1
|
Chen J, Rao X, Wang X, Li Y, Shen Y, Gan J. LncRNA-GPHN Regulates Epilepsy by Inhibiting Apoptosis via the miR-320/YWHAH Axis in an Immature Rat Model of Status Epilepticus. J Cell Mol Med 2025; 29:e70593. [PMID: 40346986 DOI: 10.1111/jcmm.70593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play significant roles in neurological diseases, including epilepsy. Our previous study identified lncRNA-GPHN as specifically downregulated in a rat model of status epilepticus (SE). Investigate the role and regulatory mechanism of lncRNA-GPHN in the pathogenesis of epilepsy. SE rat and in vitro cell models were used to analyse expression dynamics, cellular localisation, and effects of lncRNA-GPHN on epileptic seizures, followed by HE staining, Nissl staining, and TUNEL staining. Luciferase Reporter assay, ChIRP assay, real-time quantitative PCR, and Western blotting accompanied with TUNEL assay and whole-cell patch-clamp techniques were employed to determine the molecular mechanism in lncRNA-GPHN regulating epilepsy in neurons. Post-seizure, lncRNA-GPHN in SE rats' hippocampus was markedly downregulated, hitting a nadir at 24 h. FISH and qPCR confirmed its cytoplasmic localization in neurons. EEG showed that lncRNA-GPHN overexpression significantly curtailed seizure frequency and intensity, elevating the threshold, while MWM results pointed to enhanced cognition in SE rats. Histological staining revealed less neuronal damage and better cellular integrity in overexpressing rats, accompanied with a reduction in neuronal apoptosis. In vitro, lncRNA-GPHN reduced neuronal excitability and epileptic potentials dose-dependently. q-PCR and ChIRP showed lncRNA-GPHN upregulates YWHAH by sequestering miR-320. Dual-luciferase and Western blot validated miR-320's direct suppression of YWHAH and lncRNA-GPHN's counteracting effect. TUNEL staining confirmed that miR-320 overexpression increased apoptosis, mitigated by lncRNA-GPHN overexpression and further reduced with combined overexpression. lncRNA-GPHN ameliorates epilepsy by inhibiting apoptosis via the miR-320/YWHAH axis, providing insights into epilepsy pathogenesis and potential targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Xueyi Rao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqian Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Li
- Department of Pediatrics, Meishan City People's Hospital, Meishan, Sichuan, China
| | - Yajun Shen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- WCSUH-Tianfu·Sichuan Provincial Children's Hospital, Meishan City, Sichuan Province, China
| |
Collapse
|
2
|
Pant K, Sharma A, Menon SV, Ali H, Hassan Almalki W, Kaur M, Deorari M, Kazmi I, Mahajan S, Kalra H, Alzarea SI. Exploring ncRNAs in epilepsy: From oxidative stress regulation to therapy. Brain Res 2024; 1841:149089. [PMID: 38880410 DOI: 10.1016/j.brainres.2024.149089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epilepsy is a prevalent neurological illness which is linked with high worldwide burdens. Oxidative stress (OS) is recognized to be among the contributors that trigger the advancement of epilepsy, affecting neuronal excitability and synaptic transmission. Various types of non-coding RNAs (ncRNAs) are known to serve vital functions in many disease mechanisms, including epilepsy. The current review sought to understand better the mechanisms through which these ncRNAs regulate epilepsy's OS-related pathways. We investigated the functions of microRNAs in controlling gene expression at the post-translatory stage and their involvement in OS and neuroinflammation. We also looked at the different regulatory roles of long ncRNAs, including molecular scaffolding, enhancer, and transcriptional activator, during OS. Circular RNAs and their capability to act as miRNA decoys and their consequential impact on epilepsy development were also explored. Our review aimed to improve the current understanding of novel therapies for epilepsy based on the role of ncRNAs in OS pathways. We also demonstrated the roles of ncRNAs in epilepsy treatment and diagnosis, explaining that these molecules play vital roles that could be used in therapy as biomarkers.
Collapse
Affiliation(s)
- Kumud Pant
- Graphic Era (Deemed to be University), Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India
| | - Aanchal Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali 140307, Punjab, India
| | - Soumya V Menon
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahamedha Deorari
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Hitesh Kalra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
3
|
Bai Y, Yao HH. Circular RNAs: Diagnostic and Therapeutic Perspectives in CNS Diseases. Curr Med Sci 2023; 43:879-889. [PMID: 37815742 DOI: 10.1007/s11596-023-2784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 10/11/2023]
Abstract
Circular RNAs (circRNAs) are a class of regulatory non-coding RNAs characterized by the presence of covalently closed ends. A growing body of evidence suggests that circRNAs play important roles in physiology and pathology. In particular, accumulating data on circRNA functions in various central nervous system (CNS) diseases and their correlations indicate that circRNAs are critical contributors to the onset and development of brain disorders. In this review, we focus on the regulatory and functional roles of circRNAs in CNS diseases, highlighting their diagnostic and therapeutic potential, with the aim of providing new insights into CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hong-Hong Yao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Zayed AA, Seleem MM, Darwish HA, Shaheen AA. Role of long noncoding RNAs; BDNF-AS and 17A and their relation to GABAergic dysfunction in Egyptian epileptic patients. Metab Brain Dis 2023; 38:1193-1204. [PMID: 36807083 PMCID: PMC10110666 DOI: 10.1007/s11011-023-01182-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Lately, long noncoding RNAs (lncRNAs) have been increasingly appreciated as regulators of epilepsy-related processes, however, their functional role in its pathogenesis is still to be explored. This study investigated the expression levels of lncRNAs; BDNF-AS and 17A in the sera of Egyptian patients with idiopathic generalized and symptomatic focal epilepsy and correlated their levels with brain-derived neurotrophic factor (BDNF), phosphorylated cAMP reaction element -binding protein (p-CREB), gamma- aminobutyric acid (GABA) and glutamate, to underline their related molecular mechanism. A total of 70 epileptic patients were divided into two clinical types, besides 30 healthy controls of matched age and sex. The expression levels of both lncRNAs were markedly upregulated in epileptic groups versus the healthy control group with predominance in the symptomatic focal one. Epileptic patients showed significantly lower levels of BDNF, p-CREB, GABA along with significant increase of glutamate levels and glutamate/ GABA ratio, especially in symptomatic focal versus idiopathic generalized epileptic ones. The obtained data raised the possibility that these lncRNAs might be involved in the pathogenesis of epilepsy via inhibition of GABA/p-CREB/BDNF pathway. The study shed light on the putative role of these lncRNAs in better diagnosis of epilepsy, particularly symptomatic focal epilepsy.
