1
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
2
|
Nasir A, Afridi M, Afridi OK, Khan MA, Khan A, Zhang J, Qian B. The persistent pain enigma: Molecular drivers behind acute-to-chronic transition. Neurosci Biobehav Rev 2025; 173:106162. [PMID: 40239909 DOI: 10.1016/j.neubiorev.2025.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
The transition from acute to chronic pain is a complex and multifactorial process that presents significant challenges in both diagnosis and treatment. Key mechanisms of peripheral and central sensitization, neuroinflammation, and altered synaptic plasticity contribute to the amplification of pain signals and the persistence of pain. Glial cell activation, particularly microglia and astrocytes, is pivotal in developing chronic pain by releasing pro-inflammatory cytokines that enhance pain sensitivity. This review explores the molecular, cellular, and systemic mechanisms underlying the transition from acute to chronic pain, offering new insights into the molecular and neurobiological mechanisms involved, which are often underexplored in existing literature. It also addresses emerging therapeutic strategies beyond traditional pain management, offering valuable perspectives for future research and clinical applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Maryam Afridi
- Department of Pharmacy, Qurtuba University, Peshawar, KP, Pakistan
| | | | | | - Amir Khan
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jun Zhang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Bai Qian
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
3
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi SH, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals. Cell 2025:S0092-8674(25)00285-5. [PMID: 40203826 DOI: 10.1016/j.cell.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/13/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Philipp N Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M S Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, UK
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Weizhan Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yongkang Huang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - HanFei Deng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Beijing 100084, China.
| |
Collapse
|
4
|
Romanovsky E, Choudhary A, Peles D, Abu-Akel A, Stern S. Uncovering convergence and divergence between autism and schizophrenia using genomic tools and patients' neurons. Mol Psychiatry 2025; 30:1019-1028. [PMID: 39237719 PMCID: PMC11835745 DOI: 10.1038/s41380-024-02740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorders (ASDs) are highly heritable and result in abnormal repetitive behaviors and impairment in communication and cognitive skills. Previous studies have focused on the genetic correlation between ASDs and other neuropsychiatric disorders, but an in-depth understanding of the correlation to other disorders is required. We conducted an extensive meta-analysis of common variants identified in ASDs by genome-wide association studies (GWAS) and compared it to the consensus genes and single nucleotide polymorphisms (SNPs) of Schizophrenia (SCZ). We found approximately 75% of the GWAS genes that are associated with ASD are also associated with SCZ. We further investigated the cellular phenotypes of neurons derived from induced pluripotent stem cell (iPSC) models in ASD and SCZ. Our findings revealed that ASD and SCZ neurons initially follow divergent developmental trajectories compared to control neurons. However, despite these early diametrical differences, both ASD and SCZ neurons ultimately display similar deficits in synaptic activity as they mature. This significant genetic overlap between ASD and SCZ, coupled with the convergence towards similar synaptic deficits, highlights the intricate interplay of genetic and developmental factors in shaping the shared underlying mechanisms of these complex neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eva Romanovsky
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Singh AA, Yadav D, Khan F, Song M. Indole-3-Carbinol and Its Derivatives as Neuroprotective Modulators. Brain Sci 2024; 14:674. [PMID: 39061415 PMCID: PMC11274471 DOI: 10.3390/brainsci14070674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, stroke, and mental illnesses, and exacerbates the aging process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) serves as the primary cellular defense mechanism against OS-induced brain damage. Thus, Nrf2 activation may confer endogenous neuroprotection against OS-related cellular damage; notably, the TrkB/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, stimulated by BDNF-dependent TrkB signaling, activates Nrf2 and promotes its nuclear translocation. However, insufficient neurotrophin support often leads to the downregulation of the TrkB signaling pathway in brain diseases. Thus, targeting TrkB activation and the Nrf2-ARE system is a promising therapeutic strategy for treating neurodegenerative diseases. Phytochemicals, including indole-3-carbinol (I3C) and its metabolite, diindolylmethane (DIM), exhibit neuroprotective effects through BDNF's mimetic activity; Akt phosphorylation is induced, and the antioxidant defense mechanism is activated by blocking the Nrf2-kelch-like ECH-associated protein 1 (Keap1) complex. This review emphasizes the therapeutic potential of I3C and its derivatives for concurrently activating neuronal defense mechanisms in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| |
Collapse
|
7
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Zheng W, Wang M, Reitman ME, Wang Y, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592259. [PMID: 38766026 PMCID: PMC11100599 DOI: 10.1101/2024.05.02.592259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
- These authors contributed equally
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R. Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Philipp N. Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M. S. Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, USA
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E. Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Kira E. Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Lead contact
| |
Collapse
|
8
|
