1
|
Ercanbrack WS, Ramirez M, Dungan A, Gaul E, Ercanbrack SJ, Wingert RA. Frataxin deficiency and the pathology of Friedreich's Ataxia across tissues. Tissue Barriers 2025:2462357. [PMID: 39981684 DOI: 10.1080/21688370.2025.2462357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Friedreich's Ataxia (FRDA) is a neurodegenerative disease that affects a variety of different organ systems. The disease is caused by GAA repeat expansions in intron 1 of the Frataxin gene (FXN), which results in a decrease in the expression of the FXN protein. FXN is needed for the biogenesis of iron-sulfur clusters (ISC) which are required by key metabolic processes in the mitochondria. Without ISCs those processes do not occur properly. As a result, reactive oxygen species accumulate, and the mitochondria cease to function. Iron is also thought to accumulate in the cells of certain tissue types. These processes are thought to be intimately related to the pathologies affecting a myriad of tissues in FRDA. Most FRDA patients suffer from loss of motor control, cardiomyopathy, scoliosis, foot deformities, and diabetes. In this review, we discuss the known features of FRDA pathology and the current understanding about the basis of these alterations.
Collapse
Affiliation(s)
- Wesley S Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mateo Ramirez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Austin Dungan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ella Gaul
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah J Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
3
|
Nishiyama M, Kalambogias J, Imai F, Yang E, Lang S, de Nooij JC, Yoshida Y. Anatomical and functional analysis of the corticospinal tract in an FRDA mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601178. [PMID: 39005321 PMCID: PMC11244874 DOI: 10.1101/2024.06.28.601178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Friedreich's ataxia (FRDA) is one of the most common hereditary ataxias. It is caused by a GAA repeat in the first intron of the FXN gene, which encodes an essential mitochondrial protein. Patients suffer from progressive motor dysfunction due to the degeneration of mechanoreceptive and proprioceptive neurons in dorsal root ganglia (DRG) and cerebellar dentate nucleus neurons, especially at early disease stages. Postmortem analyses of FRDA patients also indicate pathological changes in motor cortex including in the projection neurons that give rise to the cortical spinal tract (CST). Yet, it remains poorly understood how early in the disease cortical spinal neurons (CSNs) show these alterations, or whether CSN/CST pathology resembles the abnormalities observed in other tissues affected by FXN loss. To address these questions, we examined CSN driven motor behaviors and pathology in the YG8JR FRDA mouse model. We find that FRDA mice show impaired motor skills, exhibit significant reductions in CSN functional output, and, among other pathological changes, show abnormal mitochondrial distributions in CSN neurons and CST axonal tracts. Moreover, some of these alterations were observed as early as two months of age, suggesting that CSN/CST pathology may be an earlier event in FRDA disease than previously appreciated. These studies warrant a detailed mechanistic understanding of how FXN loss impacts CSN health and functionality.
Collapse
Affiliation(s)
- Misa Nishiyama
- Burke Neurological Institute, White Plains, New York, United States
| | - John Kalambogias
- Burke Neurological Institute, White Plains, New York, United States
- Department of Neurology, Columbia University, New York, NY, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Emily Yang
- Burke Neurological Institute, White Plains, New York, United States
| | - Sonia Lang
- Burke Neurological Institute, White Plains, New York, United States
| | | | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566895. [PMID: 38014328 PMCID: PMC10680711 DOI: 10.1101/2023.11.14.566895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA modifying enzyme that methylates wobble uridines in specific tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit a global reduction in protein synthesis, including a specific decrease in selenoprotein levels. Loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 animals also exhibit associative learning and memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA modification in redox homeostasis in the nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Gregory E, Powers I, Jamshidi-Parsian A, Griffin R, Song Y. Pancreatic Tumor-Derived Extracellular Vesicles Stimulate Schwann Cell Phenotype Indicative of Perineural Invasion via IL-8 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546629. [PMID: 37425927 PMCID: PMC10326972 DOI: 10.1101/2023.06.26.546629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Pancreatic cancer remains a pre-eminent cause of cancer-related deaths with late-stage diagnoses leading to an 11% five-year survival rate. Moreover, perineural invasion (PNI), in which cancer cells migrate into adjacent nerves, occurs in an overwhelming majority of patients, further enhancing tumor metastasis. PNI has only recently been recognized as a key contributor to cancer progression; thus, there are insufficient treatment options for the disease. Attention has been focused on glial Schwann cells (SC) for their mediation of pancreatic PNI. Under stress, SCs dedifferentiate from their mature state to facilitate the repair of peripheral nerves; however, this signaling can also re-direct cancer cells to accelerate PNI. Limited research has explored the mechanism that causes this shift in SC phenotype in cancer. Tumor-derived extracellular vesicles (TEV) have been implicated in other avenues of cancer development, such as pre-metastatic niche formation in secondary locations, yet how TEVs contribute to PNI has not been fully explored. In this study, we highlight TEVs as initiators of SC activation into a PNI-associated phenotype. Proteomic and pathway assessments of TEVs revealed an elevation in interleukin-8 (IL-8) signaling and nuclear factor kappa B (NFκB) over healthy cell-derived EVs. TEV-treated SCs exhibited higher levels of activation markers, which were successfully neutralized with IL-8 inhibition. Additionally, TEVs increased NFκB subunit p65 nuclear translocation, which may lead to increased secretion of cytokines and proteases indicative of SC activation and PNI. These findings present a novel mechanism that may be targeted for the treatment of pancreatic cancer PNI. Statement of Significance Identifying pancreatic tumor extracellular vesicles as key players in Schwann cell activation and perineural invasion by way of IL-8 will educate for more specialized and effective targets for an under-valued disease.