Collapse
Affiliation(s)
- Aya A Zayed
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mae M Seleem
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amira A Shaheen
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
The regulatory function of lncRNA and constructed network in epilepsy. Neurol Sci 2023; 44:1543-1554. [PMID: 36781564 DOI: 10.1007/s10072-023-06648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Epilepsy is a neurological disease characterized by neural network dysfunction. Although most reports indicate that the pathological process of epilepsy is related to inflammation, synaptic plasticity, cell apoptosis, and ion channel dysfunction, the underlying molecular mechanisms of epilepsy are not fully understood. METHODS This review summarizes the latest literature on the roles and characteristics of long noncoding RNAs (lncRNAs) in the pathogenesis of epilepsy. RESULTS lncRNAs are a class of long transcripts without protein-coding functions that perform important regulatory functions in various biological processes. lncRNAs are involved in the regulation of the pathological process of epilepsy and are abnormally expressed in both patients and animal models. This review provides an overview of research progress in epilepsy, the multifunctional features of lncRNAs, the lncRNA expression pattern related to epileptogenesis and status epilepticus, and the potential mechanisms for the two interactions contributing to epileptogenesis and progression. CONCLUSION lncRNAs can serve as new diagnostic markers and therapeutic targets for epilepsy in the future.
Collapse
|
6
|
Yuan L, Chen W, Xiang J, Deng Q, Hu Y, Li J. Advances of circRNA-miRNA-mRNA regulatory network in cerebral ischemia/reperfusion injury. Exp Cell Res 2022; 419:113302. [PMID: 35987381 DOI: 10.1016/j.yexcr.2022.113302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Ischemic stroke (IS) is the most common type of stroke, and its pathophysiological process is more complex. In recent years, the key regulatory roles of non-coding RNA (miRNA, circRNA) and mRNA in the development of IS have attracted more attention. In the process of cerebral ischemia/reperfusion injury, circRNA can regulate nerves, blood vessels and immune system through miRNA/mRNA axis, so as to affect the neurovascular unit of IS. The combination of these noncoding RNAs and mRNAs can be used as non-invasive biomarkers and therapeutic tools for IS diagnosis, prognosis and brain injury. Therefore, it is very important to study the potential molecular mechanism, activation pathway and treatment methods of circRNA/miRNA/mRNA network in IS. This review will focus on the latest progress of circRNA/miRNA/mRNA regulatory network, we have also included some circRNAs, which does not mediate through a miRNA, so we also include circRNA -mRNA network. And explore the application prospect of these RNAs as potential therapeutic targets in the prevention and treatment of IS.
Collapse
Affiliation(s)
- Li Yuan
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Wei Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530022, Guangxi, China
| | - Junjun Xiang
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Qiumei Deng
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Yueqiang Hu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530022, Guangxi, China
| | - Junhong Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530022, Guangxi, China.
| |
Collapse
|
7
|
Zeng C, Hu J, Chen F, Huang T, Zhang L. The Coordination of mTOR Signaling and Non-Coding RNA in Regulating Epileptic Neuroinflammation. Front Immunol 2022; 13:924642. [PMID: 35898503 PMCID: PMC9310657 DOI: 10.3389/fimmu.2022.924642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the burden of neurological disorders. Neuroinflammation acting as the inflammatory response to epileptic seizures is characterized by aberrant regulation of inflammatory cells and molecules, and has been regarded as a key process in epilepsy where mTOR signaling serves as a pivotal modulator. Meanwhile, accumulating evidence has revealed that non-coding RNAs (ncRNAs) interfering with mTOR signaling are involved in neuroinflammation and therefore articipate in the development and progression of epilepsy. In this review, we highlight recent advances in the regulation of mTOR on neuroinflammatory cells and mediators, and feature the progresses of the interaction between ncRNAs and mTOR in epileptic neuroinflammation.
Collapse
Affiliation(s)
- Chudai Zeng
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jason Hu
- Department of Neonatology, Yale School of Medicine, New Haven, CT, United States
| | - Fenghua Chen
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Tianxiang Huang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Longbo Zhang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| |
Collapse
|
8
|
Zhao CS, Liu DX, Fan YH, Wu JK. LncRNA GAS5 promotes epilepsy progression through the epigenetic repression of miR-219, in turn affecting CaMKIIγ/NMDAR pathway. J Neurogenet 2022; 36:32-42. [PMID: 35642561 DOI: 10.1080/01677063.2022.2067536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been widely reported that dysregulated long-chain noncoding RNAs (lncRNAs) are closely associated with epilepsy. This study aimed to probe the function of lncRNA growth arrest-specific 5 (GAS5), microRNA (miR)-219 and Calmodulin-dependent protein kinase II (CaMKII)γ/N-methyl-D-aspartate receptor (NMDAR) pathway in epilepsy. Epileptic cell and animal models were constructed using magnesium deficiency treatment and diazepam injection, respectively. GAS5 and miR-219 expressions in epileptic cell and animal models were determined using qRT-PCR assay. The protein levels of CaMKIIγ, NMDAR and apoptosis-related proteins levels were assessed by western blot. Cell counting kit-8 (CCK-8) assay was employed to determine cell proliferation. Besides, TNFα, IL-1β, IL-6 and IL-8 levels were analyzed using enzyme-linked immunosorbent assay (ELISA). Furthermore, cell apoptosis was evaluated using TUNEL staining and flow cytometric analysis. Finally, the binding relationship between GAS5 and EZH2 was verified using RIP and ChIP assay. Our results revealed that GAS5 was markedly upregulated in epileptic cell and animal models, while miR-219 was down-regulated. GAS5 knockdown dramatically increased cell proliferation of epileptic cells, whereas suppressed inflammation and the apoptosis. Furthermore, our results showed that GAS5 epigenetically suppressed transcriptional miR-219 expression via binding to EZH2. miR-219 mimics significantly enhanced cell proliferation of epileptic cells, while inhibited inflammation and the apoptosis, which was neutralized by CaMKIIγ overexpression. Finally, miR-219 inhibition reversed the effects of GAS5 silence on epileptic cells, which was eliminated by CaMKIIγ inhibition. In conclusion, GAS5 affected inflammatory response and cell apoptosis of epilepsy via inhibiting miR-219 and further regulating CaMKIIγ/NMDAR pathway (See graphic summary in Supplementary Material).