Mokhtari T, Irandoost E, Sheikhbahaei F. Stress, pain, anxiety, and depression in endometriosis-Targeting glial activation and inflammation. Int Immunopharmacol 2024; 132:111942. [PMID: 38565045 DOI: 10.1016/j.intimp.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Endometriosis (EM) is a gynecological inflammatory disease often accompanied by stress, chronic pelvic pain (CPP), anxiety, and depression, leading to a diminished quality of life. This review aims to discuss the relationship between systemic and local inflammatory responses in the central nervous system (CNS), focusing on glial dysfunctions (astrocytes and microglia) as in critical brain regions involved in emotion, cognition, pain processing, anxiety, and depression. The review presents that EM is connected to increased levels of pro-inflammatory cytokines in the circulation. Additionally, chronic stress and CPP as stressors may contribute to the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, depleting the production of inflammatory mediators in the circulatory system and the brain. The systemic cytokines cause blood-brain barrier (BBB) breakdown, activate microglia in the brain, and lead to neuroinflammation. Furthermore, CPP may induce neuronal morphological alterations in critical regions through central sensitization and the activation of glial cells. The activation of glial cells, particularly the polarization of microglia, leads to the activation of the NLRP3 inflammasome and the overproduction of inflammatory cytokines. These inflammatory cytokines interact with the signaling pathways involved in neural plasticity. Additionally, persistent inflammatory conditions in the brain lead to neuronal death, which is correlated with a reduced volume of key brain regions such as the hippocampus. This review highlights the involvement of glial cells in the pathogenesis of the mental comorbidities of EM (i.e., pain, anxiety, and depression) and to discuss potential therapeutic approaches for targeting the inflammation and activation of microglia in key brain regions.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Department of Pharmacology, Hubei University of Medicine, Shiyan, China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Elnaz Irandoost
- Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
10
|
Charney M, Foster S, Shukla V, Zhao W, Jiang SH, Kozlowska K, Lin A. Neurometabolic alterations in children and adolescents with functional neurological disorder. Neuroimage Clin 2023; 41:103557. [PMID: 38219534 PMCID: PMC10825645 DOI: 10.1016/j.nicl.2023.103557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVES In vivo magnetic resonance spectroscopy (MRS) was used to investigate neurometabolic homeostasis in children with functional neurological disorder (FND) in three regions of interest: supplementary motor area (SMA), anterior default mode network (aDMN), and posterior default mode network (dDMN). Metabolites assessed included N-acetyl aspartate (NAA), a marker of neuron function; myo-inositol (mI), a glial-cell marker; choline (Cho), a membrane marker; glutamate plus glutamine (Glx), a marker of excitatory neurotransmission; γ-aminobutyric acid (GABA), a marker of inhibitor neurotransmission; and creatine (Cr), an energy marker. The relationship between excitatory (glutamate and glutamine) and inhibitory (GABA) neurotransmitter (E/I) balance was also examined. METHODS MRS data were acquired for 32 children with mixed FND (25 girls, 7 boys, aged 10.00 to 16.08 years) and 41 healthy controls of similar age using both short echo point-resolved spectroscopy (PRESS) and Mescher-Garwood point-resolved spectroscopy (MEGAPRESS) sequences in the three regions of interest. RESULTS In the SMA, children with FND had lower NAA/Cr, mI/Cr (trend level), and GABA/Cr ratios. In the aDMN, no group differences in metabolite ratios were found. In the pDMN, children with FND had lower NAA/Cr and mI/Cr (trend level) ratios. While no group differences in E/I balance were found (FND vs. controls), E/I balance in the aDMN was lower in children with functional seizures-a subgroup within the FND group. Pearson correlations found that increased arousal (indexed by higher heart rate) was associated with lower mI/Cr in the SMA and pDMN. CONCLUSIONS Our findings of multiple differences in neurometabolites in children with FND suggest dysfunction on multiple levels of the biological system: the neuron (lower NAA), the glial cell (lower mI), and inhibitory neurotransmission (lower GABA), as well as dysfunction in energy regulation in the subgroup with functional seizures.
Collapse
Affiliation(s)
- Molly Charney
- Department of Neurology, Columbia University Irving Medical Center, New York-Presbyterian, New York, NY, USA; Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sheryl Foster
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Radiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Vishwa Shukla
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wufan Zhao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sam H Jiang
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kasia Kozlowska
- Department of Psychological Medicine, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; Brain Dynamics Centre, Westmead Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| | - Alexander Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Echeverria-Villalobos M, Tortorici V, Brito BE, Ryskamp D, Uribe A, Weaver T. The role of neuroinflammation in the transition of acute to chronic pain and the opioid-induced hyperalgesia and tolerance. Front Pharmacol 2023; 14:1297931. [PMID: 38161698 PMCID: PMC10755684 DOI: 10.3389/fphar.2023.1297931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Current evidence suggests that activation of glial and immune cells leads to increased production of proinflammatory mediators, creating a neuroinflammatory state. Neuroinflammation has been proven to be a fundamental mechanism in the genesis of acute pain and its transition to neuropathic and chronic pain. A noxious event that stimulates peripheral afferent nerve fibers may also activate pronociceptive receptors situated at the dorsal root ganglion and dorsal horn of the spinal cord, as well as peripheral glial cells, setting off the so-called peripheral sensitization and spreading neuroinflammation to the brain. Once activated, microglia produce cytokines, chemokines, and neuropeptides that can increase the sensitivity and firing properties of second-order neurons, upregulating the signaling of nociceptive information to the cerebral cortex. This process, known as central sensitization, is crucial for chronification of acute pain. Immune-neuronal interactions are also implicated in the lesser-known complex regulatory relationship between pain and opioids. Current evidence suggests that activated immune and glial cells can alter neuronal function, induce, and maintain pathological pain, and disrupt the analgesic effects of opioid drugs by contributing to the development of tolerance and dependence, even causing paradoxical hyperalgesia. Such alterations may occur when the neuronal environment is impacted by trauma, inflammation, and immune-derived molecules, or when opioids induce proinflammatory glial activation. Hence, understanding these intricate interactions may help in managing pain signaling and opioid efficacy beyond the classical pharmacological approach.
