1
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
2
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2025; 28:221-244. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
3
|
Cigliano L, De Palma F, Petecca N, Fasciolo G, Panico G, Venditti P, Lombardi A, Spagnuolo MS. 1,3-butanediol administration as an alternative strategy to calorie restriction for neuroprotection - Insights into modulation of stress response in hippocampus of healthy rats. Biomed Pharmacother 2025; 182:117774. [PMID: 39693909 DOI: 10.1016/j.biopha.2024.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024] Open
Abstract
Ketogenic diet has a wide range of beneficial effects but presents practical limitations due to its low compliance, hence dietary supplements have been developed to induce ketosis without nutrient deprivation. The alcohol 1,3-butanediol (BD) is a promising molecule for its ability to induce ketosis, but its effects on brain have been investigated so far only in disease models, but never in physiological conditions. To support BD use to preserve brain health, the analysis of its activity is mandatory. Therefore, we investigated, in healthy rats, the effect of a fourteen-days BD-administration on the hippocampus, an area particularly vulnerable to oxidative and inflammatory damage. Since BD treatment has been reported to reduce energy intake, results were compared with those obtained from rats undergoing a restricted dietary regimen, isoenergetic with BD group (pair fed, PF). Reduced pro-inflammatory signaling pathways and glial activation were revealed in hippocampus of BD treated rats in comparison to control (C) and PF groups. ROS content and the extent of protein oxidative damage were lower in BD and PF groups than in C. Interestingly, higher amounts of nuclear factor erythroid 2-related factor 2 (Nrf2), decreased level of lipid hydroperoxides, lower susceptibility to oxidative insult, higher amounts of superoxide dismutase-2, glutathione reductase and glutathione peroxidase (GPx), and increased GPx activity were observed in BD animals. BD administration, but not dietary restriction, attenuated endoplasmic reticulum stress, reduced autophagic response activation, and was associated with an increase of both the neurotrophin BDNF and pre-synaptic proteins synaptophysin and synaptotagmin. Our results highlight that BD plays a neuroprotective role in healthy conditions, thus emerging as an effective strategy to support brain function without the need of implementing ketogenic nutritional interventions.
Collapse
Affiliation(s)
- Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Francesca De Palma
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Natasha Petecca
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Giuliana Panico
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Portici, 80055, Italy.
| |
Collapse
|
4
|
McClure TS, Phillips J, Koutnik AP, Coleman K, Chappe E, Cutter GR, Egan B, Norell T, Stubbs BJ, Bamman MM, Kernagis D. Ketone monoester attenuates declines in cognitive performance and oxygen saturation during acute severe hypoxic exposure under resting conditions. Exp Physiol 2024; 109:1672-1682. [PMID: 39190580 PMCID: PMC11442756 DOI: 10.1113/ep091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Exogenous ketone supplements are a potential augmentation strategy for cognitive resilience during acute hypoxic exposure due to their capacity to attenuate the decline in oxygen (O2) availability, and by providing an alternative substrate for cerebral metabolism. Utilizing a single-blind randomized crossover design, 16 male military personnel (age, 25.3 ± 2.4 year, body mass, 86.2 ± 9.3 kg) performed tests of cognitive performance at rest in three environments: room air (baseline), normoxia (20 min; 0 m; 20.9% O2) and hypoxia (20 min; 6096 m, 9.7% O2) using a reduced O2 breathing device (ROBD). (R)-3-Hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-βHB) ketone monoester (KME; 650 mg/kg, split dose given at 30 min prior to each exposure) or taste-matched placebo (PLA) was ingested prior to normoxia and hypoxic exposure. Blood R-βHB and glucose concentrations, cognitive performance and O2 saturation (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) were collected throughout. KME ingestion increased blood R-βHB concentration, which was rapid and sustained (>4 mM 30 min post; P < 0.001) and accompanied by lower blood glucose concentration (∼20 mg/dL; P < 0.01) compared to PLA. Declines in cognitive performance during hypoxic exposure, assessed as cognitive efficiency during a Defense Automated Neurobehavioral Assessment (DANA) code substitution task, were attenuated with KME leading to 6.8 (95% CL: 1.0, 12.6) more correct responses per minute compared to PLA (P = 0.018). The decline inS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ during hypoxic exposure was attenuated (6.40%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; 95% CL: 0.04, 12.75; P = 0.049) in KME compared to PLA (KME, 76.8 ± 6.4%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; PLA, 70.4 ± 7.4%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ). Acute ingestion of KME attenuated the decline in cognitive performance during acute severe hypoxic exposure, which coincided with attenuation of declines in O2 saturation.
Collapse
Affiliation(s)
- Tyler S. McClure
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Jeffrey Phillips
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Andrew P. Koutnik
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | - Kody Coleman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Ed Chappe
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Gary R. Cutter
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Brendan Egan
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Todd Norell
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | | | - Marcas M. Bamman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Dawn Kernagis
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
5
|
Ari C, D'Agostino DP, Cha BJ. Neuroregeneration Improved by Sodium-D,L-Beta-Hydroxybutyrate in Primary Neuronal Cultures. Pharmaceuticals (Basel) 2024; 17:1160. [PMID: 39338322 PMCID: PMC11435142 DOI: 10.3390/ph17091160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Ketone bodies are considered alternative fuels for the brain when glucose availability is limited. To determine the neuroregenerative potential of D,L-sodium-beta-hydroxybutyrate (D/L-BHB), Sprague Dawley rat primary cortical neurons were exposed to simulated central nervous system injury using a scratch assay. The neuronal cell migration, cell density and degree of regeneration in the damaged areas (gaps) in the absence (control) and presence of BHB (2 mM) were documented with automated live-cell imaging by the CytoSMART system over 24 h, which was followed by immunocytochemistry, labeling synapsin-I and β3-tubulin. The cell density was significantly higher in the gaps with BHB treatment after 24 h compared to the control. In the control, only 1.5% of the measured gap areas became narrower over 24 h, while in the BHB-treated samples 49.23% of the measured gap areas became narrower over 24 h. In the control, the gap expanded by 63.81% post-injury, while the gap size decreased by 10.83% in response to BHB treatment, compared to the baseline. The cell density increased by 97.27% and the gap size was reduced by 74.64% in response to BHB, compared to the control. The distance travelled and velocity of migrating cells were significantly higher with BHB treatment, while more synapsin-I and β3-tubulin were found in the BHB-treated samples after 24 h, compared to the control. The results demonstrate that D/L-BHB enhanced neuronal migration and molecular processes associated with neural regeneration and axonogenesis. These results may have clinical therapeutic applications in the future for nervous system injuries, such as for stroke, concussion and TBI patients.
Collapse
Affiliation(s)
- Csilla Ari
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
- Ketone Technologies LLC, Tampa, FL 33612, USA
| | - Dominic P D'Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Byeong J Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
6
|
Chrysafi M, Jacovides C, Papadopoulou SK, Psara E, Vorvolakos T, Antonopoulou M, Dakanalis A, Martin M, Voulgaridou G, Pritsa A, Mentzelou M, Giaginis C. The Potential Effects of the Ketogenic Diet in the Prevention and Co-Treatment of Stress, Anxiety, Depression, Schizophrenia, and Bipolar Disorder: From the Basic Research to the Clinical Practice. Nutrients 2024; 16:1546. [PMID: 38892480 PMCID: PMC11174630 DOI: 10.3390/nu16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD) has been highly developed in the past for the treatment of epileptic pathological states in children and adults. Recently, the current re-emergence in its popularity mainly focuses on the therapy of cardiometabolic diseases. The KD can also have anti-inflammatory and neuroprotective activities which may be applied to the prevention and/or co-treatment of a diverse range of psychiatric disorders. PURPOSE This is a comprehensive literature review that intends to critically collect and scrutinize the pre-existing research basis and clinical data of the potential advantageous impacts of a KD on stress, anxiety, depression, schizophrenia and bipolar disorder. METHODS This literature review was performed to thoroughly represent the existing research in this topic, as well as to find gaps in the international scientific community. In this aspect, we carefully investigated the ultimate scientific web databases, e.g., PubMed, Scopus, and Web of Science, to derive the currently available animal and clinical human surveys by using efficient and representative keywords. RESULTS Just in recent years, an increasing amount of animal and clinical human surveys have focused on investigating the possible impacts of the KD in the prevention and co-treatment of depression, anxiety, stress, schizophrenia, and bipolar disorder. Pre-existing basic research with animal studies has consistently demonstrated promising results of the KD, showing a propensity to ameliorate symptoms of depression, anxiety, stress, schizophrenia, and bipolar disorder. However, the translation of these findings to clinical settings presents a more complex issue. The majority of the currently available clinical surveys seem to be moderate, usually not controlled, and have mainly assessed the short-term effects of a KD. In addition, some clinical surveys appear to be characterized by enormous dropout rates and significant absence of compliance measurement, as well as an elevated amount of heterogeneity in their methodological design. CONCLUSIONS Although the currently available evidence seems promising, it is highly recommended to accomplish larger, long-term, randomized, double-blind, controlled clinical trials with a prospective design, in order to derive conclusive results as to whether KD could act as a potential preventative factor or even a co-treatment agent against stress, anxiety, depression, schizophrenia, and bipolar disorder. Basic research with animal studies is also recommended to examine the molecular mechanisms of KD against the above psychiatric diseases.