Collapse
Affiliation(s)
- Chen-Sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Dong-Xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Yan-Huai Fan
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Jian-Kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| |
Collapse
|
9
|
Manna I, Fortunato F, De Benedittis S, Sammarra I, Bertoli G, Labate A, Gambardella A. Non-Coding RNAs: New Biomarkers and Therapeutic Targets for Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:ijms23063063. [PMID: 35328484 PMCID: PMC8954985 DOI: 10.3390/ijms23063063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy; it is considered a network disorder associated with structural changes. Incomplete knowledge of the pathological changes in TLE complicates a therapeutic approach; indeed, 30 to 50% of patients with TLE are refractory to drug treatment. Non-coding RNAs (ncRNAs), acting as epigenetic factors, participate in the regulation of the pathophysiological processes of epilepsy and are dysregulated during epileptogenesis. Abnormal expression of ncRNA is observed in patients with epilepsy and in animal models of epilepsy. Furthermore, ncRNAs could also be used as biomarkers for the diagnosis and prognosis of treatment response in epilepsy. In summary, ncRNAs can represent important mechanisms and targets for the modulation of brain excitability and can provide information on pathomechanisms, biomarkers and novel therapies for epilepsy. In this review, we summarize the latest research advances concerning mainly molecular mechanisms, regulated by ncRNA, such as synaptic plasticity, inflammation and apoptosis, already associated with the pathogenesis of TLE. Moreover, we discuss the role of ncRNAs, such as microRNAs, long non-coding RNAs and circular RNAs, in the pathophysiology of epilepsy, highlighting their use as potential biomarkers for future therapeutic approaches.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Correspondence: (I.M.); (A.G.)
| | - Francesco Fortunato
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Selene De Benedittis
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20090 Milan, Italy;
| | - Angelo Labate
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
- Correspondence: (I.M.); (A.G.)
| |
Collapse
|
10
|
Gomes-Duarte A, Venø MT, de Wit M, Senthilkumar K, Broekhoven MH, van den Herik J, Heeres FR, van Rossum D, Rybiczka-Tesulov M, Legnini I, van Rijen PC, van Eijsden P, Gosselaar PH, Rajewsky N, Kjems J, Vangoor VR, Pasterkamp RJ. Expression of Circ_Satb1 Is Decreased in Mesial Temporal Lobe Epilepsy and Regulates Dendritic Spine Morphology. Front Mol Neurosci 2022; 15:832133. [PMID: 35310884 PMCID: PMC8927295 DOI: 10.3389/fnmol.2022.832133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a chronic disease characterized by recurrent seizures that originate in the temporal lobes of the brain. Anti-epileptic drugs (AEDs) are the standard treatment for managing seizures in mTLE patients, but are frequently ineffective. Resective surgery is an option for some patients, but does not guarantee a postoperative seizure-free period. Therefore, further insight is needed into the pathogenesis of mTLE to enable the design of new therapeutic strategies. Circular RNAs (circRNAs) have been identified as important regulators of neuronal function and have been implicated in epilepsy. However, the mechanisms through which circRNAs contribute to epileptogenesis remain unknown. Here, we determine the circRNA transcriptome of the hippocampus and cortex of mTLE patients by using RNA-seq. We report 333 differentially expressed (DE) circRNAs between healthy individuals and mTLE patients, of which 23 circRNAs displayed significant adjusted p-values following multiple testing correction. Interestingly, hippocampal expression of circ_Satb1, a circRNA derived from special AT-rich sequence binding protein 1 (SATB1), is decreased in both mTLE patients and in experimental epilepsy. Our work shows that circ_Satb1 displays dynamic patterns of neuronal expression in vitro and in vivo. Further, circ_Satb1-specific knockdown using CRISPR/CasRx approaches in hippocampal cultures leads to defects in dendritic spine morphology, a cellular hallmark of mTLE. Overall, our results identify a novel epilepsy-associated circRNA with disease-specific expression and previously unidentified cellular effects that are relevant for epileptogenesis.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Morten T. Venø
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Marina de Wit
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ketharini Senthilkumar
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mark H. Broekhoven
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joëlle van den Herik
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Fleur R. Heeres
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Daniëlle van Rossum
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mateja Rybiczka-Tesulov
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ivano Legnini
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Peter C. van Rijen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter H. Gosselaar
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Vamshidhar R. Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: R. Jeroen Pasterkamp,
| |
Collapse
|
11
|
Pagni S, Mills JD, Frankish A, Mudge JM, Sisodiya SM. Non-coding regulatory elements: Potential roles in disease and the case of epilepsy. Neuropathol Appl Neurobiol 2021; 48:e12775. [PMID: 34820881 DOI: 10.1111/nan.12775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022]
Abstract
Non-coding DNA (ncDNA) refers to the portion of the genome that does not code for proteins and accounts for the greatest physical proportion of the human genome. ncDNA includes sequences that are transcribed into RNA molecules, such as ribosomal RNAs (rRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and un-transcribed sequences that have regulatory functions, including gene promoters and enhancers. Variation in non-coding regions of the genome have an established role in human disease, with growing evidence from many areas, including several cancers, Parkinson's disease and autism. Here, we review the features and functions of the regulatory elements that are present in the non-coding genome and the role that these regions have in human disease. We then review the existing research in epilepsy and emphasise the potential value of further exploring non-coding regulatory elements in epilepsy. In addition, we outline the most widely used techniques for recognising regulatory elements throughout the genome, current methodologies for investigating variation and the main challenges associated with research in the field of non-coding DNA.