Collapse
Affiliation(s)
| | - Victor Tortorici
- Neuroscience Laboratory, Faculty of Science, Department of Behavioral Sciences, Universidad Metropolitana, Caracas, Venezuela
- Neurophysiology Laboratory, Center of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Beatriz E. Brito
- Immunopathology Laboratory, Center of Experimental Medicine, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - David Ryskamp
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Alberto Uribe
- Anesthesiology Department, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan Weaver
- Anesthesiology Department, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
12
|
Pereira MJ, Ayana R, Holt MG, Arckens L. Chemogenetic manipulation of astrocyte activity at the synapse- a gateway to manage brain disease. Front Cell Dev Biol 2023; 11:1193130. [PMID: 37534103 PMCID: PMC10393042 DOI: 10.3389/fcell.2023.1193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are the major glial cell type in the central nervous system (CNS). Initially regarded as supportive cells, it is now recognized that this highly heterogeneous cell population is an indispensable modulator of brain development and function. Astrocytes secrete neuroactive molecules that regulate synapse formation and maturation. They also express hundreds of G protein-coupled receptors (GPCRs) that, once activated by neurotransmitters, trigger intracellular signalling pathways that can trigger the release of gliotransmitters which, in turn, modulate synaptic transmission and neuroplasticity. Considering this, it is not surprising that astrocytic dysfunction, leading to synaptic impairment, is consistently described as a factor in brain diseases, whether they emerge early or late in life due to genetic or environmental factors. Here, we provide an overview of the literature showing that activation of genetically engineered GPCRs, known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity partially mimics endogenous signalling pathways in astrocytes and improves neuronal function and behavior in normal animals and disease models. Therefore, we propose that expressing these genetically engineered GPCRs in astrocytes could be a promising strategy to explore (new) signalling pathways which can be used to manage brain disorders. The precise molecular, functional and behavioral effects of this type of manipulation, however, differ depending on the DREADD receptor used, targeted brain region and timing of the intervention, between healthy and disease conditions. This is likely a reflection of regional and disease/disease progression-associated astrocyte heterogeneity. Therefore, a thorough investigation of the effects of such astrocyte manipulation(s) must be conducted considering the specific cellular and molecular environment characteristic of each disease and disease stage before this has therapeutic applicability.
Collapse
Affiliation(s)
- Maria João Pereira
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory of Synapse Biology, Universidade do Porto, Porto, Portugal
| | - Lutgarde Arckens
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
13
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Clyburn C, Carson KE, Smith CR, Travagli RA, Browning KN. Brainstem astrocytes control homeostatic regulation of caloric intake. J Physiol 2023; 601:801-829. [PMID: 36696965 PMCID: PMC10026361 DOI: 10.1113/jp283566] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/08/2022] [Indexed: 01/27/2023] Open
Abstract
Prolonged high-fat diet (HFD) exposure is associated with hyperphagia, excess caloric intake and weight gain. After initial exposure to a HFD, a brief (24-48 h) period of hyperphagia is followed by the regulation of caloric intake and restoration of energy balance within an acute (3-5 day) period. Previous studies have demonstrated this occurs via a vagally mediated signalling cascade that increases glutamatergic transmission via activation of NMDA receptors located on gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). The present study used electrophysiological recordings from thin brainstem slice preparations, in vivo recordings of gastric motility and tone, measurement of gastric emptying rates, and food intake studies to investigate the hypothesis that activation of brainstem astrocytes in response to acute HFD exposure is responsible for the increased glutamatergic drive to DMV neurons and the restoration of caloric balance. Pharmacological and chemogenetic inhibition of brainstem astrocytes reduced glutamatergic signalling and DMV excitability, dysregulated gastric tone and motility, attenuated the homeostatic delay in gastric emptying, and prevented the decrease in food intake that is observed during the period of energy regulation following initial exposure to HFD. Understanding the mechanisms involved in caloric regulation may provide critical insights into energy balance as well as into the hyperphagia that develops as these mechanisms are overcome. KEY POINTS: Initial exposure to a high fat diet is associated with a brief period of hyperphagia before caloric intake and energy balance is restored. This period of homeostatic regulation is associated with a vagally mediated signalling cascade that increases glutamatergic transmission to dorsal motor nucleus of the vagus (DMV) neurons via activation of synaptic NMDA receptors. The present study demonstrates that pharmacological and chemogenetic inhibition of brainstem astrocytes reduced glutamatergic signalling and DMV neuronal excitability, dysregulated gastric motility and tone and emptying, and prevented the regulation of food intake following high-fat diet exposure. Astrocyte regulation of glutamatergic transmission to DMV neurons appears to involve release of the gliotransmitters glutamate and ATP. Understanding the mechanisms involved in caloric regulation may provide critical insights into energy balance as well as into the hyperphagia that develops as these mechanisms are overcome.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