Collapse
|
6
|
Cotticelli MG, Xia S, Truitt R, Doliba NM, Rozo AV, Tobias JW, Lee T, Chen J, Napierala JS, Napierala M, Yang W, Wilson RB. Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I interferon response. Dis Model Mech 2023; 16:dmm049497. [PMID: 36107856 PMCID: PMC9637271 DOI: 10.1242/dmm.049497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Friedreich ataxia, the most common hereditary ataxia, is a neuro- and cardio-degenerative disorder caused, in most cases, by decreased expression of the mitochondrial protein frataxin. Cardiomyopathy is the leading cause of premature death. Frataxin functions in the biogenesis of iron-sulfur clusters, which are prosthetic groups that are found in proteins involved in many biological processes. To study the changes associated with decreased frataxin in human cardiomyocytes, we developed a novel isogenic model by acutely knocking down frataxin, post-differentiation, in cardiomyocytes derived from induced pluripotent stem cells (iPSCs). Transcriptome analysis of four biological replicates identified severe mitochondrial dysfunction and a type I interferon response as the pathways most affected by frataxin knockdown. We confirmed that, in iPSC-derived cardiomyocytes, loss of frataxin leads to mitochondrial dysfunction. The type I interferon response was activated in multiple cell types following acute frataxin knockdown and was caused, at least in part, by release of mitochondrial DNA into the cytosol, activating the cGAS-STING sensor pathway.
Collapse
Affiliation(s)
- M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shujuan Xia
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rachel Truitt
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea V. Rozo
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Department of Genetics, Penn Genomics Analysis Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taehee Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill S. Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenli Yang
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Martínez-Rubio D, Rodríguez-Prieto Á, Sancho P, Navarro-González C, Gorría-Redondo N, Miquel-Leal J, Marco-Marín C, Jenkins A, Soriano-Navarro M, Hernández A, Pérez-Dueñas B, Fazzari P, AƗguilera-Albesa S, Espinós C. Protein misfolding and clearance in the pathogenesis of a new infantile onset ataxia caused by mutations in PRDX3. Hum Mol Genet 2022; 31:3897-3913. [PMID: 35766882 DOI: 10.1093/hmg/ddac146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein which is essential for the control of reactive oxidative species (ROS) homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy (CLEM). Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain
| | - Ángela Rodríguez-Prieto
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Carmen Navarro-González
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Javier Miquel-Leal
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), 46010 Valencia, Spain
| | - Alison Jenkins
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Alberto Hernández
- Service of Advanced Light Microscopy, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Belén Pérez-Dueñas
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Pietro Fazzari
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Sergio AƗguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain.,Biotechnology Department, Faculty of Veterinary and Experimental Sciences, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
8
|
Muñoz-Lasso DC, Mollá B, Sáenz-Gamboa JJ, Insuasty E, de la Iglesia-Vaya M, Pook MA, Pallardó FV, Palau F, Gonzalez-Cabo P. Frataxin Deficit Leads to Reduced Dynamics of Growth Cones in Dorsal Root Ganglia Neurons of Friedreich’s Ataxia YG8sR Model: A Multilinear Algebra Approach. Front Mol Neurosci 2022; 15:912780. [PMID: 35769335 PMCID: PMC9236133 DOI: 10.3389/fnmol.2022.912780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Computational techniques for analyzing biological images offer a great potential to enhance our knowledge of the biological processes underlying disorders of the nervous system. Friedreich’s Ataxia (FRDA) is a rare progressive neurodegenerative inherited disorder caused by the low expression of frataxin, which is a small mitochondrial protein. In FRDA cells, the lack of frataxin promotes primarily mitochondrial dysfunction, an alteration of calcium (Ca2+) homeostasis and the destabilization of the actin cytoskeleton in the neurites and growth cones of sensory neurons. In this paper, a computational multilinear algebra approach was used to analyze the dynamics of the growth cone and its function in control and FRDA neurons. Computational approach, which includes principal component analysis and a multilinear algebra method, is used to quantify the dynamics of the growth cone (GC) morphology of sensory neurons from the dorsal root ganglia (DRG) of the YG8sR humanized murine model for FRDA. It was confirmed that the dynamics and patterns of turning were aberrant in the FRDA growth cones. In addition, our data suggest that other cellular processes dependent on functional GCs such as axonal regeneration might also be affected. Semiautomated computational approaches are presented to quantify differences in GC behaviors in neurodegenerative disease. In summary, the deficiency of frataxin has an adverse effect on the formation and, most importantly, the growth cones’ function in adult DRG neurons. As a result, frataxin deficient DRG neurons might lose the intrinsic capability to grow and regenerate axons properly due to the dysfunctional GCs they build.