Collapse
Affiliation(s)
- Susanna Pagni
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK.,Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
12
|
An Emerging Role for Epigenetics in Cerebral Palsy. J Pers Med 2021; 11:jpm11111187. [PMID: 34834539 PMCID: PMC8625874 DOI: 10.3390/jpm11111187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebral palsy is a set of common, severe, motor disabilities categorized by a static, nondegenerative encephalopathy arising in the developing brain and associated with deficits in movement, posture, and activity. Spastic CP, which is the most common type, involves high muscle tone and is associated with altered muscle function including poor muscle growth and contracture, increased extracellular matrix deposition, microanatomic disruption, musculoskeletal deformities, weakness, and difficult movement control. These muscle-related manifestations of CP are major causes of progressive debilitation and frequently require intensive surgical and therapeutic intervention to control. Current clinical approaches involve sophisticated consideration of biomechanics, radiologic assessments, and movement analyses, but outcomes remain difficult to predict. There is a need for more precise and personalized approaches involving omics technologies, data science, and advanced analytics. An improved understanding of muscle involvement in spastic CP is needed. Unfortunately, the fundamental mechanisms and molecular pathways contributing to altered muscle function in spastic CP are only partially understood. In this review, we outline evidence supporting the emerging hypothesis that epigenetic phenomena play significant roles in musculoskeletal manifestations of CP.
Collapse
|
13
|
Ebrahimi R, Golestani A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J Cell Physiol 2021; 237:1206-1224. [PMID: 34724212 DOI: 10.1002/jcp.30624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Noncoding RNAs (ncRNAs) are important regulators of gene expression in different cell processes. Due to their ability in monitoring neural development genes, these transcripts confer neurons with the potential to exert broad control over the expression of genes for performing neurobiological functions. Although the change of ncRNA expression in different neurodegenerative diseases has been reviewed elsewhere, only recent evidence drove our attention to unravel the involvement of these molecules in neuroinflammation within these devastating disorders. Remarkably, the interactions between ncRNAs and inflammatory pathways are not fully recognized. Therefore, this review has focused on the interplay between diverse inflammatory pathways and the related ncRNAs, including microRNAs, long noncoding RNAs, and competing endogenous RNAs in Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, multiple sclerosis, Huntington's disease, and prion diseases. Providing novel insights in the field of combining biomarkers is a critical step for using them as diagnostic tools and therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Shao L, Jiang GT, Yang XL, Zeng ML, Cheng JJ, Kong S, Dong X, Chen TX, Han S, Yin J, Liu WH, He XH, He C, Peng BW. Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J 2021; 35:e21330. [PMID: 33417289 DOI: 10.1096/fj.202001737rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023]
Abstract
Epilepsy is a common brain disorder, repeated seizures of epilepsy may lead to a series of brain pathological changes such as neuronal or glial damage. However, whether circular RNAs are involved in neuronal injury during epilepsy is not fully understood. Here, we screened circIgf1r in the status epilepticus model through circRNA sequencing, and found that it was upregulated after the status epilepticus model through QPCR analysis. Astrocytes polarizing toward neurotoxic A1 phenotype and neurons loss were observed after status epilepticus. Through injecting circIgf1r siRNA into the lateral ventricle, it was found that knocking down circIgf1r in vivo would induce the polarization of astrocytes to phenotype A2 and reduce neuronal loss. The results in vitro further confirmed that inhibiting the expression of circIgf1r in astrocytes could protect neurons by converting reactive astrocytes from A1 to the protective A2. In addition, knocking down circIgf1r in astrocytes could functionally promote astrocyte autophagy and relieve the destruction of 4-AP-induced autophagy flux. In terms of mechanism, circIgf1r promoted the polarization of astrocytes to phenotype A1 by inhibiting autophagy. Taken together, our results reveal circIgf1r may serve as a potential target for the prevention and treatment of neuron damage after epilepsy.
Collapse
Affiliation(s)
- Lin Shao
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Tong Jiang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chunjiang He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Zhu Z, Wang S, Cao Q, Li G. CircUBQLN1 Promotes Proliferation but Inhibits Apoptosis and Oxidative Stress of Hippocampal Neurons in Epilepsy via the miR-155-Mediated SOX7 Upregulation. J Mol Neurosci 2021; 71:1933-1943. [PMID: 33835399 DOI: 10.1007/s12031-021-01838-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/31/2021] [Indexed: 01/05/2023]
Abstract
Circular RNAs (circRNAs) have key roles in a variety of neurological diseases, including epilepsy. This objective of this study was to perform the functional exploration and mechanism investigation of circRNA Ubiquilin1 (circUBQLN1) in epilepsy. Epilepsy cell model was established by the treatment of Mg2+-free in human neurons-hippocampal (HN-h) cells. The quantitative real-time polymerase chain reaction (qRT-PCR) was used for the expression analysis of circUBQLN1, linear-UBQLN1, microRNA-155 (miR-155), and sex-determining region Y-box 7 (SOX7). Proliferation detection was completed using Cell Counting Kit-8 (CCK-8) assay. Apoptosis analysis was conducted by flow cytometry and caspase-3 assay. Oxidative stress was assessed through determining the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Target analysis was performed by dual-luciferase reporter and RNA pull-down assays. SOX7 protein level was examined by Western blot. CircUBQLN1 was downregulated in epilepsy samples and Mg2+-free-induced cell model. Functional analysis in vitro suggested that circUBQLN1 overexpression facilitated proliferation but reduced apoptosis and oxidative stress in Mg2+-free-treated HN-h cells. Target analysis showed that circUBQLN1 acted as a miR-155 sponge and miR-155-targeted SOX7. Moreover, circUBQLN1 could combine with miR-155 to regulate the SOX7 expression. Reverted assays indicated that circUBQLN1 overexpression alleviated the Mg2+-free-induced nerve injury by sponging miR-155, and knockdown of SOX7 abrogated the protective function of in-miR-155 or circUBQLN1 in the Mg2+-free-treated HN-h cells. Our data revealed that circUBQLN1 prevented nerve injury in Mg2+-free-treated HN-h cells by regulating the miR-155/SOX7 axis, showing that circUBQLN1 might be used as a biomolecular target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Zhujun Zhu