- Current position: Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97056
| | - Kaitlin E. Carson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Caleb R. Smith
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
- Current position: Neurobiology Research, Newport, NC 28570
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
15
|
Lim N, Wood N, Prasad A, Waters K, Singh-Grewal D, Dale RC, Elkadi J, Scher S, Kozlowska K. COVID-19 Vaccination in Young People with Functional Neurological Disorder: A Case-Control Study. Vaccines (Basel) 2022; 10:2031. [PMID: 36560442 PMCID: PMC9782633 DOI: 10.3390/vaccines10122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The emergence of acute-onset functional neurological symptoms, the focus of this study, is one of three stress responses related to immunisation. This case-control study documents the experience of 61 young people with past or current functional neurological disorder (FND) in relation to the COVID-19 vaccination program in Australia. METHODS Information about the young person's/parent's choice and response pertaining to COVID-19 vaccination was collected as part of routine clinical care or FND research program follow-up. RESULTS 61 young people treated for FND (47 females, mean age = 16.22 years) and 46 healthy controls (34 females, mean age = 16.37 years) were included in the study. Vaccination rates were high: 58/61 (95.1%) in the FND group and 45/46 (97.8%) in the control group. In the FND group, 2 young people (2/61, 3.3%) presented with new-onset FND following COVID-19 vaccination; two young people with resolved FND reported an FND relapse (2/36, 5.56%); and two young people with unresolved FND (2/20, 10.0%) reported an FND exacerbation. In the control group no FND symptoms were reported. CONCLUSIONS Acute-onset FND symptoms following COVID-19 vaccination are uncommon in the general population. In young people prone to FND, COVID-19 vaccination can sometimes trigger new-onset FND, FND relapse, or FND exacerbation.
Collapse
Affiliation(s)
- Natalie Lim
- Department of Psychological Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Archana Prasad
- Department of General Medicine, The Children’s Hospital at Westmead Clinical School, Westmead, NSW 2145, Australia
| | - Karen Waters
- Sleep Medicine, The Children’s Hospital at Westmead, Westmead Clinical School, Westmead, NSW 2145, Australia
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Davinder Singh-Grewal
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Department of Rheumatology, Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - Russell C. Dale
- Kids Neuroscience Centre, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- The Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Joseph Elkadi
- Department of Psychological Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Stephen Scher
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- Speciality of Psychiatry, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kasia Kozlowska
- Department of Psychological Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Brain Dynamics Centre at Westmead Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
16
|
Acupuncture Interventions for Alzheimer’s Disease and Vascular Cognitive Disorders: A Review of Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6080282. [PMID: 36211826 PMCID: PMC9534683 DOI: 10.1155/2022/6080282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular–glia–neuron unit were further discussed.
Collapse
|
17
|
Nolan AL, Sohal VS, Rosi S. Selective Inhibitory Circuit Dysfunction after Chronic Frontal Lobe Contusion. J Neurosci 2022; 42:5361-5372. [PMID: 35610049 PMCID: PMC9270915 DOI: 10.1523/jneurosci.0097-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of neurologic disability; the most common deficits affect prefrontal cortex-dependent functions such as attention, working memory, social behavior, and mental flexibility. Despite this prevalence, little is known about the pathophysiology that develops in frontal cortical microcircuits after TBI. We investigated whether alterations in subtype-specific inhibitory circuits are associated with cognitive inflexibility in a mouse model of frontal lobe contusion in both male and female mice that recapitulates aberrant mental flexibility as measured by deficits in rule reversal learning. Using patch-clamp recordings and optogenetic stimulation, we identified selective vulnerability in the non-fast-spiking and somatostatin-expressing (SOM+) subtypes of inhibitory neurons in layer V of the orbitofrontal cortex 2 months after injury. These subtypes exhibited reduced intrinsic excitability and a decrease in their synaptic output onto pyramidal neurons, respectively. By contrast, the fast-spiking and parvalbumin-expressing interneurons did not show changes in intrinsic excitability or synaptic output, respectively. Impairments in non-fast-spiking/SOM+ inhibitory circuit function were also associated with network hyperexcitability. These findings provide evidence for selective disruptions within specific inhibitory microcircuits that may guide the development of novel therapeutics for TBI.SIGNIFICANCE STATEMENT TBI frequently leads to chronic deficits in cognitive and behavioral functions that involve the prefrontal cortex, yet the maladaptive changes that occur in these cortical microcircuits are unknown. Our data indicate that alterations in subtype-specific inhibitory circuits, specifically vulnerability in the non-fast-spiking/somatostatin-expressing interneurons, occurs in the orbitofrontal cortex in the context of chronic deficits in reversal learning. These neurons exhibit reduced excitability and synaptic output, whereas the other prominent inhibitory population in layer V, the fast-spiking/parvalbumin-expressing interneurons as well as pyramidal neurons are not affected. Our work offers mechanistic insight into the subtype-specific function of neurons that may contribute to mental inflexibility after TBI.