Collapse
Affiliation(s)
- Diana C. Muñoz-Lasso
- Chemical Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
| | - Belén Mollá
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Jhon J. Sáenz-Gamboa
- Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF), Valencia, Spain
- Regional Ministry of Health in Valencia, Hospital Sagunto (CEIB-CSUSP), Valencia, Spain
- CIBER de Salud Mental (CIBERSAM), Valencia, Spain
| | | | - Maria de la Iglesia-Vaya
- Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF), Valencia, Spain
- Regional Ministry of Health in Valencia, Hospital Sagunto (CEIB-CSUSP), Valencia, Spain
- CIBER de Salud Mental (CIBERSAM), Valencia, Spain
| | - Mark A. Pook
- Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Federico V. Pallardó
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Pilar Gonzalez-Cabo
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- *Correspondence: Pilar Gonzalez-Cabo,
| |
Collapse
|
9
|
Lai AL, Freed JH. Critical Negatively Charged Residues Are Important for the Activity of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.03.467161. [PMID: 34909776 PMCID: PMC8669843 DOI: 10.1101/2021.11.03.467161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronaviruses are a major infectious disease threat, and include the human pathogens of zoonotic origin SARS-CoV ("SARS-1"), SARS-CoV-2 ("SARS-2") and MERS-CoV ("MERS"). Entry of coronaviruses into host cells is mediated by the viral spike (S) protein. Previously, we identified that the domain immediately downstream of the S2' cleavage site is the bona fide FP (amino acids 798-835) for SARS-1 using ESR spectroscopy technology. We also found that the SARS-1 FP induces membrane ordering in a Ca 2+ dependent fashion. In this study, we want to know which residues are involved in this Ca 2+ binding, to build a topological model and to understand the role of the Ca2+. We performed a systematic mutation study on the negatively charged residues on the SARS-1 FP. While all six negatively charged residues contributes to the membrane ordering activity of the FP to some extent, D812 is the most important residue. We provided a topological model of how the FP binds Ca 2+ ions: both FP1 and FP2 bind one Ca 2+ ion, and there are two binding sites in FP1 and three in FP2. We also found that the corresponding residue D830 in the SARS-2 FP plays a similar critical role. ITC experiments show that the binding energies between the FP and Ca 2+ as well as between the FP and membranes also decreases for all mutants. The binding of Ca 2+ , the folding of FP and the ordering activity correlated very well across the mutants, suggesting that the function of the Ca 2+ is to help to folding of FP in membranes to enhance its activity. Using a novel pseudotyped virus particle (PP)-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole S proteins in its trimer form in real time. We found that the SARS-1 and SARS-2 PPs also induce membrane ordering as the separate FPs do, and the mutations of the negatively charged residues also greatly reduce the membrane ordering activity. However, the difference in kinetic between the PP and FP indicates a possible role of FP trimerization. This finding could lead to therapeutic solutions that either target the FP-calcium interaction or block the Ca 2+ channel to combat the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
10
|
Tarnacka B, Jopowicz A, Maślińska M. Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions. Int J Mol Sci 2021; 22:ijms22157820. [PMID: 34360586 PMCID: PMC8346158 DOI: 10.3390/ijms22157820] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Copper, manganese, and iron are vital elements required for the appropriate development and the general preservation of good health. Additionally, these essential metals play key roles in ensuring proper brain development and function. They also play vital roles in the central nervous system as significant cofactors for several enzymes, including the antioxidant enzyme superoxide dismutase (SOD) and other enzymes that take part in the creation and breakdown of neurotransmitters in the brain. An imbalance in the levels of these metals weakens the structural, regulatory, and catalytic roles of different enzymes, proteins, receptors, and transporters and is known to provoke the development of various neurological conditions through different mechanisms, such as via induction of oxidative stress, increased α-synuclein aggregation and fibril formation, and stimulation of microglial cells, thus resulting in inflammation and reduced production of metalloproteins. In the present review, the authors focus on neurological disorders with psychiatric signs associated with copper, iron, and manganese excess and the diagnosis and potential treatment of such disorders. In our review, we described diseases related to these metals, such as aceruloplasminaemia, neuroferritinopathy, pantothenate kinase-associated neurodegeneration (PKAN) and other very rare classical NBIA forms, manganism, attention-deficit/hyperactivity disorder (ADHD), ephedrone encephalopathy, HMNDYT1-SLC30A10 deficiency (HMNDYT1), HMNDYT2-SLC39A14 deficiency, CDG2N-SLC39A8 deficiency, hepatic encephalopathy, prion disease and “prion-like disease”, amyotrophic lateral sclerosis, Huntington’s disease, Friedreich’s ataxia, and depression.