Collapse
Affiliation(s)
- Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantina Jacovides
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Theophanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Marina Antonopoulou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Mato Martin
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| |
Collapse
|
7
|
de Souza KR, Engel NA, Soares HJ, Bressan CBC, Dela Vedova LM, da Silva LE, Mendes TF, da Silva MR, de Oliveira MP, Goulart AI, Córneo E, de Medeiros Borges H, Michels M, Bittencourt JVS, de Roch Casagrande L, Ferreira GK, Petronilho FC, Dal-Pizzol F, Silveira PCL, de Bitencourt RM, da Silva MG, Rezin GT. Nutritional strategies cause memory damage and alter biochemical parameters without causing neuroinflammation. Metab Brain Dis 2024; 39:635-648. [PMID: 38429463 DOI: 10.1007/s11011-023-01311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 03/03/2024]
Abstract
Obesity results from an energy imbalance and has been considered an epidemic due to its increasing rates worldwide. It is classified as a low-grade chronic inflammatory disease and has associated comorbidities. Different nutritional strategies are used for the purpose of weight loss, highlighting low-carbohydrate (LC) diets, ketogenic diets, and intermittent fasting (IF). These strategies can lead to metabolic and behavioral changes as they stimulate different biochemical pathways. Therefore, this study evaluated memory, energy metabolism, neuroinflammation, oxidative stress, and antioxidant defense parameters in mice subjected to an LC diet, ketogenic diet (KD), or IF. Eighty male Swiss mice, 60 days old, were divided into 4 groups: control, LC, KD, or IF. Body weight was measured weekly, and food intake every 48 h. After 15 days of nutritional interventions, the animals were subjected to the behavioral object recognition test and subsequently euthanized. Then, visceral fat was removed and weighed, and the brain was isolated for inflammatory and biochemical analysis. We concluded from this study that the LC and KD strategies could damage memory, IF improves the production of adenosine triphosphate (ATP), and the LC, KD, and IF strategies do not lead to neuroinflammatory damage but present damage at the level of oxidative stress.
Collapse
Affiliation(s)
- Keila Rufatto de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Hevylin Jacinto Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Catarina Barbosa Chaves Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Larissa Marques Dela Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil.
| | - Amanda Indalecio Goulart
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Heloísa de Medeiros Borges
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - João Vitor Silvano Bittencourt
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | | | - Fabricia Cardoso Petronilho
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| |
Collapse
|
8
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
9
|
Li X, Shi Z, Todaro DR, Pond T, Byanyima JI, Vesslee SA, Reddy R, Nanga RPR, Kass G, Ramchandani V, Kranzler HR, Vendruscolo JCM, Vendruscolo LF, Wiers CE. Ketone Supplementation Dampens Subjective and Objective Responses to Alcohol: Evidence From a Preclinical Rat Study and a Randomized, Cross-Over Trial in Healthy Volunteers. Int J Neuropsychopharmacol 2024; 27:pyae009. [PMID: 38315678 PMCID: PMC10901540 DOI: 10.1093/ijnp/pyae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Previous preclinical and human studies have shown that a high-fat ketogenic diet and ketone supplements (KS) are efficacious in reducing alcohol craving, alcohol consumption, and signs of alcohol withdrawal. However, the effects of KS on alcohol sensitivity are unknown. METHODS In this single-blind, cross-over study, 10 healthy participants (3 females) were administered a single, oral dose of a KS (25 g of ketones from D-β-hydroxybutyric acid and R-1,3-butanediol) or placebo 30 minutes before an oral alcohol dose (0.25 g/kg for women; 0.31 g/kg for men). Assessments of breath alcohol concentration and blood alcohol levels (BAL) and responses on the Drug Effect Questionnaire were repeatedly obtained over 180 minutes after alcohol consumption. In a parallel preclinical study, 8 Wistar rats (4 females) received an oral gavage of KS (0.42 g ketones/kg), water, or the sweetener allulose (0.58 g/kg) followed 15 minutes later by an oral alcohol dose (0.8 g/kg). BAL was monitored for 240 minutes after alcohol exposure. RESULTS In humans, the intake of KS before alcohol significantly blunted breath alcohol concentration and BAL, reduced ratings of alcohol liking and wanting more, and increased disliking for alcohol. In rats, KS reduced BAL more than either allulose or water. CONCLUSION KS altered physiological and subjective responses to alcohol in both humans and rats, and the effects were likely not mediated by the sweetener allulose present in the KS drink. Therefore, KS could potentially reduce the intoxicating effects of alcohol.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dustin R Todaro
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Timothy Pond
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juliana I Byanyima
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sianneh A Vesslee
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rishika Reddy
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ravi Prakash Reddy Nanga
- University of Pennsylvania Perelman School of Medicine, Department of Radiology, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vijay Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Leandro F Vendruscolo
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Corinde E Wiers
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Gopalan C, Niepoetter P, Butts-Wilmsmeyer C, Medavaka S, Ogle A, Daughrity S, Hackmann E, Mogan S, Lenz O. Comparison of intermittent fasting and voluntary wheel running on physical and cognitive abilities in high-fat diet-induced obese rats. PLoS One 2023; 18:e0293415. [PMID: 38055657 DOI: 10.1371/journal.pone.0293415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023] Open
Abstract
Regular physical activity is a proven routine for weight management in addressing obesity. Another method that has gained attention for its health benefits is intermittent fasting (IF). Physical and cognitive abilities while on these routines are poorly understood in the obese population. Sixty-five male Sprague Dawley rats at 7 weeks of age were subjected to diet-induced obesity by feeding a high-fat diet (HFD) or a standard diet (SD) for 8 weeks, after which behavioral testing was performed to detect any changes in physical and cognitive abilities. Rats from the HFD-fed (now considered obese) and SD-fed groups were then subjected to IF (18-hour fast and 6-hour feeding daily), voluntary wheel running (VWR), or control conditions for 3 weeks before repeating the same behavioral testing protocol. IF resulted in less weight gain (p<0.05) and elevated ketone levels (p<0.05) in both SD and HFD-fed groups. IF improved physical activity when compared to VWR and control animals in both SD and HFD-fed groups (p<0.05) while the VWR group in the SD-fed rats exhibited less physical fatigue compared to IF and controls (p<0.05). Additionally, elevated ketone levels were weakly correlated with decreased physical (p<0.0001) and exploratory behavior (p<0.01). These results suggest that IF is more effective than VWR in HFD and SD-fed rats in minimizing weight gain and retaining physical activity, and ketones may play a part in establishing the reported physical benefits. Exploration of physiological mechanisms between ketones, diet, and exercise will help fight obesity and many associated diseases.