Collapse
Affiliation(s)
- Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98104
- Departments of Pathology
| | | | - Susanna Rosi
- Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, California 94143
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California 94143
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California 94143
- Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
18
|
Jung H, Lee H, Kim D, Cheong E, Hyun YM, Yu JW, Um JW. Differential Regional Vulnerability of the Brain to Mild Neuroinflammation Induced by Systemic LPS Treatment in Mice. J Inflamm Res 2022; 15:3053-3063. [PMID: 35645573 PMCID: PMC9140139 DOI: 10.2147/jir.s362006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Hyeji Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Hyojeong Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Dongwook Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Correspondence: Ji Won Um, Email
| |
Collapse
|
19
|
Allen M, Huang BS, Notaras MJ, Lodhi A, Barrio-Alonso E, Lituma PJ, Wolujewicz P, Witztum J, Longo F, Chen M, Greening DW, Klann E, Ross ME, Liston C, Colak D. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca 2+ signaling. Mol Psychiatry 2022; 27:2470-2484. [PMID: 35365802 PMCID: PMC9135629 DOI: 10.1038/s41380-022-01486-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/08/2023]
Abstract
The cellular mechanisms of autism spectrum disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes regulate several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity. Astrocyte abnormalities have also been identified in the postmortem brain tissue of ASD individuals. However, it remains unclear whether astrocyte pathology plays a mechanistic role in ASD, as opposed to a compensatory response. To address this, we combined stem cell culturing with transplantation techniques to determine disease-specific properties inherent to ASD astrocytes. We demonstrate that ASD astrocytes induce repetitive behavior as well as impair memory and long-term potentiation when transplanted into the healthy mouse brain. These in vivo phenotypes were accompanied by reduced neuronal network activity and spine density caused by ASD astrocytes in hippocampal neurons in vitro. Transplanted ASD astrocytes also exhibit exaggerated Ca2+ fluctuations in chimeric brains. Genetic modulation of evoked Ca2+ responses in ASD astrocytes modulates behavior and neuronal activity deficits. Thus, this study determines that astrocytes derived from ASD iPSCs are sufficient to induce repetitive behavior as well as cognitive deficit, suggesting a previously unrecognized primary role for astrocytes in ASD.
Collapse
Affiliation(s)
- Megan Allen
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ben S Huang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jonathan Witztum
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY, USA
| | - Maoshan Chen
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Conor Liston
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA. .,Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
20
|
Aramideh JA, Vidal-Itriago A, Morsch M, Graeber MB. Cytokine Signalling at the Microglial Penta-Partite Synapse. Int J Mol Sci 2021; 22:ijms222413186. [PMID: 34947983 PMCID: PMC8708012 DOI: 10.3390/ijms222413186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Microglial cell processes form part of a subset of synaptic contacts that have been dubbed microglial tetra-partite or quad-partite synapses. Since tetrapartite may also refer to the presence of extracellular matrix components, we propose the more precise term microglial penta-partite synapse for synapses that show a microglial cell process in close physical proximity to neuronal and astrocytic synaptic constituents. Microglial cells are now recognised as key players in central nervous system (CNS) synaptic changes. When synaptic plasticity involving microglial penta-partite synapses occurs, microglia may utilise their cytokine arsenal to facilitate the generation of new synapses, eliminate those that are not needed anymore, or modify the molecular and structural properties of the remaining synaptic contacts. In addition, microglia–synapse contacts may develop de novo under pathological conditions. Microglial penta-partite synapses have received comparatively little attention as unique sites in the CNS where microglial cells, cytokines and other factors they release have a direct influence on the connections between neurons and their function. It concerns our understanding of the penta-partite synapse where the confusion created by the term “neuroinflammation” is most counterproductive. The mere presence of activated microglia or the release of their cytokines may occur independent of inflammation, and penta-partite synapses are not usually active in a neuroimmunological sense. Clarification of these details is the main purpose of this review, specifically highlighting the relationship between microglia, synapses, and the cytokines that can be released by microglial cells in health and disease.