Collapse
Affiliation(s)
- Beata Tarnacka
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence: ; Tel.: +48-603944804
| | - Anna Jopowicz
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Maria Maślińska
- Department of Early Arthritis, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| |
Collapse
|
11
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Pallardó FV, Pagano G, Rodríguez LR, Gonzalez-Cabo P, Lyakhovich A, Trifuoggi M. Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies. Transl Res 2021; 229:135-141. [PMID: 32841735 DOI: 10.1016/j.trsl.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
Friedreich's Ataxia is an autosomal recessive genetic disease causing the defective gene product, frataxin. A body of literature has been focused on the attempts to counteract frataxin deficiency and the consequent iron imbalance, in order to mitigate the disease-associated pro-oxidant state and clinical course. The present mini review is aimed at evaluating the basic and clinical reports on the roles and the use of a set of iron chelators, antioxidants and some cofactors involved in the key mitochondrial functions. Extensive literature has focused on the protective roles of iron chelators, coenzyme Q10 and analogs, and vitamin E, altogether with varying outcomes in clinical studies. Other studies have suggested mitoprotective roles for other mitochondrial cofactors, involved in Krebs cycle, such as alpha-lipoic acid and carnitine, involved in acyl transport across the mitochondrial membrane. A body of evidence points to the strong antioxidant properties of these cofactors, and to their potential contribution in mitoprotective strategies in Friedreich's Ataxia clinical evolution. Thus, we suggest the rationale for planning combination strategies based on the 3 mitochondrial cofactors and of some antioxidants and iron binders as mitoprotective cocktails in Friedreich Ataxia patients, calling attention to clinical practitioners of the importance to implement clinical trials.
Collapse
Affiliation(s)
- Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, Naples, Italy
| | - Laura R Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Alex Lyakhovich
- Vall d'Hebron Institut de Recerca, Barcelona, Catalunya, Spain; Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", Novosibirsk, Russia
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, Naples, Italy
| |
Collapse
|
13
|
Rodríguez LR, Calap-Quintana P, Lapeña-Luzón T, Pallardó FV, Schneuwly S, Navarro JA, Gonzalez-Cabo P. Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich's ataxia model. Redox Biol 2020; 37:101762. [PMID: 33128998 PMCID: PMC7585950 DOI: 10.1016/j.redox.2020.101762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in the FXN gene, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, calcium management and integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatment with antioxidants. In agreement, promoting mitochondrial calcium uptake was sufficient to restore several defects caused by frataxin deficiency in Drosophila Melanogaster. Remarkably, our findings describe for the first time frataxin as a member of the protein network of MAMs, where interacts with two of the main proteins implicated in endoplasmic reticulum-mitochondria communication. These results suggest a new role of frataxin, indicate that FRDA goes beyond mitochondrial defects and highlight MAMs as novel therapeutic candidates to improve patient's conditions.
Collapse
Affiliation(s)
- Laura R Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Stephan Schneuwly
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040, Regensburg, Germany
| | - Juan A Navarro
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040, Regensburg, Germany; INCLIVA Biomedial Research Institute, Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
14
|
Fil D, Chacko BK, Conley R, Ouyang X, Zhang J, Darley-Usmar VM, Zuberi AR, Lutz CM, Napierala M, Napierala JS. Mitochondrial damage and senescence phenotype of cells derived from a novel frataxin G127V point mutation mouse model of Friedreich's ataxia. Dis Model Mech 2020; 13:dmm045229. [PMID: 32586831 PMCID: PMC7406325 DOI: 10.1242/dmm.045229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeat sequences in intron 1 of FXN, whereas a fraction of patients are compound heterozygotes, with a missense or nonsense mutation in one FXN allele and expanded GAAs in the other. A prevalent missense mutation among FRDA patients changes a glycine at position 130 to valine (G130V). Herein, we report generation of the first mouse model harboring an Fxn point mutation. Changing the evolutionarily conserved glycine 127 in mouse Fxn to valine results in a failure-to-thrive phenotype in homozygous animals and a substantially reduced number of offspring. Like G130V in FRDA, the G127V mutation results in a dramatic decrease of Fxn protein without affecting transcript synthesis or splicing. FxnG127V mouse embryonic fibroblasts exhibit significantly reduced proliferation and increased cell senescence. These defects are evident in early passage cells and are exacerbated at later passages. Furthermore, increased frequency of mitochondrial DNA lesions and fragmentation are accompanied by marked amplification of mitochondrial DNA in FxnG127V cells. Bioenergetics analyses demonstrate higher sensitivity and reduced cellular respiration of FxnG127V cells upon alteration of fatty acid availability. Importantly, substitution of FxnWT with FxnG127V is compatible with life, and cellular proliferation defects can be rescued by mitigation of oxidative stress via hypoxia or induction of the NRF2 pathway. We propose FxnG127V cells as a simple and robust model for testing therapeutic approaches for FRDA.