Collapse
Affiliation(s)
- Chaya Gopalan
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
- Department of Nurse Anesthesiology, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Paige Niepoetter
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Carolyn Butts-Wilmsmeyer
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
- Center for Predictive Analytics, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Sai Medavaka
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Avery Ogle
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Sheyenne Daughrity
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Elizabeth Hackmann
- Department of Psychology, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Saruveish Mogan
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| | - Oskar Lenz
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, United States of America
| |
Collapse
|
11
|
Chinna-Meyyappan A, Gomes FA, Koning E, Fabe J, Breda V, Brietzke E. Effects of the ketogenic diet on cognition: a systematic review. Nutr Neurosci 2023; 26:1258-1278. [PMID: 36354157 DOI: 10.1080/1028415x.2022.2143609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Ketogenic diet (KD) therapy has been used as a dietary intervention in drug-resistant epilepsy for several years. Research currently suggests that KD therapy may carry neuroprotective and cognition enhancing effects for individuals with non-epileptic conditions as well as for healthy individuals. Therefore, KD may have potential as a non-invasive, nutritional treatment approach for difficult to manage conditions such as neurodegenerative illnesses or mood disorders. The aim of this review is to summarize the available evidence on ketogenic interventions and the resulting cognitive outcomes. MATERIALS AND METHODS The paper was based on PRISMA 2020 guidelines. The search was conducted in June 2021 on the following databases: CENTRAL, PubMed, EMBASE, PsycInfo, Web of Science. The search yielded 2014 studies, of which 49 were included. RESULTS There were 22 animal studies assessing murine models and 27 studies on humans. The primary indications in these studies were epileptic conditions, neurodegenerative disorders, cognitive impairment, and healthy populations. DISCUSSION Administration of KD seems to confer cognitive-enhancing effects in areas such as working memory, reference memory and attention. Studies found that KD treatment in animals has the potential to alleviate age-related cognitive decline. Over 80% of the 27 human studies reported a favourable effect of intervention, and none reported a detrimental effect of KD. While these findings suggest that KD may improve the functioning of certain cognitive domains, definitive conclusions were limited by studies with small sample sizes, the absence of controls and randomization, and the lack of objective measures of cognition.
Collapse
Affiliation(s)
| | - Fabiano Alves Gomes
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, Canada
| | - Elena Koning
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
| | | | - Vitor Breda
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, Canada
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Canada
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, Canada
| |
Collapse
|
12
|
Smolensky IV, Zajac-Bakri K, Gass P, Inta D. Ketogenic diet for mood disorders from animal models to clinical application. J Neural Transm (Vienna) 2023; 130:1195-1205. [PMID: 36943505 PMCID: PMC10460725 DOI: 10.1007/s00702-023-02620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BD) are often resistant to current pharmacological treatment. Therefore, various alternative therapeutic approaches including diets are, therefore, under investigation. Ketogenic diet (KD) is effective for treatment-resistant epilepsy and metabolic diseases, however, only a few clinical studies suggest its beneficial effect also for mental disorders. Animal models are a useful tool to uncover the underlying mechanisms of therapeutic effects. Women have a twice-higher prevalence of mood disorders but very little is known about sex differences in nutritional psychiatry. In this review, we aim to summarize current knowledge of the sex-specific effects of KD in mood disorders. Ketone bodies improve mitochondrial functions and suppress oxidative stress, inducing neuroprotective and anti-inflammatory effects which are both beneficial for mental health. Limited data also suggest KD-induced improvement of monoaminergic circuits and hypothalamus-pituitary-adrenal axis-the key pathophysiological pathways of mood disorders. Gut microbiome is an important mediator of the beneficial and detrimental effects of diet on brain functioning and mental health. Gut microbiota composition is affected in mood disorders but its role in the therapeutic effects of different diets, including KD, remains poorly understood. Still little is known about sex differences in the effects of KD on mental health as well as on metabolism and body weight. Some animal studies used both sexes but did not find differences in behavior, body weight loss or gut microbiota composition. More studies, both on a preclinical and clinical level, are needed to better understand sex-specific effects of KD on mental health.
Collapse
Affiliation(s)
- Ilya V Smolensky
- Department for Community Health, University of Fribourg, Fribourg, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Kilian Zajac-Bakri
- Department for Community Health, University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Dragos Inta
- Department for Community Health, University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Černelič-Bizjak M, Kenig S, Petelin A, Jenko-Pražnikar Z, Mohorko N. Link between emotional and external eating behaviors, peripheral neuropeptide Y, and β-hydroxybutyrate in participants with obesity on 12-week ketogenic diet. Nutr Health 2023:2601060231154464. [PMID: 36734124 DOI: 10.1177/02601060231154464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: Understanding the impact of stress on emotional and external eating behaviors and the psychological and the associated metabolic factors can help in designing subsequent interventions to protect health. In particular, psychological trait-like construct related to eating has been shown to be an important target for intervention. Methods and measures: This study aimed to investigate the biochemical variables associated with a decrease in emotional and external eating behaviors due to 12-week ketogenic diet (12KD) in 35 adult participants (12 males) with obesity. Results: Absolute changes in emotional and external eating were independent of changes in body mass, nutritional intake, and Δ cortisol, but were predicted with increases in serum β-hydroxybutyrate (BHB) and decreases in serum peripheral neuropeptide Y (pNPY) (all p's < 0.050). Decrease in pNPY was also associated with an increase in BHB but was independent of anthropometrical changes, Δ fasting glucose, and Δ insulin. Conclusion: The reductions in emotional and external eating behaviors in participants with obesity were uniquely predicted by an increase in BHB and a decrease in pNPY after 12KD. In ketosis, emotional and external eating dropped independently of body mass change. Change in pNPY predicted changes in emotional and external eating. The role of BHB in modulating eating behavior should be further explored.
Collapse
Affiliation(s)
| | - Saša Kenig
- Faculty of Health Sciences, 68960University of Primorska, Izola, Slovenia
| | - Ana Petelin
- Faculty of Health Sciences, 68960University of Primorska, Izola, Slovenia
| | | | - Nina Mohorko
- Faculty of Health Sciences, 68960University of Primorska, Izola, Slovenia
| |
Collapse
|
14
|
Intermittent fasting and mental and physical fatigue in obese and non-obese rats. PLoS One 2022; 17:e0275684. [PMID: 36322540 PMCID: PMC9629590 DOI: 10.1371/journal.pone.0275684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Intermittent fasting (IF) is an alternating pattern of restricting eating. This study evaluated mental and physical fatigue secondary to IF (daily 18-hour fast, 7-days-a-week) in the high-fat diet (HFD)-induced male obese Sprague Dawley rats. Fifty-four rats were randomly assigned to a HFD (n = 28) or a standard diet (SD; n = 26). After six weeks, the HFD rats were divided into one of four groups: obese HFD ad libitum (OB-HFD-AL), obese HFD-IF (OB-HFD-IF), obese SD-AL (OB-SD-AL), and obese SD-IF (OB-SD-IF). Similarly, non-obese controls were grouped into HFD-AL (C-HFD-AL), non-obese HFD-IF (C-HFD-IF), non-obese SD-AL (C-SD-AL), and non-obese SD-IF (C-SD-IF). After 2 weeks of IF, mental and physical fatigue were measured using open field (OF) and novel object recognition (NOR) tests. Rats on IF gained weight at a slower pace (p<0.05) and had lower glucose levels (p<0.01) compared to the AL group. In non-obese rats, ketone levels were higher in the IF-HFD group than IF-SD (p<0.05) and AL-SD (p<0.01) animals. Obese rats exhibited elevated blood ketone levels in IF-SD conditions versus AL-SD rats (p<0.01). AL-HFD rats had higher ketone levels than AL-SD animals in both obese and non-obese groups (p<0.05). In conclusion, rats with higher blood ketone levels, whether they were on IF or AL, traveled a greater distance during OF suggesting a lack of physical fatigue. There was no significant difference between IF and AL during NOR indicating a lack of mental fatigue. Thus, IF results in reduced body weight and blood glucose levels but does not induce physical or mental fatigue.