Collapse
Affiliation(s)
- Jason Abbas Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andres Vidal-Itriago
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Marco Morsch
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
21
|
Vishwakarma S, Singh S, Singh TG. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 2021; 49:1437-1452. [PMID: 34751915 DOI: 10.1007/s11033-021-06896-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Shubham Vishwakarma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
22
|
Leite JP, Peixoto-Santos JE. Glia and extracellular matrix molecules: What are their importance for the electrographic and MRI changes in the epileptogenic zone? Epilepsy Behav 2021; 121:106542. [PMID: 31884121 DOI: 10.1016/j.yebeh.2019.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
Glial cells and extracellular matrix (ECM) molecules are crucial for the maintenance of brain homeostasis. Especially because of their actions regarding neurotransmitter and ionic control, and synaptic function, these cells can potentially contribute to the hyperexcitability seen in the epileptogenic, while ECM changes are linked to synaptic reorganization. The present review will explore glial and ECM homeostatic roles and their potential contribution to tissue plasticity. Finally, we will address how glial, and ECM changes in the epileptogenic zone can be seen in magnetic resonance imaging (MRI), pointing out their importance as markers for the extension of the epileptogenic area. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Joao Pereira Leite
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Jose Eduardo Peixoto-Santos
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Department of Neurology and Neurosurgery, Paulista School of Medicine, UNIFESP, Sao Paulo, Brazil
| |
Collapse
|
23
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
24
|
Drd2 biased agonist prevents neurodegeneration against NLRP3 inflammasome in Parkinson's disease model via a β-arrestin2-biased mechanism. Brain Behav Immun 2020; 90:259-271. [PMID: 32861720 DOI: 10.1016/j.bbi.2020.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/14/2023] Open
Abstract
Activated astrocytes secrete inflammatory cytokines such as interleukin-1β (IL-1β) into the extracellular milieu, damaging surrounding neurons and involving in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Dopamine receptor D2 (Drd2) expresses both in neurons and astrocytes, and neuronal Drd2 is a significant target in therapy of PD. Our previous study reveals that astrocytic Drd2 exerts anti-inflammatory effect via non-classical β-arrestin2 signaling in PD model. Therefore, seeking new biased ligands of Drd2 with better efficacy and fewer side effects to treat PD is desirable and meaningful. In the present study, we evaluated the effects of UNC9995, a novel biased Drd2 agonist on astrocyte-derived neuroinflammation and dopaminergic (DA) neuron degenerationin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We showed that UNC9995 rescued the TH+ neurons loss and inhibited glial cells activation in mouse substantia nigra in a Drd2 dependent manner. Focusing on astrocytes, we found UNC9995 shows a relatively safe concentration range and significantly suppresses astrocytic NLRP3 inflammasome activation induced by lipopolysaccharide plus ATP. Further study revealed that the anti-inflammatory effect of UNC9995 is independent of Drd2 / Gαi protein pathway. It activates β-arrestin2 by recruiting it to cell membrane. Critically, UNC9995 enhances β-arrestin2 interacting with NLRP3 to interfere inflammasome assembly, which consequently reduces IL-1β production. On the other hand, UNC9995 inhibits IL-1β-induced inflammatory pathway activation in DA neurons and rescues subsequent apoptosis via β-arrestin2 interacting with protein kinases, such as JNK and suppressing their phosphorylation. Furthermore, β-arrestin2 knockout abolishes the anti-inflammatory and neuroprotective effects of UNC9995 in PD mouse model, supporting that UNC9995 is a β-arrestin2-biased Drd2 agonist and revealing its novel function in PD treatment. Collectively, this work illustrates that Drd2 agonist UNC9995 prevents DA neuron degeneration in PD and provides a new strategy for developing the β-arrestin2-biased ligands in the therapy of NDDs.
Collapse
|
25
|
O'Reilly ML, Tom VJ. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Front Cell Neurosci 2020; 14:187. [PMID: 32792908 PMCID: PMC7390932 DOI: 10.3389/fncel.2020.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Selective Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of Tau Pathogenesis in a Mouse Model. J Neurosci 2020; 40:3491-3501. [PMID: 32265258 DOI: 10.1523/jneurosci.2880-19.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic dysfunction provoking dysregulated cortical neural circuits is currently hypothesized as a key pathophysiological process underlying clinical manifestations in Alzheimer's disease and related neurodegenerative tauopathies. Here, we conducted PET along with postmortem assays to investigate time course changes of excitatory and inhibitory synaptic constituents in an rTg4510 mouse model of tauopathy, which develops tau pathologies leading to noticeable brain atrophy at 5-6 months of age. Both male and female mice were analyzed in this study. We observed that radiosignals derived from [11C]flumazenil, a tracer for benzodiazepine receptor, in rTg4510 mice were significantly lower than the levels in nontransgenic littermates at 2-3 months of age. In contrast, retentions of (E)-[11C]ABP688, a tracer for mGluR5, were unaltered relative to controls at 2 months of age but then gradually declined with aging in parallel with progressive brain atrophy. Biochemical and immunohistochemical assessment of postmortem brain tissues demonstrated that inhibitory, but not excitatory, synaptic constituents selectively diminished without overt loss of somas of GABAergic interneurons in the neocortex and hippocampus of rTg4510 mice at 2 months of age, which was concurrent with enhanced immunoreactivity of cFos, a well-characterized immediate early gene, suggesting that impaired inhibitory neurotransmission may cause hyperexcitability of cortical circuits. Our findings indicate that tau-induced disruption of the inhibitory synapse may be a critical trigger of progressive neurodegeneration, resulting in massive neuronal loss, and PET assessments of inhibitory versus excitatory synapses potentially offer in vivo indices for hyperexcitability and excitotoxicity early in the etiologic pathway of neurodegenerative tauopathies.SIGNIFICANCE STATEMENT In this study, we examined the in vivo status of excitatory and inhibitory synapses in the brain of the rTg4510 tauopathy mouse model by PET imaging with (E)-[11C]ABP688 and [11C]flumazenil, respectively. We identified inhibitory synapse as being significantly dysregulated before brain atrophy at 2 months of age, while excitatory synapse stayed relatively intact at this stage. In line with this observation, postmortem assessment of brain tissues demonstrated selective attenuation of inhibitory synaptic constituents accompanied by the upregulation of cFos before the formation of tau pathology in the forebrain at young ages. Our findings indicate that selective degeneration of inhibitory synapse with hyperexcitability in the cortical circuit constitutes the critical early pathophysiology of tauopathy.