Collapse
Affiliation(s)
- Daniel Fil
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Balu K Chacko
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robbie Conley
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aamir R Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Rodríguez LR, Lapeña T, Calap-Quintana P, Moltó MD, Gonzalez-Cabo P, Navarro Langa JA. Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion? Antioxidants (Basel) 2020; 9:E664. [PMID: 32722309 PMCID: PMC7465446 DOI: 10.3390/antiox9080664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Friedreich´s ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those "antioxidant" drugs that went beyond the disease´s models and were approved for its application in clinical trials. The evaluation of these trials highlights some crucial aspects of the FRDA research. On the one hand, the analysis contributes to elucidate whether oxidative stress plays a central role or whether it is only an epiphenomenon. On the other hand, it comments on some limitations in the current trials that complicate the analysis and interpretation of their outcome. We also include some suggestions that will be interesting to implement in future studies and clinical trials.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Tamara Lapeña
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 46100 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | |
Collapse
|
16
|
Chiabrando D, Bertino F, Tolosano E. Hereditary Ataxia: A Focus on Heme Metabolism and Fe-S Cluster Biogenesis. Int J Mol Sci 2020; 21:ijms21113760. [PMID: 32466579 PMCID: PMC7312568 DOI: 10.3390/ijms21113760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Heme and Fe-S clusters regulate a plethora of essential biological processes ranging from cellular respiration and cell metabolism to the maintenance of genome integrity. Mutations in genes involved in heme metabolism and Fe-S cluster biogenesis cause different forms of ataxia, like posterior column ataxia and retinitis pigmentosa (PCARP), Friedreich's ataxia (FRDA) and X-linked sideroblastic anemia with ataxia (XLSA/A). Despite great efforts in the elucidation of the molecular pathogenesis of these disorders several important questions still remain to be addressed. Starting with an overview of the biology of heme metabolism and Fe-S cluster biogenesis, the review discusses recent progress in the understanding of the molecular pathogenesis of PCARP, FRDA and XLSA/A, and highlights future line of research in the field. A better comprehension of the mechanisms leading to the degeneration of neural circuity responsible for balance and coordinated movement will be crucial for the therapeutic management of these patients.
Collapse
|
17
|
Muñoz-Lasso DC, Mollá B, Calap-Quintana P, García-Giménez JL, Pallardo FV, Palau F, Gonzalez-Cabo P. Cofilin dysregulation alters actin turnover in frataxin-deficient neurons. Sci Rep 2020; 10:5207. [PMID: 32251310 PMCID: PMC7090085 DOI: 10.1038/s41598-020-62050-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Abnormalities in actin cytoskeleton have been linked to Friedreich's ataxia (FRDA), an inherited peripheral neuropathy characterised by an early loss of neurons in dorsal root ganglia (DRG) among other clinical symptoms. Despite all efforts to date, we still do not fully understand the molecular events that contribute to the lack of sensory neurons in FRDA. We studied the adult neuronal growth cone (GC) at the cellular and molecular level to decipher the connection between frataxin and actin cytoskeleton in DRG neurons of the well-characterised YG8R Friedreich's ataxia mouse model. Immunofluorescence studies in primary cultures of DRG from YG8R mice showed neurons with fewer and smaller GCs than controls, associated with an inhibition of neurite growth. In frataxin-deficient neurons, we also observed an increase in the filamentous (F)-actin/monomeric (G)-actin ratio (F/G-actin ratio) in axons and GCs linked to dysregulation of two crucial modulators of filamentous actin turnover, cofilin-1 and the actin-related protein (ARP) 2/3 complex. We show how the activation of cofilin is due to the increase in chronophin (CIN), a cofilin-activating phosphatase. Thus cofilin emerges, for the first time, as a link between frataxin deficiency and actin cytoskeleton alterations.
Collapse
Affiliation(s)
- Diana C Muñoz-Lasso
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Belén Mollá
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, 46010, Spain
| | - Pablo Calap-Quintana
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - José Luis García-Giménez
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Federico V Pallardo
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Institut de Recerca Sant Joan de Déu and Department of Genetic & Molecular Medicine and IPER, Hospital Sant Joan de Déu, Barcelona, 08950, Spain
- Hospital Clínic and Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Pilar Gonzalez-Cabo
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain.