Collapse
|
15
|
Kackley ML, Buga A, Crabtree CD, Sapper TN, McElroy CA, Focht BC, Kraemer WJ, Volek JS. Influence of Nutritional Ketosis Achieved through Various Methods on Plasma Concentrations of Brain Derived Neurotropic Factor. Brain Sci 2022; 12:brainsci12091143. [PMID: 36138878 PMCID: PMC9496887 DOI: 10.3390/brainsci12091143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Brain-Derived Neurotropic Factor (BDNF) expression is decreased in conditions associated with cognitive decline as well as metabolic diseases. One potential strategy to improve metabolic health and elevate BDNF is by increasing circulating ketones. Beta-Hydroxybutyrate (BHB) stimulates BDNF expression, but the association of circulating BHB and plasma BDNF in humans has not been widely studied. Here, we present results from three studies that evaluated how various methods of inducing ketosis influenced plasma BDNF in humans. Study 1 determined BDNF responses to a single bout of high-intensity cycling after ingestion of a dose of ketone salts in a group of healthy adults who were habitually consuming either a mixed diet or a ketogenic diet. Study 2 compared how a ketogenic diet versus a mixed diet impacts BDNF levels during a 12-week resistance training program in healthy adults. Study 3 examined the effects of a controlled hypocaloric ketogenic diet, with and without daily use of a ketone-salt, on BDNF levels in overweight/obese adults. We found that (1) fasting plasma BDNF concentrations were lower in keto-adapted versus non keto-adapted individuals, (2) intense cycling exercise was a strong stimulus to rapidly increase plasma BDNF independent of ketosis, and (3) clinically significant weight loss was a strong stimulus to decrease fasting plasma BDNF independent of diet composition or level of ketosis. These results highlight the plasticity of plasma BDNF in response to lifestyle factors but does not support a strong association with temporally matched BHB concentrations.
Collapse
Affiliation(s)
- Madison L. Kackley
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Buga
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Chris D. Crabtree
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Teryn N. Sapper
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Craig A. McElroy
- Department of Medicinal Chemistry and Pharmacognosy, 06 The Ohio State University, Columbus, OH 43210, USA
| | - Brian C. Focht
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - William J. Kraemer
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jeff S. Volek
- Department of Kinesiology, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
16
|
Shcherbakova K, Schwarz A, Apryatin S, Karpenko M, Trofimov A. Supplementation of Regular Diet With Medium-Chain Triglycerides for Procognitive Effects: A Narrative Review. Front Nutr 2022; 9:934497. [PMID: 35911092 PMCID: PMC9334743 DOI: 10.3389/fnut.2022.934497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
It is now widely accepted that ketosis (a physiological state characterized by elevated plasma ketone body levels) possesses a wide range of neuroprotective effects. There is a growing interest in the use of ketogenic supplements, including medium-chain triglycerides (MCT), to achieve intermittent ketosis without adhering to a strict ketogenic diet. MCT supplementation is an inexpensive and simple ketogenic intervention, proven to benefit both individuals with normal cognition and those suffering from mild cognitive impairment, Alzheimer's disease, and other cognitive disorders. The commonly accepted paradigm underlying MCT supplementation trials is that the benefits stem from ketogenesis and that MCT supplementation is safe. However, medium-chain fatty acids (MCFAs) may also exert effects in the brain directly. Moreover, MCFAs, long-chain fatty acids, and glucose participate in mutually intertwined metabolic pathways. Therefore, the metabolic effects must be considered if the desired procognitive effects require administering MCT in doses larger than 1 g/kg. This review summarizes currently available research on the procognitive effects of using MCTs as a supplement to regular feed/diet without concomitant reduction of carbohydrate intake and focuses on the revealed mechanisms linked to particular MCT metabolites (ketone bodies, MCFAs), highlighting open questions and potential considerations.
Collapse
Affiliation(s)
- Ksenia Shcherbakova
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia,*Correspondence: Ksenia Shcherbakova
| | - Alexander Schwarz
- Laboratory of the Molecular Mechanisms of Neuronal Interactions, Institute of Evolutionary Physiology and Biochemistry (RAS), Saint Petersburg, Russia
| | - Sergey Apryatin
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander Trofimov
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
17
|
Ródenas-González F, Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Cognitive profile of male mice exposed to a Ketogenic Diet. Physiol Behav 2022; 254:113883. [PMID: 35716801 DOI: 10.1016/j.physbeh.2022.113883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
In recent years, nutritional interventions for different psychiatric diseases have gained increasing attention, such as the ketogenic diet (KD). This has led to positive effects in neurological disorders such as Parkinson's disease, addiction, autism or epilepsy. The neurobiological mechanisms through which these effects are induced and the effects in cognition still warrant investigation, and considering that other high-fat diets (HFD) can lead to cognitive disturbances that may affect the results achieved, the main aim of the present work was to evaluate the effects of a KD to determine whether it can induce such cognitive effects. A total of 30 OF1 male mice were employed to establish the behavioral profile of mice fed a KD by testing anxiety behavior (Elevated Plus Maze), locomotor activity (Open Field), learning (Hebb Williams Maze), and memory (Passive Avoidance Test). The results revealed that the KD did not affect locomotor activity, memory or hippocampal-dependent learning, as similar results were obtained with mice on a standard diet, albeit with increased anxiety behavior. We conclude that a KD is a promising nutritional approach to apply in research studies, given that it does not cause cognitive alterations.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain
| | - M Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain.
| |
Collapse
|
18
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
19
|
Orlando A, Chimienti G, Notarnicola M, Russo F. The Ketogenic Diet Improves Gut-Brain Axis in a Rat Model of Irritable Bowel Syndrome: Impact on 5-HT and BDNF Systems. Int J Mol Sci 2022; 23:ijms23031098. [PMID: 35163022 PMCID: PMC8835524 DOI: 10.3390/ijms23031098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Altered gut-brain communication can contribute to intestinal dysfunctions in the intestinal bowel syndrome. The neuroprotective high-fat, adequate-protein, low-carbohydrate ketogenic diet (KD) modulates the levels of different neurotransmitters and neurotrophins. The aim was to evaluate the effects of KD on levels of 5-HT, the receptors 5-HT3B and 5-HT4, the 5-HT transporter SERT, the neurotrophin BDNF, and its receptor TrkB in the colon and brain of a rat model of irritable bowel syndrome (IBS). Samples from Wistar rats exposed to maternal deprivation as newborns and then fed with a standard diet (IBS-Std) or KD (IBS-KD) for ten weeks were analyzed. As controls, unexposed rats (Ctrl-Std and Ctrl-KD) were studied. IBS-Std rats had a disordered enteric serotoninergic signaling shown by increased mucosal 5-HT content and reduced SERT, 5-HT3B, and 5-HT4 levels compared to controls. In the brain, these animals showed up-regulation of the BDNF receptor TrkB as a counteracting response to the stress-induced reduction of the neurotrophin. KD showed a dual effect in improving the altered 5-HT and BDNF systems. It down-regulated the increased mucosal 5-HT without affecting transporter and receptor levels. KD improved brain BDNF levels and established negative feedback, leading to a compensatory downregulation of TrkB to maintain a physiological steady state.
Collapse
Affiliation(s)
- Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy;
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy;
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy;
- Correspondence: ; Tel.: +39-080-4994315
| |
Collapse
|
20
|
The Role of Ketogenic Metabolic Therapy on the Brain in Serious Mental Illness: A Review. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220009. [PMID: 36483840 PMCID: PMC9728807 DOI: 10.20900/jpbs.20220009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In search of interventions targeting brain dysfunction and underlying cognitive impairment in schizophrenia, we look at the brain and beyond to the potential role of dysfunctional systemic metabolism on neural network instability and insulin resistance in serious mental illness. We note that disrupted insulin and cerebral glucose metabolism are seen even in medication-naïve first-episode schizophrenia, suggesting that people with schizophrenia are at risk for Type 2 diabetes and cardiovascular disease, resulting in a shortened life span. Although glucose is the brain's default fuel, ketones are a more efficient fuel for the brain. We highlight evidence that a ketogenic diet can improve both the metabolic and neural stability profiles. Specifically, a ketogenic diet improves mitochondrial metabolism, neurotransmitter function, oxidative stress/inflammation, while also increasing neural network stability and cognitive function. To reverse the neurodegenerative process, increasing the brain's access to ketone bodies may be needed. We describe evidence that metabolic, neuroprotective, and neurochemical benefits of a ketogenic diet potentially provide symptomatic relief to people with schizophrenia while also improving their cardiovascular or metabolic health. We review evidence for KD side effects and note that although high in fat it improves various cardiovascular and metabolic risk markers in overweight/obese individuals. We conclude by calling for controlled clinical trials to confirm or refute the findings from anecdotal and case reports to address the potential beneficial effects of the ketogenic diet in people with serious mental illness.