Collapse
|
27
|
Enes J, Haburčák M, Sona S, Gerard N, Mitchell AC, Fu W, Birren SJ. Satellite glial cells modulate cholinergic transmission between sympathetic neurons. PLoS One 2020; 15:e0218643. [PMID: 32017764 PMCID: PMC6999876 DOI: 10.1371/journal.pone.0218643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Postganglionic sympathetic neurons and satellite glial cells are the two major cell types of the peripheral sympathetic ganglia. Sympathetic neurons project to and provide neural control of peripheral organs and have been implicated in human disorders ranging from cardiovascular disease to peripheral neuropathies. Here we show that satellite glia regulate synaptic activity of cultured postnatal sympathetic neurons, providing evidence for local ganglionic control of sympathetic drive. In addition to modulating neuron-to-neuron cholinergic neurotransmission, satellite glia promote synapse formation and contribute to neuronal survival. Examination of the cellular architecture of the rat sympathetic ganglia in vivo shows this regulation of neuronal properties takes place during a developmental period in which neuronal morphology and density are actively changing and satellite glia enwrap sympathetic neuronal somata. Cultured satellite glia make and release factors that promote neuronal activity and that can partially rescue the neurons from cell death following nerve growth factor deprivation. Thus, satellite glia play an early and ongoing role within the postnatal sympathetic ganglia, expanding our understanding of the contributions of local and target-derived factors in the regulation of sympathetic neuron function.
Collapse
Affiliation(s)
- Joana Enes
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Marián Haburčák
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Surbhi Sona
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Nega Gerard
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Alexander C. Mitchell
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Wenqi Fu
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Susan J. Birren
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Brydges NM, Reddaway J. Neuroimmunological effects of early life experiences. Brain Neurosci Adv 2020; 4:2398212820953706. [PMID: 33015371 PMCID: PMC7513403 DOI: 10.1177/2398212820953706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.
Collapse
Affiliation(s)
- Nichola M. Brydges
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
29
|
Gao T, Jernigan J, Raza SA, Dammer EB, Xiao H, Seyfried NT, Levey AI, Rangaraju S. Transcriptional regulation of homeostatic and disease-associated-microglial genes by IRF1, LXRβ, and CEBPα. Glia 2019; 67:1958-1975. [PMID: 31301160 PMCID: PMC7190149 DOI: 10.1002/glia.23678] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
Microglia transform from homeostatic to disease-associated-microglia (DAM) profiles in neurodegeneration. Within DAM, we recently identified distinct pro-inflammatory and anti-inflammatory sub-profiles although transcriptional regulators of homeostatic and distinct DAM profiles remain unclear. Informed by these studies, we nominated CEBPα, IRF1, and LXRβ as likely regulators of homeostatic, pro-inflammatory and anti-inflammatory DAM states and performed in-vitro siRNA studies in primary microglia to identify roles of each transcriptional factor (TF) in regulating microglial activation, using an integrated transcriptomics, bioinformatics and experimental validation approach. Efficient (>70%) silencing of TFs in microglia revealed reciprocal regulation between each TF specifically following pro-inflammatory activation. Neuroinflammatory transcriptomic profiling of microglia coupled with qPCR validation revealed distinct gene clusters with unique patterns of regulation by each TF, which were independent of LPS stimulation. While all three TFs (especially IRF1 and LXRβ) positively regulated core DAM genes (Apoe, Axl, Clec7a, Tyrobp, and Trem2) as well as homeostatic and pro-inflammatory DAM genes, LPS, and IFNγ increased pro-inflammatory DAM but suppressed homeostatic and anti-inflammatory DAM gene expression via an Erk1/2-dependent signaling pathway. IRF1 and LXRβ silencing suppressed microglial phagocytic activity for polystyrene microspheres as well as fAβ42 while IRF1 silencing strongly suppressed production of pro-inflammatory cytokines in response to LPS. Our studies reveal complex transcriptional regulation of homeostatic and DAM profiles whereby IRF1, LXRβ, and CEBPα positively regulate both pro- and anti-inflammatory DAM genes while activating stimuli independently augment pro-inflammatory DAM responses and suppress homeostatic and anti-inflammatory responses via Erk signaling. This framework can guide development of therapeutic immuno-modulatory strategies for neurodegeneration.
Collapse
Affiliation(s)
- Tianwen Gao
- Department of Neurology, Emory University, Atlanta, GA, USA
- Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | - Syed Ali Raza
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
30
|
Cresto N, Pillet LE, Billuart P, Rouach N. Do Astrocytes Play a Role in Intellectual Disabilities? Trends Neurosci 2019; 42:518-527. [PMID: 31300246 DOI: 10.1016/j.tins.2019.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental disorders, including those involving intellectual disability, are characterized by abnormalities in formation and functions of synaptic circuits. Traditionally, research on synaptogenesis and synaptic transmission in health and disease focused on neurons, however, a growing number of studies have highlighted the role of astrocytes in this context. Tight structural and functional interactions of astrocytes and synapses indeed play important roles in brain functions, and the repertoire of astroglial regulations of synaptic circuits is large and complex. Recently, genetic studies of intellectual disabilities have underscored potential contributions of astrocytes in the pathophysiology of these disorders. Here we review how alterations of astrocyte functions in disease may interfere with neuronal excitability and the balance of excitatory and inhibitory transmission during development, and contribute to intellectual disabilities.