- Department of Neurology, The First People's Hospital of Jintan District, Changzhou City, 213200, Jiangsu Province, China
| | - Sihong Wang
- Department of Neurology, The First People's Hospital of Jintan District, Changzhou City, 213200, Jiangsu Province, China
| | - Qi Cao
- Department of Neurology, Changzhou Third People's Hospital, Changzhou, 213000, Jiangsu, China
| | - Gang Li
- Department of Neurology, Changzhou Third People's Hospital, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
16
|
Gomes-Duarte A, Bauer S, Venø MT, Norwood BA, Henshall DC, Kjems J, Rosenow F, Vangoor VR, Pasterkamp RJ. Enrichment of Circular RNA Expression Deregulation at the Transition to Recurrent Spontaneous Seizures in Experimental Temporal Lobe Epilepsy. Front Genet 2021; 12:627907. [PMID: 33584828 PMCID: PMC7876452 DOI: 10.3389/fgene.2021.627907] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a common form of epilepsy and is characterized by recurrent spontaneous seizures originating from the temporal lobe. The majority of mTLE patients develop pharmacoresistance to available anti-epileptic drugs (AEDs) while exhibiting severe pathological changes that can include hippocampal atrophy, neuronal death, gliosis and chronic seizures. The molecular mechanisms leading to mTLE remain incompletely understood, but are known to include defects in post-transcriptional gene expression regulation, including in non-coding RNAs (ncRNAs). Circular RNAs (circRNAs) are a class of recently rediscovered ncRNAs with high levels of expression in the brain and proposed roles in diverse neuronal processes. To explore a potential role for circRNAs in epilepsy, RNA-sequencing (RNA-seq) was performed on hippocampal tissue from a rat perforant pathway stimulation (PPS) model of TLE at different post-stimulation time points. This analysis revealed 218 differentially expressed (DE) circRNAs. Remarkably, the majority of these circRNAs were changed at the time of the occurrence of the first spontaneous seizure (DOFS). The expression pattern of two circRNAs, circ_Arhgap4 and circ_Nav3, was further validated and linked to miR-6328 and miR-10b-3p target regulation, respectively. This is the first study to examine the regulation of circRNAs during the development of epilepsy. It reveals an intriguing link between circRNA deregulation and the transition of brain networks into the state of spontaneous seizure activity. Together, our results provide a molecular framework for further understanding the role and mechanism-of-action of circRNAs in TLE.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Morten T. Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Braxton A. Norwood
- Department of Neuroscience, Expesicor Inc., Kalispell, MT, United States
- Diagnostics Development, FYR Diagnostics, Missoula, MT, United States
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Vamshidhar R. Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Zheng Z, Yan Y, Guo Q, Wang L, Han X, Liu S. Genetic Interaction of H19 and TGFBR1 Polymorphisms with Risk of Epilepsy in a Chinese Population. Pharmgenomics Pers Med 2021; 14:77-86. [PMID: 33488113 PMCID: PMC7814234 DOI: 10.2147/pgpm.s279664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Long non-coding RNA H19 was highly expressed in the latent period of epilepsy, contributing to apoptosis of hippocampal neurons by targeting let-7b. Transforming growth factor beta receptor 1 (TGFBR1), a target of let-7b, is located on the susceptibility locus for epilepsy. In this context, we investigated the association between tagSNPs in long non-coding RNA H19 and transforming growth factor beta receptor 1 (TGFBR1) rs6478974 and the risk of epilepsy. PATIENTS AND METHODS The present study consisted of 302 patients with epilepsy and 612 age- and gender-matched controls. The polymorphisms were analyzed using a TaqMan allelic genotyping assay. H19 and TGFBR1 mRNA levels were determined using quantitative real-time polymerase chain reaction. RESULTS The TGFBR1 AT and TT genotypes emerged as a protective factor for the risk of epilepsy (AT vs AA: adjusted OR = 0.59, 95% CI: 0.39-0.89, P = 0.01; TT vs AA: adjusted OR = 0.53, 95% CI: 0.35-0.80, P = 0.002, respectively). The protective effect was also observed in recessive genetic model (adjusted OR = 0.56, 95% CI: 0.38-0.82, P = 0.003). Individuals carrying the rs6478974 TT genotype had lower levels of TGFBR1 mRNA. Moreover, the TCTAT and TCCAA haplotypes emerged as a risk factor for epilepsy and the rs3741219-rs2839698-rs6478974 was associated with an interactive effect on the risk of epilepsy. CONCLUSION The current study provides evidence of the rs6478974 TT genotype decreasing the susceptibility to epilepsy by reducing the levels of TGFBR1 mRNA.
Collapse
Affiliation(s)
- Zhaoshi Zheng
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China
| | - Yayun Yan
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China
| | - Qi Guo
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China
| | - Libo Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China
| | - Songyan Liu
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China
| |
Collapse
|
18
|
Gu Q, Liu H, Ma J, Yuan J, Li X, Qiao L. A Narrative Review of Circular RNAs in Brain Development and Diseases of Preterm Infants. Front Pediatr 2021; 9:706012. [PMID: 34621711 PMCID: PMC8490812 DOI: 10.3389/fped.2021.706012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Circular RNAs (circRNAs) generated by back-splicing are the vital class of non-coding RNAs (ncRNAs). Circular RNAs are highly abundant and stable in eukaryotes, and many of them are evolutionarily conserved. They are blessed with higher expression in mammalian brains and could take part in the regulation of physiological and pathophysiological processes. In addition, premature birth is important in neurodevelopmental diseases. Brain damage in preterm infants may represent the main cause of long-term neurodevelopmental disorders in surviving babies. Until recently, more and more researches have been evidenced that circRNAs are involved in the pathogenesis of encephalopathy of premature. We aim at explaining neuroinflammation promoting the brain damage. In this review, we summarize the current findings of circRNAs properties, expression, and functions, as well as their significances in the neurodevelopmental impairments, white matter damage (WMD) and hypoxic-ischemic encephalopathy (HIE). So we think that circRNAs have a direct impact on neurodevelopment and brain injury, and will be a powerful tool in the repair of the injured immature brain. Even though their exact roles and mechanisms of gene regulation remain elusive, circRNAs have potential applications as diagnostic biomarkers for brain damage and the target for neuroprotective intervention.