Collapse
|
21
|
Brunner B, Ari C, D’Agostino DP, Kovács Z. Adenosine Receptors Modulate the Exogenous Ketogenic Supplement-Evoked Alleviating Effect on Lipopolysaccharide-Generated Increase in Absence Epileptic Activity in WAG/Rij Rats. Nutrients 2021; 13:nu13114082. [PMID: 34836344 PMCID: PMC8623289 DOI: 10.3390/nu13114082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
It has been previously demonstrated that KEKS food containing exogenous ketogenic supplement ketone salt (KS) and ketone ester (KE) decreased the lipopolysaccharide (LPS)-generated increase in SWD (spike-wave discharge) number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, likely through ketosis. KEKS-supplemented food-generated ketosis may increase adenosine levels, and may thus modulate both neuroinflammatory processes and epileptic activity through adenosine receptors (such as A1Rs and A2ARs). To determine whether these adenosine receptors are able to modify the KEKS food-generated alleviating effect on LPS-evoked increases in SWD number, an antagonist of A1R DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.2 mg/kg) with LPS (50 µg/kg) and an antagonist of A2AR SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; 0.5 mg/kg) with LPS were co-injected intraperitoneally (i.p.) on the ninth day of KEKS food administration, and their influence not only on the SWD number, but also on blood glucose, R-beta-hydroxybutyrate (R-βHB) levels, and body weight were measured. We showed that inhibition of A1Rs abolished the alleviating effect of KEKS food on LPS-generated increases in the SWD number, whereas blocking A2ARs did not significantly modify the KEKS food-generated beneficial effect. Our results suggest that the neuromodulatory benefits of KEKS-supplemented food on absence epileptic activity are mediated primarily through A1R, not A2AR.
Collapse
Affiliation(s)
- Brigitta Brunner
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary;
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| | - Csilla Ari
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| | - Dominic P. D’Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovács
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| |
Collapse
|
22
|
Liśkiewicz AD, Liśkiewicz D, Marczak Ł, Przybyła M, Grabowska K, Student S, Dębiec M, Sługocka A, Lewin-Kowalik J. Obesity-associated deterioration of the hippocampus is partially restored after weight loss. Brain Behav Immun 2021; 96:212-226. [PMID: 34087424 DOI: 10.1016/j.bbi.2021.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Obesity is a multidimensional condition that is treatable by the restoration of a lean phenotype; however, some obesity-related outcomes may persist after weight normalization. Among the organs of the human body, the brain possesses a relatively low regenerative capacity and could retain perturbations established as a result of developmental obesity. Calorie restriction (CR) or a restricted ketogenic diet (KD) are successfully used as weight loss approaches, but their impact on obesity-related effects in the brain have not been previously evaluated. METHODS We performed a series of experiments in a rat model of developmental obesity induced by a 12-week cafeteria diet, followed by CR to implement weight loss. First, we assessed the impact of obesity on neurogenesis (BrdU incorporation into the hippocampus), cognitive function (water maze), and concomitant changes in hippocampal protein expression (GC/MS-MS, western blot). Next, we repeated these experiments in a rat model of weight loss induced by CR. We also measured mitochondrial enzyme activity in rats after weight loss during the fed or fasting state. This study was extended by additional experiments with restricted KD used as a weight loss approach in order to compare the efficacy of two different nutritional interventions used in the treatment of obesity on hippocampal functions. By using a modified version of the water maze we evaluated cognitive abilities in rats subjected to weight loss by CR or a restricted KD. RESULTS In this study, obesity affected metabolic processes, upregulated hippocampal NF-κB, and induced proteomic differences which were associated with impaired cognition and neurogenesis. Weight loss improved neurogenesis and enhanced cognition. While the expression pattern of some proteins persisted after weight loss, most of the changes appeared de novo revealing metabolic adjustment by overactivation of citrate synthase and downregulation of ATP synthase. As a consequence of fasting, the activity of these enzymes indicated hippocampal adaptation to negative energy balance during the weight loss phase of CR. Moreover, the effects on cognitive abilities measured after weight loss were negatively correlated with the animal weight measured at the final stage of weight gain. This was alleviated by KD, which improved cognition when used as a weight loss approach. CONCLUSIONS The study shows that cognition and mitochondrial metabolism in the hippocampus are affected by CR- or KD-induced weight loss.
Collapse
Affiliation(s)
- Arkadiusz D Liśkiewicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland; Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland.
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marta Przybyła
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice 44-100, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice 44-100, Poland
| | - Magdalena Dębiec
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Anna Sługocka
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| |
Collapse
|
23
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
24
|
Preston G, Emmerzaal T, Radenkovic S, Lanza IR, Oglesbee D, Morava E, Kozicz T. Cerebellar and multi-system metabolic reprogramming associated with trauma exposure and post-traumatic stress disorder (PTSD)-like behavior in mice. Neurobiol Stress 2021; 14:100300. [PMID: 33604421 PMCID: PMC7872981 DOI: 10.1016/j.ynstr.2021.100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We recently reported that mice exposed to a novel paradigm for the induction of PTSD-like behavior displayed reduced mitochondrial electron transport chain (mtETC) complex activity as well as decreased multi-system fatty acid oxidation (FAO) flux. Based on these results, we hypothesized that stressed and PTSD-like animals would display evidence of metabolic reprogramming in both cerebellum and plasma consistent with increased energetic demand, mitochondrial metabolic reprogramming, and increased oxidative stress. We performed targeted metabolomics in both cerebellar tissue and plasma, as well as untargeted nuclear magnetic resonance (NMR) spectroscopy in the cerebellum of 6 PTSD-like and 7 resilient male mice as well as 7 trauma-naïve controls. We identified numerous differences in amino acids and tricarboxylic acid (TCA) cycle metabolite concentrations in the cerebellum and plasma consistent with altered mitochondrial energy metabolism in trauma exposed and PTSD-like animals. Pathway analysis identified metabolic pathways with significant metabolic pathway shifts associated with trauma exposure, including the tricarboxylic acid cycle, pyruvate, and branched-chain amino acid metabolism in both cerebellar tissue and plasma. Altered glutamine and glutamate metabolism, and arginine biosynthesis was evident uniquely in cerebellar tissue, while ketone body levels were modified in plasma. Importantly, we also identified several cerebellar metabolites (e.g. choline, adenosine diphosphate, beta-alanine, taurine, and myo-inositol) that were sufficient to discriminate PTSD-like from resilient animals. This multilevel analysis provides a comprehensive understanding of local and systemic metabolite fingerprints associated with PTSD-like behavior, and subsequently altered brain bioenergetics. Notably, several transformed metabolic pathways observed in the cerebellum were also reflected in plasma, connecting central and peripheral biosignatures of PTSD-like behavior. These preliminary findings could direct further mechanistic studies and offer insights into potential metabolic interventions, either pharmacological or dietary, to improve PTSD resilience.
Collapse
Affiliation(s)
- Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tim Emmerzaal
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Anatomy, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - Silvia Radenkovic
- Metabolomic Expertise Center, CCB, VIB- KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
| | - Ian R. Lanza
- Division of Endocrinology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
25
|
Vijayam B, Malarvili MB, Md Shakhih MF, Omar N, Wahab AA. Effect of short-term ketogenic diet on end-tidal carbon dioxide. Clin Nutr ESPEN 2021; 42:124-131. [PMID: 33745565 DOI: 10.1016/j.clnesp.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS Previous studies have shown that end-tidal carbon dioxide (EtCO2) is lower with the presence of supraphysiological ketones as in the case of chronic ketogenic diet (KD) and diabetic ketoacidosis (DKA). This study aimed to determine changes in EtCO2 upon short term KD. METHODS Healthy subjects were screened not to have conditions that exerts abnormal EtCO2 nor contraindicated for KD. Subjects underwent seven days of KD while the EtCO2 and blood ketone (beta-hydroxybutyrate; β-OHB) parameters were sampled at day zero (t0) and seven (t7) of ketosis respectively. Statistically, the t-test and Pearson's coefficient were conducted to determine the changes and correlation of both parameters. RESULTS 12 subjects completed the study. The mean score ± standard deviation (SD) for EtCO2 were 35.08 ± 3.53 and 35.67 ± 3.31 mm Hg for t0 and t7 respectively. The mean score ±SD for β-OHB were 0.07 ± 0.08 and 0.87 ± 0.84 mmol/L for t0 and t7 respectively. There was no significant difference of EtCO2 between the period of study (p > 0.05) but the β-OHB increased during t7 (p < 0.05). There was also no correlation between the parameters. CONCLUSIONS These findings suggest that EtCO2 may not be utilized to determine short term nutritional ketosis.