Collapse
Affiliation(s)
- Noémie Cresto
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France; Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Pierre Billuart
- Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France.
| |
Collapse
|
31
|
Han J, Zhu K, Zhang X, Harris RA. Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia 2019; 67:217-231. [PMID: 30378163 PMCID: PMC6635749 DOI: 10.1002/glia.23529] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Microglia are prominent immune cells in the central nervous system (CNS) and are critical players in both neurological development and homeostasis, and in neurological diseases when dysfunctional. Our previous understanding of the phenotypes and functions of microglia has been greatly extended by a dearth of recent investigations. Distinct genetically defined subsets of microglia are now recognized to perform their own independent functions in specific conditions. The molecular profiling of single microglial cells indicates extensively heterogeneous reactions in different neurological disorders, resulting in multiple potentials for crosstalk with other kinds of CNS cells such as astrocytes and neurons. In settings of neurological diseases it could thus be prudent to establish effective cell-based therapies by targeting entire microglial networks. Notably, activated microglial depletion through genetic targeting or pharmacological therapies within a suitable time window can stimulate replenishment of the CNS niche with new microglia. Additionally, enforced repopulation through provision of replacement cells also represents a potential means of exchanging dysfunctional with functional microglia. In each setting the newly repopulated microglia might have the potential to resolve ongoing neuroinflammation. In this review, we aim to summarize the most recent knowledge of microglia and to highlight microglial depletion and subsequent repopulation as a promising cell replacement therapy. Although glial cell replacement therapy is still in its infancy and future translational studies are still required, the approach is scientifically sound and provides new optimism for managing the neurotoxicity and neuroinflammation induced by activated microglia.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Xing‐Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| |
Collapse
|
32
|
Clyburn C, Browning KN. Role of astroglia in diet-induced central neuroplasticity. J Neurophysiol 2019; 121:1195-1206. [PMID: 30699056 DOI: 10.1152/jn.00823.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by increased adiposity that develops when energy intake outweighs expenditure, is rapidly becoming a serious health crisis that affects millions of people worldwide and is associated with severe comorbid disorders including hypertension, cardiovascular disease, and type II diabetes. Obesity is also associated with the dysregulation of central neurocircuits involved in the control of autonomic, metabolic, and cognitive functions. Systemic inflammation associated with diet-induced obesity (DIO) has been proposed to be responsible for the development of these comorbidities as well as the dysregulation of central neurocircuits. A growing body of evidence suggests, however, that exposure to a high-fat diet (HFD) may cause neuroinflammation and astroglial activation even before systemic inflammation develops, which may be sufficient to cause dysregulation of central neurocircuits involved in energy homeostasis before the development of obesity. The purpose of this review is to summarize the current literature exploring astroglial-dependent modulation of central circuits following exposure to HFD and DIO, including not only dysregulation of neurocircuits involved in energy homeostasis and feeding behavior, but also the dysregulation of learning, memory, mood, and reward pathways.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
33
|
Carrillo-Jimenez A, Puigdellívol M, Vilalta A, Venero JL, Brown GC, StGeorge-Hyslop P, Burguillos MA. Effective Knockdown of Gene Expression in Primary Microglia With siRNA and Magnetic Nanoparticles Without Cell Death or Inflammation. Front Cell Neurosci 2018; 12:313. [PMID: 30297984 PMCID: PMC6161539 DOI: 10.3389/fncel.2018.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 01/23/2023] Open
Abstract
Microglia, the resident immune cells of the brain, have multiple functions in physiological and pathological conditions, including Alzheimer’s disease (AD). The use of primary microglial cell cultures has proved to be a valuable tool to study microglial biology under various conditions. However, more advanced transfection methodologies for primary cultured microglia are still needed, as current methodologies provide low transfection efficiency and induce cell death and/or inflammatory activation of the microglia. Here, we describe an easy, and effective method based on the Glial-Mag method (OZ Biosciences) using magnetic nanoparticles and a magnet to successfully transfect primary microglia cells with different small interfering RNAs (siRNAs). This method does not require specialist facilities or specific training and does not induce cell toxicity or inflammatory activation. We demonstrate that this protocol successfully decreases the expression of two key genes associated with AD, the triggering receptor expressed in myeloid cells 2 (TREM2) and CD33, in primary microglia cell cultures.
Collapse
Affiliation(s)
- Alejandro Carrillo-Jimenez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Guy Charles Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Peter StGeorge-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Miguel Angel Burguillos
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
New Insights into Microglia-Neuron Interactions: A Neuron's Perspective. Neuroscience 2018; 405:103-117. [PMID: 29753862 DOI: 10.1016/j.neuroscience.2018.04.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research.
Collapse
|