Collapse
Affiliation(s)
- Qianying Gu
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Heng Liu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jingjing Ma
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiaming Yuan
- Department of Pediatrics, Tianchang People's Hospital, Anhui, China
| | - Xinger Li
- Department of Biobank, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lixing Qiao
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Moustafa M, Abokrysha NT, Eldesoukey NA, Amin DG, Mounir N, Labib DM. Role of circulating miR 194-5p, miR 106b, and miR 146a as potential biomarkers for epilepsy: a case-control study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00214-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Epilepsy is a chronic neurological disease. A suitable biomarker for epilepsy diagnosis remains lacking. MicroRNAs (miRNAs) were pronounced as promising biomarkers for epileptogenesis.
Objectives
To analyze the expression levels of miR 194-5p, miR 106b, and miR 146a in Egyptian epileptic patients compared to control subjects and to detect their correlation to clinical characteristics.
Subjects and methods
We evaluated the expression levels of miR 106b, miR 146a, and miR 194-5p using real-time quantitative polymerase chain reaction (qRT-PCR) in 50 subjects: 15 patients with idiopathic generalized epilepsy, 15 patients with focal epilepsy (3 idiopathic and 12 cryptogenic), and 20 healthy controls.
Results
miR 106b and miR 194-5p were upregulated in the generalized epilepsy group compared to control; miR 194-5p was significantly downregulated in the focal epilepsy group compared to the generalized epilepsy group and control (p ˂ 0.05). miR 194-5p was negatively correlated to disease duration in patients with focal epilepsy; the three microRNAs were positively correlated to each other (p ˂ 0.05).
Conclusion
Serum miR 194-5P and miR 106b can be used as potential non-invasive biomarkers in the evaluation of idiopathic generalized epilepsy.
Collapse
|
20
|
Evolving targets for anti-epileptic drug discovery. Eur J Pharmacol 2020; 887:173582. [DOI: 10.1016/j.ejphar.2020.173582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022]
|
21
|
Boschiero MN, Camporeze B, Santos JSD, Costa LBD, Bonafé GA, Queiroz LDS, Van Roost D, Marson FAL, de Aguiar PHP, Ortega MM. The single nucleotide variant n.60G>C in the microRNA-146a associated with susceptibility to drug-resistant epilepsy. Epilepsy Res 2020; 162:106305. [PMID: 32155539 DOI: 10.1016/j.eplepsyres.2020.106305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate single nucleotide variants (SNVs) n.-411A > G (rs57095329) and n.60 G > C (rs2910164) in microRNA (miR)-146a, related to suppressing of TRAF6 with risk for epilepsy, as well as miR-146a and TRAF6 levels. METHODS DNAs were extracted from epileptogenic tissues and blood leukocytes from drug-resistant epilepsy patients and healthy-individuals, respectively. Genotypes were identified by real-time PCR. Hardy-Weinberg equilibrium (HWE) and Fisher or X2 tests evaluated the difference between groups. The disease risk was assessed by odds ratio (OR) with 95 % confidence interval (95 %CI). The prognostic impact on probability seizure-free survival (PSF) was evaluated by Kaplan-Meier and log-rank tests. RESULTS For rs57095329 both control and patient samples were not in HWE (p < 0.05) and the genotypes prevalence was similar in patients and controls (p>0.05). For rs2910164, control samples were in HWE (p = 0.61), contrasting with patients (p = 0.03), and similar frequencies of wild-type homozygous (GG) (43.4 % vs. 34.4 %, p = 0.2) and variant (CC) genotypes (8.0 % vs. 6.6 %, p = 0.6) were observed in patients and controls, respectively. However, increased frequency of heterozygous (GC) was observed in patients compared to controls (59.0 % vs. 42.7 %, p = 0.04) with 1.98 (95 %CI=1.09-3.57) risk for epilepsy. The miR-146a expression level in the epileptogenic tissues was lower in the GC (p = 0.02) and CC (p = 0.09) compared to GG genotype. TRAF6 expression level was higher in CC than in GG genotype (p = 0.09). Interestingly, there was an increased frequency of patients harboring GC genotype and less time until surgery compared to patients harboring GG or CC (36.06 % vs. 11.5 %, p = 0.01), confirmed by PSF (p = 0.04). CONCLUSIONS The GC genotype for SNV rs2910164 appears associated with susceptibility to drug-resistant epilepsy due to the decreased MIR146a expression, favoring NF-kB pathway through TRAF6.
Collapse
Affiliation(s)
- Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil
| | - Bruno Camporeze
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil
| | - Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil
| | - Leandro Borsari da Costa
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil
| | | | - Dirk Van Roost
- Ghent University Hospital, Department of Neurosurgery, Ghent, Belgium
| | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil
| | - Paulo Henrique Pires de Aguiar
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil; ABC Medical School, Santo André, São Paulo, Brazil; Post-Graduate Program, Department of Neurosurgery, State Civil Servant Hospital (IAMSPE), São Paulo, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo, Brazil.