Collapse
Affiliation(s)
- Bhuwaneswaran Vijayam
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - M B Malarvili
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - Muhammad Faiz Md Shakhih
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - Nashuha Omar
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - Asnida Abdul Wahab
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia; Medical Devices and Technology Centre (MEDITEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| |
Collapse
|
26
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Watermeyer T, Robb C, Gregory S, Udeh-Momoh C. Therapeutic implications of hypothalamic-pituitaryadrenal-axis modulation in Alzheimer's disease: A narrative review of pharmacological and lifestyle interventions. Front Neuroendocrinol 2021; 60:100877. [PMID: 33045258 DOI: 10.1016/j.yfrne.2020.100877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
With disease-modifying treatments for Alzheimer's disease (AD) still elusive, the search for alternative intervention strategies has intensified. Growing evidence suggests that dysfunction in hypothalamic-pituitaryadrenal-axis (HPAA) activity may contribute to the development of AD pathology. The HPAA, may therefore offer a novel target for therapeutic action. This review summarises and critically evaluates animal and human studies investigating the effects of pharmacological and non-pharmacological intervention on HPAA modulation alongside cognitive performance. The interventions discussed include glucocorticoid receptor antagonists and 11β-hydroxysteroid dehydrogenase inhibitors as well as lifestyle treatments such as physical activity, diet, sleep and contemplative practices. Pharmacological HPAA modulators improve pathology and cognitive deficit in animal AD models, but human pharmacological trials are yet to provide definitive support for such benefits. Lifestyle interventions may offer promising strategies for HPAA modification and cognitive health, but several methodological caveats across these studies were identified. Directions for future research in AD studies are proposed.
Collapse
Affiliation(s)
- Tamlyn Watermeyer
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK; Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Catherine Robb
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Chinedu Udeh-Momoh
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK; Translational Health Sciences, School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
28
|
Miles KN, Skelton MR. Male mice placed on a ketogenic diet from postnatal day (P) 21 through adulthood have reduced growth, are hypoactive, show increased freezing in a conditioned fear paradigm, and have spatial learning deficits. Brain Res 2020; 1734:146697. [PMID: 32014530 DOI: 10.1016/j.brainres.2020.146697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
The ketogenic diet (KD) is a non-pharmacological treatment for specific types of epilepsy. In addition, it has been shown to be effective in mitigating other neurologic disorders. The KD is also effective in reducing body mass, leading to an increase in use by the general population for weight loss. As the popularity of the clinical and general use of the KD has increased, it is important to develop adequate mouse models to better understand the effects of the KD in both normal and diseased states. Many times, the best outcome for disorders treatable with the KD would be achieved by commencing treatment in early life. Few studies have evaluated the cognitive effect of starting the KD in early life. To better understand these effects, male C57BL6/J mice were placed on a KD from postnatal day (P) 21 through young adulthood (~P90). KD-fed mice had increased blood ketone levels, reduced blood glucose, and reduced weight gain versus mice fed a control diet (CD). The weight loss in the KD-fed mice was not accompanied by a change in body fat percentage, suggesting that there was a loss of lean mass. Behavioral testing began on P60 while the mice were still on the diet. KD-fed mice were hypoactive with CD-fed mice. In the Morris water maze, KD-fed mice showed decreased path efficiency, suggesting a spatial learning deficits. No differences were observed in spatial memory or in novel object recognition memory. In a contextual and conditioned fear paradigm, the KD-fed mice had an increase in freezing behavior. These data suggest that early-life exposure to a KD leads to impaired body composition and long-term cognitive changes.
Collapse
Affiliation(s)
- Keila N Miles
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation. Cincinnati, OH 45229, United States
| | - Matthew R Skelton
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation. Cincinnati, OH 45229, United States.
| |
Collapse
|
29
|
Saxmose Nielsen S, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Michel V, Miranda Chueca MÁ, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde Calvo A, Viltrop A, Buijs S, Edwards S, Candiani D, Mosbach-Schulz O, Van der Stede Y, Winckler C. Health and welfare of rabbits farmed in different production systems. EFSA J 2020; 18:e05944. [PMID: 32626497 PMCID: PMC7008839 DOI: 10.2903/j.efsa.2020.5944] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The AGRI committee of the European Parliament requested EFSA to assess the welfare of rabbits farmed in different production systems, including organic production, and to update its 2005 scientific opinion about the health and welfare of rabbits kept for meat production. Considering reproducing does, kits and growing rabbits, this scientific opinion focusses on six different housing systems, namely conventional cages, structurally enriched cages, elevated pens, floor pens, outdoor/partially outdoor systems and organic systems. To compare the level of welfare in the different housing systems and rabbit categories, welfare impact scores for 20 welfare consequences identified from the literature were calculated, taking their occurrence, duration and severity into account. Based on the overall welfare impact score (sum of scores for the single welfare consequences), obtained via a 2‐step expert knowledge elicitation process, the welfare of reproducing does is likely (certainty 66–90%) to be lower in conventional cages compared to the five other housing systems. In addition, it is likely to extremely likely (certainty 66–99%) that the welfare of kits is lower in outdoor systems compared to the other systems and that the welfare is higher in elevated pens than in the other systems. Finally, it is likely to extremely likely (certainty 66–99%) that the welfare of growing rabbits is lower in conventional cages compared to the other systems and that the welfare is higher in elevated pens than in the other systems. Ranking of the welfare consequences allowed an analysis of the main welfare consequences within each system and rabbit category. It was concluded that for reproducing does, as well as growing rabbits, welfare consequences related to behavioural restrictions were more prominent in conventional cages, elevated pens and enriched cages, whereas those related to health problems were more important in floor pens, outdoor and organic systems. Housing in organic rabbit farming is diverse, which can result in different welfare consequences, but the overall welfare impact scores suggest that welfare in organic systems is generally good.
Collapse
|
30
|
Bernini A, Masoodi M, Solari D, Miroz JP, Carteron L, Christinat N, Morelli P, Beaumont M, Abed-Maillard S, Hartweg M, Foltzer F, Eckert P, Cuenoud B, Oddo M. Modulation of cerebral ketone metabolism following traumatic brain injury in humans. J Cereb Blood Flow Metab 2020; 40:177-186. [PMID: 30353770 PMCID: PMC6928557 DOI: 10.1177/0271678x18808947] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adaptive metabolic response to injury includes the utilization of alternative energy substrates - such as ketone bodies (KB) - to protect the brain against further damage. Here, we examined cerebral ketone metabolism in patients with traumatic brain injury (TBI; n = 34 subjects) monitored with cerebral microdialysis to measure total brain interstitial tissue KB levels (acetoacetate and β-hydroxybutyrate). Nutrition - from fasting vs. stable nutrition state - was associated with a significant decrease of brain KB (34.7 [10th-90th percentiles 10.7-189] µmol/L vs. 13.1 [6.5-64.3] µmol/L, p < 0.001) and blood KB (668 [168.4-3824.9] vs. 129.4 [82.6-1033.8] µmol/L, p < 0.01). Blood KB correlated with brain KB (Spearman's rho 0.56, p = 0.0013). Continuous feeding with medium-chain triglycerides-enriched enteral nutrition did not increase blood KB, and provided a modest increase in blood and brain free medium chain fatty acids. Higher brain KB at the acute TBI phase correlated with age and brain lactate, pyruvate and glutamate, but not brain glucose. These novel findings suggest that nutritional ketosis was the main determinant of cerebral KB metabolism following TBI. Age and cerebral metabolic distress contributed to brain KB supporting the hypothesis that ketones might act as alternative energy substrates to glucose. Further studies testing KB supplementation after TBI are warranted.