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain.
| |
Collapse
|
18
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
19
|
Stepanova A, Magrané J. Mitochondrial dysfunction in neurons in Friedreich's ataxia. Mol Cell Neurosci 2020; 102:103419. [PMID: 31770591 DOI: 10.1016/j.mcn.2019.103419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
Friedreich's ataxia is a multisystemic genetic disorder within the family of mitochondrial diseases that is characterized by reduced levels of the essential mitochondrial protein frataxin. Based on clinical evidence, the peripheral nervous system is affected early, neuronal dysfunction progresses towards the central nervous system, and other organs (such as heart and pancreas) are affected later. However, little attention has been given to the specific aspects of mitochondria function altered by frataxin depletion in the nervous system. For years, commonly accepted views on mitochondria dysfunction in Friedreich's ataxia stemmed from studies using non-neuronal systems and may not apply to neurons, which have their own bioenergetic needs and present a unique, extensive neurite network. Moreover, the basis of the selective neuronal vulnerability, which primarily affects large sensory neurons in the dorsal root ganglia, large principal neurons in the dentate nuclei of the cerebellum, and pyramidal neurons in the cerebral cortex, remains elusive. In order to identify potential misbeliefs in the field and highlight controversies, we reviewed current knowledge on frataxin expression in different tissues, discussed the molecular function of frataxin, and the consequences of its deficiency for mitochondria structural and functional properties, with a focus on the nervous system.
Collapse
Affiliation(s)
- Anna Stepanova
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States of America.
| | - Jordi Magrané
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
20
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
21
|
Mollá B, Muñoz-Lasso DC, Calap P, Fernandez-Vilata A, de la Iglesia-Vaya M, Pallardó FV, Moltó MD, Palau F, Gonzalez-Cabo P. Phosphodiesterase Inhibitors Revert Axonal Dystrophy in Friedreich's Ataxia Mouse Model. Neurotherapeutics 2019; 16:432-449. [PMID: 30761510 PMCID: PMC6554462 DOI: 10.1007/s13311-018-00706-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion within intron 1 of the FXN gene and characterized by peripheral neuropathy. A major feature of FRDA is frataxin deficiency with the loss of large sensory neurons of the dorsal root ganglia (DRG), namely proprioceptive neurons, undergoing dying-back neurodegeneration with progression to posterior columns of the spinal cord and cerebellar ataxia. We used isolated DRGs from a YG8R FRDA mouse model and C57BL/6J control mice for a proteomic study and a primary culture of sensory neurons from DRG to test novel pharmacological strategies. We found a decreased expression of electron transport chain (ETC) proteins, the oxidative phosphorylation (OXPHOS) system and antioxidant enzymes, confirming a clear impairment in mitochondrial function and an oxidative stress-prone phenotype. The proteomic profile also showed a decreased expression in Ca2+ signaling related proteins and G protein-coupled receptors (GPCRs). These receptors modulate intracellular cAMP/cGMP and Ca2+ levels. Treatment of frataxin-deficient sensory neurons with phosphodiesterase (PDE) inhibitors was able to restore improper cytosolic Ca2+ levels and revert the axonal dystrophy found in DRG neurons of YG8R mice. In conclusion, the present study shows the effectiveness of PDE inhibitors against axonal degeneration of sensory neurons in YG8R mice. Our findings indicate that PDE inhibitors may become a future FRDA pharmacological treatment.
Collapse
Affiliation(s)
- Belén Mollá
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Instituto de Biomedicina de Valencia (IBV), CSIC, 46010, Valencia, Spain
| | - Diana C Muñoz-Lasso
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain
| | - Pablo Calap
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100, Valencia, Spain
| | - Angel Fernandez-Vilata
- Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vaya
- Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF), 46012, Valencia, Spain
- Regional Ministry of Health in Valencia, Hospital Sagunto (CEIB-CSUSP), Valencia, 46500, Spain
- CIBER de Salud Mental (CIBERSAM), Valencia, 46010, Spain
| | - Federico V Pallardó
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain
| | - Maria Dolores Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100, Valencia, Spain
- CIBER de Salud Mental (CIBERSAM), Valencia, 46010, Spain
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
- Institut de Recerca Sant Joan de Déu and Department of Genetic & Molecular Medicine and IPER, Hospital Sant Joan de Déu, 08950, Barcelona, Spain
- Department of Pediatrics, University of Barcelona School of Medicine, Barcelona, 08036, Spain
| | - Pilar Gonzalez-Cabo
- CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain.
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez, 46010, Valencia, Spain.
- Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, 46010, Spain.
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
22
|
Llorens JV, Soriano S, Calap-Quintana P, Gonzalez-Cabo P, Moltó MD. The Role of Iron in Friedreich's Ataxia: Insights From Studies in Human Tissues and Cellular and Animal Models. Front Neurosci 2019; 13:75. [PMID: 30833885 PMCID: PMC6387962 DOI: 10.3389/fnins.2019.00075] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a rare early-onset degenerative disease that affects both the central and peripheral nervous systems, and other extraneural tissues, mainly the heart and endocrine pancreas. This disorder progresses as a mixed sensory and cerebellar ataxia, primarily disturbing the proprioceptive pathways in the spinal cord, peripheral nerves and nuclei of the cerebellum. FRDA is an inherited disease with an autosomal recessive pattern caused by an insufficient amount of the nuclear-encoded mitochondrial protein frataxin, which is an essential and highly evolutionary conserved protein whose deficit results in iron metabolism dysregulation and mitochondrial dysfunction. The first experimental evidence connecting frataxin with iron homeostasis came from Saccharomyces cerevisiae; iron accumulates in the mitochondria of yeast with deletion of the frataxin ortholog gene. This finding was soon linked to previous observations of iron deposits in the hearts of FRDA patients and was later reported in animal models of the disease. Despite advances made in the understanding of FRDA pathophysiology, the role of iron in this disease has not yet been completely clarified. Some of the questions still unresolved include the molecular mechanisms responsible for the iron accumulation and iron-mediated toxicity. Here, we review the contribution of the cellular and animal models of FRDA and relevance of the studies using FRDA patient samples to gain knowledge about these issues. Mechanisms of mitochondrial iron overload are discussed considering the potential roles of frataxin in the major mitochondrial metabolic pathways that use iron. We also analyzed the effect of iron toxicity on neuronal degeneration in FRDA by reactive oxygen species (ROS)-dependent and ROS-independent mechanisms. Finally, therapeutic strategies based on the control of iron toxicity are considered.