| |
Collapse
|
22
|
Expression analysis of NNT and NNT-AS1 in epileptic patients. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
van Loo KMJ, Becker AJ. Transcriptional Regulation of Channelopathies in Genetic and Acquired Epilepsies. Front Cell Neurosci 2020; 13:587. [PMID: 31992970 PMCID: PMC6971179 DOI: 10.3389/fncel.2019.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent uncontrolled seizures and has an idiopathic “genetic” etiology or a symptomatic “acquired” component. Genetic studies have revealed that many epilepsy susceptibility genes encode ion channels, including voltage-gated sodium, potassium and calcium channels. The high prevalence of ion channels in epilepsy pathogenesis led to the causative concept of “ion channelopathies,” which can be elicited by specific mutations in the coding or promoter regions of genes in genetic epilepsies. Intriguingly, expression changes of the same ion channel genes by augmentation of specific transcription factors (TFs) early after an insult can underlie acquired epilepsies. In this study, we review how the transcriptional regulation of ion channels in both genetic and acquired epilepsies can be controlled, and compare these epilepsy “ion channelopathies” with other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Karen M J van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
24
|
Hashemian F, Ghafouri-Fard S, Arsang-Jang S, Mirzajani S, Fallah H, Mehvari Habibabadi J, Sayad A, Taheri M. Epilepsy Is Associated With Dysregulation of Long Non-coding RNAs in the Peripheral Blood. Front Mol Biosci 2019; 6:113. [PMID: 31709263 PMCID: PMC6819822 DOI: 10.3389/fmolb.2019.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are a group of functional transcripts that are not translated to proteins. Recent investigations have underscored their role in the pathogenesis of neurodevelopmental disorders. Methods: In the current investigation, we quantified expression levels of four lncRNAs (HOXA-AS2, SPRY4-IT1, MEG3, and LINC-ROR) in peripheral blood of epileptic patients and normal controls. Results: Expression of HOXA-AS2 was significantly higher in patients compared with controls (Posterior beta = 1.982, P = 0.001). We detected interaction effects of gender on expression of HOXA-AS2 (P = 0.012). Further analyses showed over-expression of HOXA-AS2 in male patients compared with male controls (P = 0.003), in spite of similar levels of expression between female cases and female controls (P = 0.77). Expression of SPRY4-IT1 was higher in total patients compared with total controls (Posterior beta = 1.27, P = 0.02). Such difference was only observed between male patients and male controls when dividing study participants based on their gender (P = 0.012). There was no significant difference in expression of MEG3 and LINC-ROR between patients and controls. Conclusion: Expression levels of all lncRNAs were correlated with each other with r values ranging from 0.61 to 0.76 (P < 0.0001). However, expressions of none of lncRNAs were correlated with age of study participants. The current data implies a putative role for two lncRNAs in the pathogenesis of epilepsy and warrants future functional studies to verify the observed association.
Collapse
Affiliation(s)
- Fatemeh Hashemian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Sara Mirzajani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Fallah
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Choudhary N, Singh V. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Sci Rep 2019; 9:10565. [PMID: 31332210 PMCID: PMC6646331 DOI: 10.1038/s41598-019-46715-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Epilepsy, that comprises a wide spectrum of neuronal disorders and accounts for about one percent of global disease burden affecting people of all age groups, is recognised as apasmara in the traditional medicinal system of Indian antiquity commonly known as Ayurveda. Towards exploring the molecular level complex regulatory mechanisms of 63 anti-epileptic Ayurvedic herbs and thoroughly examining the multi-targeting and synergistic potential of 349 drug-like phytochemicals (DPCs) found therein, in this study, we develop an integrated computational framework comprising of network pharmacology and molecular docking studies. Neuromodulatory prospects of anti-epileptic herbs are probed and, as a special case study, DPCs that can regulate metabotropic glutamate receptors (mGluRs) are inspected. A novel methodology to screen and systematically analyse the DPCs having similar neuromodulatory potential vis-à-vis DrugBank compounds (NeuMoDs) is developed and 11 NeuMoDs are reported. A repertoire of 74 DPCs having poly-pharmacological similarity with anti-epileptic DrugBank compounds and those under clinical trials is also reported. Further, high-confidence PPI-network specific to epileptic protein-targets is developed and the potential of DPCs to regulate its functional modules is investigated. We believe that the presented schema can open-up exhaustive explorations of indigenous herbs towards meticulous identification of clinically relevant DPCs against various diseases and disorders.
Collapse
Affiliation(s)
- Neha Choudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India.
| |
Collapse
|
26
|
Fu H, Cheng Y, Luo H, Rong Z, Li Y, Lu P, Ye X, Huang W, Qi Z, Li X, Cheng B, Wang X, Yao Y, Zhang YW, Zheng W, Zheng H. Silencing MicroRNA-155 Attenuates Kainic Acid-Induced Seizure by Inhibiting Microglia Activation. Neuroimmunomodulation 2019; 26:67-76. [PMID: 30928987 DOI: 10.1159/000496344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE(S) Neuroinflammation is an important contributor to the development of seizures and epilepsy. Micro-RNA-155 (miR-155) plays a critical role in immunity and -inflammation. This study aims to explore the function of miR-155 and miR-155-mediated inflammation in epilepsy. METHODS About 8-week-old male C57BL/6 mice were administered an intraperitoneal injection (i.p.) of kainic acid (KA) (15 mg/kg) or saline. The mice in the KA group developing acute seizure were further subjected to intracerebroventricular injection (i.c.v.) of antagomir negative control (NC) or miR-155 antagomir. Animal behavior was observed according to Racine's scale, and electroencephalographs were recorded. Primary microglia were cultured and treated with antagomir NC or antagomir. Whole-cell electrophysiological recording was conducted to detect the spontaneous EPSCs and IPSCs in the neurons treated with different conditioned medium from those microglia. miR-155 were detected by qRT-PCR in those models, as well as in the brain or blood from epileptic patients and healthy controls. RESULTS miR-155 was abundantly expressed in glial cells compared with neurons, and its expression was markedly elevated in the brain of epilepsy patients and KA-induced seizure mice. Silencing miR-155 attenuated KA-induced seizure, abnormal electroencephalography, proinflammatory cytokine expression, and microglia morphology change. Moreover, conditioned media from KA-treated microglia impaired neuron excitability, whereas conditioned media from KA and miR-155 antagomir co-treated microglia had no such effects. Finally, miR-155 levels were significantly higher in the blood of epilepsy patients than those of healthy controls. CONCLUSION(S) These findings demonstrate that aberrant upregulation of miR-155 contributes to epileptogenesis through inducing microglia neuroinflammation.