Collapse
Affiliation(s)
- Adriano Bernini
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Mojgan Masoodi
- Nestlé Institute of Health Science, Lausanne, Switzerland
| | - Daria Solari
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - John-Paul Miroz
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Laurent Carteron
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| | | | - Paola Morelli
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Maurice Beaumont
- Nestlé Research Center, Clinical Development Unit, Lausanne, Switzerland
| | - Samia Abed-Maillard
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Mickael Hartweg
- Nestlé Research Center, Clinical Development Unit, Lausanne, Switzerland
| | - Fabien Foltzer
- Nestlé Research Center, Clinical Development Unit, Lausanne, Switzerland
| | - Philippe Eckert
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| | | | - Mauro Oddo
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group, CHUV-University Hospital and Faculty of Biology and Medicine, Lausanne, Switzerland
| |
Collapse
|
31
|
The behavioural and pathophysiological effects of the ketogenic diet on mild traumatic brain injury in adolescent rats. Behav Brain Res 2019; 376:112225. [DOI: 10.1016/j.bbr.2019.112225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
|
32
|
Nutritional psychoneuroimmunology: Is the inflammasome a critical convergence point for stress and nutritional dysregulation? Curr Opin Behav Sci 2019; 28:20-24. [PMID: 31667204 DOI: 10.1016/j.cobeha.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psychoneuroimmunology (PNI) aims to elucidate mechanisms by which the immune system can influence behavior. Given the complexity of the brain, studies using inbred rodents have shed critical insight into the presumed vagaries of the human condition. This is particularly true for stress modeling where adverse stimuli, conditions and/or interactions elicit patterned behavioral reactions that can translate across species. As example, sickness behaviors are as easily recognized in mice as they are in humans, and a family pet. Recently, nutrition has gained prominence as a regulator of brain function. Once perceived as mostly a peripheral player, except when manifest at extremes like starvation or gluttony, nutritional and/or metabolic stress is now recognized as a worrisome contributor to poor mental health especially in those who suffer from food insecurity or overnutrition. In this review, we will explore emerging areas of rodent research that demonstrate the impact of nutritional status on the stressed brain. Our overall goal is to implicate inflammasome activation as a critical convergence point for stress and nutritional dysregulation. In doing so, we will present results from studies focused on macronutrient, micronutrient and dietary bioactives so as to encourage innovative investigation into the emerging field of nutritional PNI.
Collapse
|
33
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
34
|
Poffé C, Ramaekers M, Van Thienen R, Hespel P. Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J Physiol 2019; 597:3009-3027. [PMID: 31039280 PMCID: PMC6851819 DOI: 10.1113/jp277831] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Overload training is required for sustained performance gain in athletes (functional overreaching). However, excess overload may result in a catabolic state which causes performance decrements for weeks (non-functional overreaching) up to months (overtraining). Blood ketone bodies can attenuate training- or fasting-induced catabolic events. Therefore, we investigated whether increasing blood ketone levels by oral ketone ester (KE) intake can protect against endurance training-induced overreaching. We show for the first time that KE intake following exercise markedly blunts the development of physiological symptoms indicating overreaching, and at the same time significantly enhances endurance exercise performance. We provide preliminary data to indicate that growth differentiation factor 15 (GDF15) may be a relevant hormonal marker to diagnose the development of overtraining. Collectively, our data indicate that ketone ester intake is a potent nutritional strategy to prevent the development of non-functional overreaching and to stimulate endurance exercise performance. ABSTRACT It is well known that elevated blood ketones attenuate net muscle protein breakdown, as well as negate catabolic events, during energy deficit. Therefore, we hypothesized that oral ketones can blunt endurance training-induced overreaching. Fit male subjects participated in two daily training sessions (3 weeks, 6 days/week) while receiving either a ketone ester (KE, n = 9) or a control drink (CON, n = 9) following each session. Sustainable training load in week 3 as well as power output in the final 30 min of a 2-h standardized endurance session were 15% higher in KE than in CON (both P < 0.05). KE inhibited the training-induced increase in nocturnal adrenaline (P < 0.01) and noradrenaline (P < 0.01) excretion, as well as blunted the decrease in resting (CON: -6 ± 2 bpm; KE: +2 ± 3 bpm, P < 0.05), submaximal (CON: -15 ± 3 bpm; KE: -7 ± 2 bpm, P < 0.05) and maximal (CON: -17 ± 2 bpm; KE: -10 ± 2 bpm, P < 0.01) heart rate. Energy balance during the training period spontaneously turned negative in CON (-2135 kJ/day), but not in KE (+198 kJ/day). The training consistently increased growth differentiation factor 15 (GDF15), but ∼2-fold more in CON than in KE (P < 0.05). In addition, delta GDF15 correlated with the training-induced drop in maximal heart rate (r = 0.60, P < 0.001) and decrease in osteocalcin (r = 0.61, P < 0.01). Other measurements such as blood ACTH, cortisol, IL-6, leptin, ghrelin and lymphocyte count, and muscle glycogen content did not differentiate KE from CON. In conclusion, KE during strenuous endurance training attenuates the development of overreaching. We also identify GDF15 as a possible marker of overtraining.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Monique Ramaekers
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Ruud Van Thienen
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Peter Hespel
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
- Bakala Academy‐Athletic Performance CenterKU LeuvenLeuvenBelgium
| |
Collapse
|
35
|
Huang J, Li YQ, Wu CH, Zhang YL, Zhao ST, Chen YJ, Deng YH, Xuan A, Sun XD. The effect of ketogenic diet on behaviors and synaptic functions of naive mice. Brain Behav 2019; 9:e01246. [PMID: 30848079 PMCID: PMC6456772 DOI: 10.1002/brb3.1246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Beyond its application as an epilepsy therapy, the ketogenic diet (KD) has been considered a potential treatment for a variety of other neurological and metabolic disorders. However, whether KD promotes functional restoration by reducing the pathological processes underlying individual diseases or through some independent mechanisms is not clear. METHODS In this study, we evaluated the effect of KD on a series of behaviors and synaptic functions of young adult naive mice. Wild-type C57BL/6J mice at age of 2-3 months were fed with control diet or KD for three months. Body weight and caloric intake were monitored throughout the experiments. We assessed behavioral performance with seizure induction, motor coordination and activity, anxiety level, spatial learning and memory, sociability, and depression. Synaptic transmission and long-term potentiation were also recorded. RESULTS KD-fed mice performed equivalent to control-diet-fed mice in the behavioral tests and electrophysiological assays except exhibiting slower weight gain and increased seizure threshold. CONCLUSIONS Our results contribute to the better understanding of effects of the KD on physiological behaviors and synaptic functions.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Hong Wu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-Long Zhang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shen-Ting Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Hong Deng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aiguo Xuan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang-Dong Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
36
|
Ling Y, Wang DD, Sun YX, Zhao DJ, Ni H. Neuro-Behavioral Status and the Hippocampal Expression of Metabolic Associated Genes in Wild-Type Rat Following a Ketogenic Diet. Front Neurol 2019; 10:65. [PMID: 30804881 PMCID: PMC6370680 DOI: 10.3389/fneur.2019.00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/17/2019] [Indexed: 01/16/2023] Open
Abstract
While a ketogenic diet (KD) is a well-established therapy for medically intractable epilepsy, clinical evidence of relevant adverse events of a KD has also been reported. We asked whether this kind of diet would have deleterious effects on wild-type brain function by evaluating KD-induced biochemical changes in the hippocampus as well as neurobehavioral changes occurring in wild-type rats. Fifty-four Sprague-Dawley rats were randomly assigned to three groups on postnatal day 28 (P28): wild-type rats fed with a KD qd (daily for 4 weeks, KD) or qod (every other day for 4 weeks, KOD), and wild-type rats fed with standard normal laboratory diet (ND). Neurobehavioral changes were observed on P35, P42, and P49. The hippocampal mossy fiber sprouting, the expression levels of zinc transporters (ZnTs) and lipid metabolism related genes were detected by Timm staining, RT-qPCR and western blot analysis, respectively, on P58. The KD-treated KOD and KD groups showed a significant delay of negative geotaxis reflex on P35, but not on P42 or P49. In the open field test, daily KD treatment only led to a reduction in exploratory activity and increased grooming times but induced no significant changes in the scores of vertical activity or delay time. KD qod treated rats (KOD) displayed a slight delay in the place navigation test on P35 compared with the KD group. There were no significant differences in Timm staining among the three groups. In parallel with these changes, KD treatment (both KD and KOD) induced significantly downregulated mRNA levels of Apoa1, Pdk4, and upregulated expression of ApoE, ANXN7, and cPLA2 in the hippocampus when compared with the ND group (except in the case of ApoE in the KOD group). Notably, both the mRNA and protein levels of cPLA2 in the KOD rats were significantly downregulated compared with the KD group but still markedly higher than in the ND group. No significant difference was found in ZnTs among the three groups. Our data suggest that early-life KD can provoke minor neurobehavioral effects in particular a delay in negative geotaxis reflex and an increase in grooming activity. The hippocampal lipid metabolism signaling pathway, especially cPLA2, may be the target of the protective effect of KD on long-term brain injury after developmental seizures.