Collapse
Affiliation(s)
- José Vicente Llorens
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
- Unit for Psychiatry and Neurodegenerative Diseases, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Sirena Soriano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pablo Calap-Quintana
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
- Unit for Psychiatry and Neurodegenerative Diseases, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Center of Biomedical Network Research on Rare Diseases CIBERER, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
- Unit for Psychiatry and Neurodegenerative Diseases, Biomedical Research Institute INCLIVA, Valencia, Spain
- Center of Biomedical Network Research on Mental Health CIBERSAM, Valencia, Spain
| |
Collapse
|
23
|
Lai JI, Nachun D, Petrosyan L, Throesch B, Campau E, Gao F, Baldwin KK, Coppola G, Gottesfeld JM, Soragni E. Transcriptional profiling of isogenic Friedreich ataxia neurons and effect of an HDAC inhibitor on disease signatures. J Biol Chem 2019; 294:1846-1859. [PMID: 30552117 PMCID: PMC6369281 DOI: 10.1074/jbc.ra118.006515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by transcriptional silencing of the frataxin (FXN) gene, resulting in loss of the essential mitochondrial protein frataxin. Based on the knowledge that a GAA·TTC repeat expansion in the first intron of FXN induces heterochromatin, we previously showed that 2-aminobenzamide-type histone deacetylase inhibitors (HDACi) increase FXN mRNA levels in induced pluripotent stem cell (iPSC)-derived FRDA neurons and in circulating lymphocytes from patients after HDACi oral administration. How the reduced expression of frataxin leads to neurological and other systemic symptoms in FRDA patients remains unclear. Similar to other triplet-repeat disorders, it is unknown why FRDA affects only specific cell types, primarily the large sensory neurons of the dorsal root ganglia and cardiomyocytes. The combination of iPSC technology and genome-editing techniques offers the unique possibility to address these questions in a relevant cell model of FRDA, obviating confounding effects of variable genetic backgrounds. Here, using "scarless" gene-editing methods, we created isogenic iPSC lines that differ only in the length of the GAA·TTC repeats. To uncover the gene expression signatures due to the GAA·TTC repeat expansion in FRDA neuronal cells and the effect of HDACi on these changes, we performed RNA-seq-based transcriptomic analysis of iPSC-derived central nervous system (CNS) and isogenic sensory neurons. We found that cellular pathways related to neuronal function, regulation of transcription, extracellular matrix organization, and apoptosis are affected by frataxin loss in neurons of the CNS and peripheral nervous system and that these changes are partially restored by HDACi treatment.
Collapse
Affiliation(s)
- Jiun-I Lai
- From the Departments of Molecular Medicine and
| | - Daniel Nachun
- the Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | | | - Benjamin Throesch
- Neuroscience, The Scripps Research Institute, La Jolla, California 92037 and
| | | | - Fuying Gao
- the Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Kristin K Baldwin
- Neuroscience, The Scripps Research Institute, La Jolla, California 92037 and
| | - Giovanni Coppola
- the Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | | | | |
Collapse
|
24
|
Mitochondrial calcium signalling and neurodegenerative diseases. Neuronal Signal 2018; 2:NS20180061. [PMID: 32714593 PMCID: PMC7373239 DOI: 10.1042/ns20180061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
Calcium is utilised by cells in signalling and in regulating ATP production; it also contributes to cell survival and, when concentrations are unbalanced, triggers pathways for cell death. Mitochondria contribute to calcium buffering, meaning that mitochondrial calcium uptake and release is intimately related to cytosolic calcium concentrations. This review focuses on the proteins contributing to mitochondrial calcium homoeostasis, the roles of the mitochondrial permeability transition pore (MPTP) and mitochondrial calcium-activated proteins, and their relevance in neurodegenerative pathologies. It also covers alterations to calcium homoeostasis in Friedreich ataxia (FA).
