conclusion Our data suggests that TCF4 is involved in the development and function of multiple brain regions and indicates that its regulation is evolutionary conserved. Moreover, our data validate Tcf4-haploinsufficient mice as a model to study the neurodevelopmental basis of PTHS.
Collapse
Affiliation(s)
- Matthias Jung
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin M Häberle
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tristan Tschaikowsky
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marie-Theres Wittmann
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,2Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elli-Anna Balta
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vivien-Charlott Stadler
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- 2Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Johannes Gloeckner
- 4German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany.,5Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - D Chichung Lie
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
22
|
The Intellectual Disability and Schizophrenia Associated Transcription Factor TCF4 Is Regulated by Neuronal Activity and Protein Kinase A. J Neurosci 2017; 37:10516-10527. [PMID: 28951451 DOI: 10.1523/jneurosci.1151-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 12/23/2022] Open
Abstract
Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.
Collapse
|
23
|
Hennig KM, Fass DM, Zhao WN, Sheridan SD, Fu T, Erdin S, Stortchevoi A, Lucente D, Cody JD, Sweetser D, Gusella JF, Talkowski ME, Haggarty SJ. WNT/β-Catenin Pathway and Epigenetic Mechanisms Regulate the Pitt-Hopkins Syndrome and Schizophrenia Risk Gene TCF4. MOLECULAR NEUROPSYCHIATRY 2017; 3:53-71. [PMID: 28879201 DOI: 10.1159/000475666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Genetic variation within the transcription factor TCF4 locus can cause the intellectual disability and developmental disorder Pitt-Hopkins syndrome (PTHS), whereas single-nucleotide polymorphisms within noncoding regions are associated with schizophrenia. These genetic findings position TCF4 as a link between transcription and cognition; however, the neurobiology of TCF4 remains poorly understood. Here, we quantitated multiple distinct TCF4 transcript levels in human induced pluripotent stem cell-derived neural progenitors and differentiated neurons, and PTHS patient fibroblasts. We identify two classes of pharmacological treatments that regulate TCF4 expression: WNT pathway activation and inhibition of class I histone deacetylases. In PTHS fibroblasts, both of these perturbations upregulate a subset of TCF4 transcripts. Finally, using chromatin immunoprecipitation sequencing in conjunction with genome-wide transcriptome analysis, we identified TCF4 target genes that may mediate the effect of TCF4 loss on neuroplasticity. Our studies identify new pharmacological assays, tools, and targets for the development of therapeutics for cognitive disorders.
Collapse
Affiliation(s)
- Krista M Hennig
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven D Sheridan
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Ting Fu
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jannine D Cody
- Chromosome 18 Clinical Research Center, Department of Pediatrics, University of Texas Health Sciences Center, San Antonio, Texas, USA.,The Chromosome 18 Registry and Research Society, San Antonio, Texas, USA
| | - David Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Divisions of Pediatric Hematology/Oncology and Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E Talkowski
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Mulligan KA, Cheyette BNR. Neurodevelopmental Perspectives on Wnt Signaling in Psychiatry. MOLECULAR NEUROPSYCHIATRY 2017; 2:219-246. [PMID: 28277568 DOI: 10.1159/000453266] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that Wnt signaling is relevant to pathophysiology of diverse mental illnesses including schizophrenia, bipolar disorder, and autism spectrum disorder. In the 35 years since Wnt ligands were first described, animal studies have richly explored how downstream Wnt signaling pathways affect an array of neurodevelopmental processes and how their disruption can lead to both neurological and behavioral phenotypes. Recently, human induced pluripotent stem cell (hiPSC) models have begun to contribute to this literature while pushing it in increasingly translational directions. Simultaneously, large-scale human genomic studies are providing evidence that sequence variation in Wnt signal pathway genes contributes to pathogenesis in several psychiatric disorders. This article reviews neurodevelopmental and postneurodevelopmental functions of Wnt signaling, highlighting mechanisms, whereby its disruption might contribute to psychiatric illness, and then reviews the most reliable recent genetic evidence supporting that mutations in Wnt pathway genes contribute to psychiatric illness. We are proponents of the notion that studies in animal and hiPSC models informed by the human genetic data combined with the deep knowledge base and tool kits generated over the last several decades of basic neurodevelopmental research will yield near-term tangible advances in neuropsychiatry.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|