Collapse
Affiliation(s)
- Ya Ling
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-Dan Wang
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yu-Xiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Dong-Jing Zhao
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
37
|
Cannataro R, Perri M, Gallelli L, Caroleo MC, De Sarro G, Cione E. Ketogenic Diet Acts on Body Remodeling and MicroRNAs Expression Profile. Microrna 2019; 8:116-126. [PMID: 30474543 DOI: 10.2174/2211536608666181126093903] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Ketogenic Diet (KD) promotes metabolic changes and optimizes energy metabolism. It is unknown if microRNAs (miRs) are influenced by KD in obese subjects. The screening of circulating miRs was performed with the FDA approved platform n-counter flex and blood biochemical parameters were dosed by ADVIA 1800. OBJECTIVES The aim of this study was to evaluate mir profile under 6 weeks of biphasic KD in obese subjects. We enrolled 36 obese subjects (18 females and 18 males) in stage 1 of Edmonton Obesity Staging System (EOSS) parameter. RESULT Any correlation was found between biochemical parameter and three miRs, hsa-let-7b-5p, hsa-miR-143-3p and hsa-miR-504-5p influenced in an equal manner in both sexes. The KD resulted safe and ameliorate both biochemical and anthropometric factors in obese subjects re-collocating them into stage 0 of EOSS parameters. CONCLUSION The miRs herein identified under KD might be a useful tool to monitor low carbohydrate nutritional regimens which reflect indirectly the regulatory biochemical mechanisms and cell signaling that orchestrate metabolic and signaling pathways.
Collapse
Affiliation(s)
- Roberto Cannataro
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Mariarita Perri
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Luca Gallelli
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| |
Collapse
|
38
|
Kovács Z, D'Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front Psychiatry 2019; 10:363. [PMID: 31178772 PMCID: PMC6543248 DOI: 10.3389/fpsyt.2019.00363] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David Diamond
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,James A. Haley VA Medical Center, Tampa, FL, United States.,Shriners Hospital for Children, Tampa, FL, United States
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
39
|
Hernandez AR, Hernandez CM, Campos K, Truckenbrod L, Federico Q, Moon B, McQuail JA, Maurer AP, Bizon JL, Burke SN. A Ketogenic Diet Improves Cognition and Has Biochemical Effects in Prefrontal Cortex That Are Dissociable From Hippocampus. Front Aging Neurosci 2018; 10:391. [PMID: 30559660 PMCID: PMC6286979 DOI: 10.3389/fnagi.2018.00391] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Age-related cognitive decline has been linked to a diverse set of neurobiological mechanisms, including bidirectional changes in proteins critical for neuron function. Importantly, these alterations are not uniform across the brain. For example, the hippocampus (HPC) and prefrontal cortex (PFC) show distinct patterns of dysfunction in advanced age. Because higher cognitive functions require large–scale interactions across prefrontal cortical and hippocampal networks, selectively targeting an alteration within one region may not broadly restore function to improve cognition. One mechanism for decline that the PFC and HPC share, however, is a reduced ability to utilize glucose for energy metabolism. Although this suggests that therapeutic strategies bypassing the need for neuronal glycolysis may be beneficial for treating cognitive aging, this approach has not been empirically tested. Thus, the current study used a ketogenic diet (KD) as a global metabolic strategy for improving brain function in young and aged rats. After 12 weeks, rats were trained to perform a spatial alternation task through an asymmetrical maze, in which one arm was closed and the other was open. Both young and aged KD-fed rats showed resilience against the anxiogenic open arm, training to alternation criterion performance faster than control animals. Following alternation testing, rats were trained to perform a cognitive dual task that required working memory while simultaneously performing a bi-conditional association task (WM/BAT), which requires PFC–HPC interactions. All KD-fed rats also demonstrated improved performance on WM/BAT. At the completion of behavioral testing, tissue punches were collected from the PFC for biochemical analysis. KD-fed rats had biochemical alterations within PFC that were dissociable from previous results in the HPC. Specifically, MCT1 and MCT4, which transport ketone bodies, were significantly increased in KD-fed rats compared to controls. GLUT1, which transports glucose across the blood brain barrier, was decreased in KD-fed rats. Contrary to previous observations within the HPC, the vesicular glutamate transporter (VGLUT1) did not change with age or diet within the PFC. The vesicular GABA transporter (VGAT), however, was increased within PFC similar to HPC. These data suggest that KDs could be optimal for enhancing large-scale network function that is critical for higher cognition.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Caesar M Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Keila Campos
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Leah Truckenbrod
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Quinten Federico
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brianna Moon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joseph A McQuail
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L Bizon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Wu Q, Wang H, Fan YY, Zhang JM, Liu XY, Fang XY, Yang FH, Cao QJ, Qi Y. Ketogenic diet effects on 52 children with pharmacoresistant epileptic encephalopathy: A clinical prospective study. Brain Behav 2018; 8:e00973. [PMID: 29761022 PMCID: PMC5943818 DOI: 10.1002/brb3.973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To evaluate the clinical impact of ketogenic diet (KD) on children with pharmacoresistant epileptic encephalopathy. METHODS In all, 52 children with pharmacoresistant epileptic encephalopathy that diagnosed in our hospital from July 2012 to June 2015 were selected, including West syndrome 38 cases, Lennox-Gastaut Syndrome 7 cases, Doose Syndrome 1 case, and Dravet syndrome 6 cases, and the effect, compliance, adverse reactions, electroencephalogram (EEG), and cognitive function were analyzed. Modified Johns Hopkins protocol was used to initiate KD, and Engel scale was used to evaluate the effect, and evaluated the effect of KD on the cognition, language, and motor function. RESULTS At 12 weeks of KD treatment, the patients achieved I, II, III, and IV grade effect were accounted for 26.9% (14/52 cases), 17.3% (9/52 cases), 11.5% (6/52 cases), and 44.2% (23/52 cases), respectively, according to Engel scale. KD has different effect on different epileptic syndromes, best effect on Doose syndromes of 100%, and better effect on West syndrome with the effect rate of 57.9%, and the total effect number was 22 cases. The reduction of epileptiform discharges in the awake state before KD treatment was correlated with the seizure time after 3 months of KD treatment (r = .330, p = .017). The cognitive function of 23 patients was improved, 12 patients had language improvement, and the motor function was improved in 10 patients. In all, 23 patients had adverse reactions, and all patients were tolerated and improved. CONCLUSION KD has certain effect on children with pharmacoresistant epileptic encephalopathy, and it can reduce interictal epileptic discharge frequency, and improve the background rhythm of EEG. The reduction of epileptiform discharges in awake state is in favor of the reduction of seizures frequency, thus increasing the efficacy, and improve the cognitive function, language, and motor function to varying degrees, combined with less adverse reaction, which is worthy of clinical application.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatric Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Hua Wang
- Department of Pediatric Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Yu Ying Fan
- Department of Pediatric Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Jun Mei Zhang
- Department of Pediatric Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Xue Yan Liu
- Department of Pediatric Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Xiu Ying Fang
- Department of Functional Neurology Office Shengjing Hospital of China Medical University Shenyang China
| | - Feng Hua Yang
- Department of Pediatric Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Qing Jun Cao
- Department of Pediatric Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Ying Qi
- Department of Radiology Shengjing Hospital of China Medical University Shenyang China
| |
Collapse
|
41
|
Zhang Y, Xu K, Kerwin T, LaManna JC, Puchowicz M. Impact of Aging on Metabolic Changes in the Ketotic Rat Brain: Glucose, Oxidative and 4-HNE Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:21-25. [DOI: 10.1007/978-3-319-91287-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketone-Based Metabolic Therapy: Is Increased NAD + a Primary Mechanism? Front Mol Neurosci 2017; 10:377. [PMID: 29184484 PMCID: PMC5694488 DOI: 10.3389/fnmol.2017.00377] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
The ketogenic diet’s (KD) anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s) of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD), a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes) associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.
Collapse
Affiliation(s)
- Marwa Elamin
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - David N Ruskin
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Paola Sacchetti
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|