Collapse
|
25
|
Abeti R, Brown AF, Maiolino M, Patel S, Giunti P. Calcium Deregulation: Novel Insights to Understand Friedreich's Ataxia Pathophysiology. Front Cell Neurosci 2018; 12:264. [PMID: 30333728 PMCID: PMC6176067 DOI: 10.3389/fncel.2018.00264] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Friedreich's Ataxia (FRDA) is a neurodegenerative disorder, characterized by degeneration of dorsal root ganglia, cerebellum and cardiomyopathy. Heart failure is one of the most common causes of death for FRDA patients. Deficiency of frataxin, a small mitochondrial protein, is responsible for all clinical and morphological manifestations of FRDA. The focus of our study was to investigate the unexplored Ca2+ homeostasis in cerebellar granule neurons (CGNs) and in cardiomyocytes of FRDA cellular models to understand the pathogenesis of degeneration. Ca2+ homeostasis in neurons and cardiomyocytes is not only crucial for the cellular wellbeing but more importantly to generate action potential in both neurons and cardiomyocytes. By challenging Ca2+ homeostasis in CGNs, and in adult and neonatal cardiomyocytes of FRDA models, we have assessed the impact of frataxin decrease on both neuronal and cardiac physiopathology. Interestingly, we have found that Ca2+ homeostasis is altered both cell types. CGNs showed a Ca2+ mishandling under depolarizing conditions and this was also reflected in the endoplasmic reticulum (ER) content. In cardiomyocytes we found that the sarcoplasmic reticulum (SR) Ca2+ content was pathologically reduced, and that mitochondrial Ca2+ uptake was impaired. This phenomenon is due to the excess of oxidative stress under FRDA like conditions and the consequent aberrant modulation of key players at the SR/ER and mitochondrial level that usually restore the Ca2+ homeostasis. Our findings demonstrate that in both neurons and cardiomyocytes the decreased Ca2+ level within the stores has a comparable detrimental impact in their physiology. In cardiomyocytes, we found that ryanodine receptors (RyRs) may be leaking and expel more Ca2+ out from the SR. At the same time mitochondrial uptake was altered and we found that Vitamin E can restore this defect. Moreover, Vitamin E protects from cell death induced by hypoxia-reperfusion injury, revealing novel properties of Vitamin E as potential therapeutic tool for FRDA cardiomyopathy.
Collapse
Affiliation(s)
- Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Alexander F Brown
- Ataxia Centre, Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Marta Maiolino
- Department of Biomedical Sciences and Public Health, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Sandip Patel
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
27
|
Gárate F, Pertusa M, Arana Y, Bernal R. Non-invasive Neurite Mechanics in Differentiated PC12 Cells. Front Cell Neurosci 2018; 12:194. [PMID: 30052690 PMCID: PMC6043779 DOI: 10.3389/fncel.2018.00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/17/2018] [Indexed: 01/04/2023] Open
Abstract
Thermal Fluctuations Spectroscopy (TFS) in combination with novel optical-based instrumentation was used to study mechanical properties of cell-cultured neurites with a spatial resolution limited only by the light diffraction. The analysis of thermal fluctuations together with a physical model of cellular elasticity allow us to determine relevant mechanical properties of neurite as axial tension σ, flexural rigidity B, plasma membrane tension γ, membrane bending rigidity K, and cytoskeleton to membrane-coupling ρbk, whose values are consistent with previously reported values measured using invasive approaches. The value obtained for the membrane-coupling parameter was used to estimate the average number of coupling elements between the plasma membrane and the cytoskeleton that fell in the range of 30 elements per area of the laser spot used to record the fluctuations. Furthermore, to expand the TFS analysis, we investigate the correlation between F-actin linear density and the mechanical features of PC12 neurites. Using a hybrid instrument that combines TFS and a simple fluorescent technique, our results show that the fluctuations are related with the F-actin concentration. These measurements have an advantage of not requiring the application of an external force, allowing as to directly establish a correlation between changes in the mechanical parameters and cytoskeleton-protein concentrations. The sensibility of our method was also tested by the application of TFS technique to PC12 neurite under Paraformaldehyde and Latrunculin-A effect. These results show a dramatic modification in the fluctuations that are consistent with the reported effect of these drugs, confirming the high sensitivity of this technique. Finally, the thermal fluctuation approach was applied to DRG axons to show that its utility is not limited to studies of PC12 neurites, but it is suitable to measure the general characteristic of various neuron-like cells.
Collapse
Affiliation(s)
- Fernanda Gárate
- Cellular Mechanics Laboratory, Physics Department, SMAT-C, University of Santiago, Santiago, Chile.,Biophysics Laboratory, Physics Department, SMAT-C, University of Santiago, Santiago, Chile
| | - María Pertusa
- Department of Biology, Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), University of Santiago de Chile, Santiago, Chile
| | - Yahaira Arana
- Cellular Mechanics Laboratory, Physics Department, SMAT-C, University of Santiago, Santiago, Chile
| | - Roberto Bernal
- Cellular Mechanics Laboratory, Physics Department, SMAT-C, University of Santiago, Santiago, Chile
| |
Collapse
|
28
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|