Collapse
Affiliation(s)
- Huajun Fu
- Department of Neurology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Department of Neurology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, China
| | - Yiyun Cheng
- Department of Neurology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Graduate School of Fujian Medical University, Xiamen, China
| | - Haijuan Luo
- Department of Neurology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Zhouyi Rong
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Ping Lu
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowen Ye
- Department of Neurology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Weiyan Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Clinical Medicine of Grade 2014, School of Medicine, Xiamen University, Xiamen, China
| | - Ziguo Qi
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Clinical Medicine of Grade 2014, School of Medicine, Xiamen University, Xiamen, China
| | - Xiuying Li
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Clinical Medicine of Grade 2014, School of Medicine, Xiamen University, Xiamen, China
| | - Baoying Cheng
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xintian Wang
- Department of Neurology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Graduate School of Fujian Medical University, Xiamen, China
| | - Yi Yao
- Epilepsy Research Center, Department of Neurosurgery, Hongai Hospital, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Weihong Zheng
- Department of Neurology, Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China
- Graduate School of Fujian Medical University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Diseases and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China,
- Shenzhen Research Institute, Xiamen University, Shenzhen, China,
| |
Collapse
|
27
|
Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:275-290. [PMID: 30321815 PMCID: PMC6197620 DOI: 10.1016/j.omtn.2018.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Epilepsy includes a group of disorders of the brain characterized by an enduring predisposition to generate epileptic seizures. Although familial epilepsy has a genetic component and heritability, the etiology of the majority of non-familial epilepsies has no known associated genetic mutations. In epilepsy, recent epigenetic profiles have highlighted a possible role of microRNAs in its pathophysiology. In particular, molecular profiling identifies a significant number of microRNAs (miRNAs) altered in epileptic hippocampus of both animal models and human tissues. In this review, analyzing molecular profiles of different animal models of epilepsy, we identified a group of 20 miRNAs commonly altered in different epilepsy-animal models. As emerging evidences highlighted the poor overlap between signatures of animal model tissues and human samples, we focused our analysis on miRNAs, circulating in human biofluids, with a principal role in epilepsy hallmarks, and we identified a group of 8 diagnostic circulating miRNAs. We discussed the functional role of these 8 miRNAs in the epilepsy hallmarks. A few of them have also been proposed as therapeutic molecules for epilepsy treatment, revealing a great potential for miRNAs as theranostic molecules in epilepsy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia," Germaneto, 88100 Catanzaro, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
28
|
Campostrini G, DiFrancesco JC, Castellotti B, Milanesi R, Gnecchi-Ruscone T, Bonzanni M, Bucchi A, Baruscotti M, Ferrarese C, Franceschetti S, Canafoglia L, Ragona F, Freri E, Labate A, Gambardella A, Costa C, Gellera C, Granata T, Barbuti A, DiFrancesco D. A Loss-of-Function HCN4 Mutation Associated With Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability. Front Mol Neurosci 2018; 11:269. [PMID: 30127718 PMCID: PMC6089338 DOI: 10.3389/fnmol.2018.00269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/16/2018] [Indexed: 01/03/2023] Open
Abstract
HCN channels are highly expressed and functionally relevant in neurons and increasing evidence demonstrates their involvement in the etiology of human epilepsies. Among HCN isoforms, HCN4 is important in cardiac tissue, where it underlies pacemaker activity. Despite being expressed also in deep structures of the brain, mutations of this channel functionally shown to be associated with epilepsy have not been reported yet. Using Next Generation Sequencing for the screening of patients with idiopathic epilepsy, we identified the p.Arg550Cys (c.1648C>T) heterozygous mutation on HCN4 in two brothers affected by benign myoclonic epilepsy of infancy. Functional characterization in heterologous expression system and in neurons showed that the mutation determines a loss of function of HCN4 contribution to activity and an increase of neuronal discharge, potentially predisposing to epilepsy. Expressed in cardiomyocytes, mutant channels activate at slightly more negative voltages than wild-type (WT), in accordance with borderline bradycardia. While HCN4 variants have been frequently associated with cardiac arrhythmias, these data represent the first experimental evidence that functional alteration of HCN4 can also be involved in human epilepsy through a loss-of-function effect and associated increased neuronal excitability. Since HCN4 appears to be highly expressed in deep brain structures only early during development, our data provide a potential explanation for a link between dysfunctional HCN4 and infantile epilepsy. These findings suggest that it may be useful to include HCN4 screening to extend the knowledge of the genetic causes of infantile epilepsies, potentially paving the way for the identification of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Campostrini
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Jacopo C DiFrancesco
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Milanesi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Mattia Bonzanni
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Bucchi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Silvana Franceschetti
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Labate
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Cinzia Costa
- Neurology Unit, Ospedale S. Maria della Misericordia, Department of Medicine, University of Perugia, Perugia, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Barbuti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Ren W, Yang X. Pathophysiology of Long Non-coding RNAs in Ischemic Stroke. Front Mol Neurosci 2018; 11:96. [PMID: 29651234 PMCID: PMC5884949 DOI: 10.3389/fnmol.2018.00096] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease with high disability and fatality rates, and ischemic stroke accounts for 75% of all stroke cases. The underlying pathophysiologic processes of ischemic stroke include oxidative stress, toxicity of excitatory amino acids, excess calcium ions, increased apoptosis and inflammation. Long non-coding RNAs (lncRNAs) may participate in the regulation of the pathophysiologic processes of ischemic stroke as indicated by altered expression of lncRNAs in blood samples of acute ischemic stroke patients, animal models of focal cerebral ischemia and oxygen-glucose deprivation (OGD) cell models. Because of the potentially important role, lncRNAs might be useful as biomarkers for the diagnosis, treatment and prognosis of ischemic stroke. This article reviews the functions of lncRNAs in different pathophysiology events of ischemic stroke with a focus on specific lncRNAs that may underlie ischemic stroke pathophysiology and that could therefore serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Yang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|