1
|
Delgado M, Schuepbach RA, Bartussek J. Opinion: exploring alternative pathways to neuroprotection-nicotine and carbon monoxide as antioxidative factors in neurodegeneration and delirium. Front Neurol 2025; 16:1556456. [PMID: 40271113 PMCID: PMC12014463 DOI: 10.3389/fneur.2025.1556456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Affiliation(s)
- Marcos Delgado
- Institute of Intensive Care Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Bartussek
- Institute of Intensive Care Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department for Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Chen J, Cheng Y, Cui H, Li S, Duan L, Jiao Z. N‑acetyl‑L‑cysteine protects rat lungs and RLE‑6TN cells from cigarette smoke‑induced oxidative stress. Mol Med Rep 2025; 31:97. [PMID: 39981906 PMCID: PMC11865697 DOI: 10.3892/mmr.2025.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Cigarette smoke (CS) is a key contributor of chronic obstructive pulmonary disease (COPD); however, its role in the pathogenesis of COPD has not been fully elucidated. N‑acetyl‑L‑cysteine (NAC), as an antioxidant, has been used in the treatment of COPD; however, the mechanisms of action of NAC are not fully understood. Alveolar epithelial type 2 (ATII) cells serve an essential role in the maintenance of alveolar integrity. The aim of the present study was to identify the effect of CS on rat lungs and ATII cells. A subacute lung injury model of Wistar rats was established using CS exposure for 4 weeks. Interalveolar septa widening, infiltration of inflammatory cells, edema fluid in airspaces and abnormal enlargement of airspaces were observed through H&E staining. ELISA revealed that NAC could protect against CS‑induced increases in serum levels of malondialdehyde and decreases in serum levels of superoxide dismutase. Additionally, 8‑hydroxy‑deoxyguanosine was detected using immunohistochemical staining, and this was also expressed at increased levels in the lung tissue of the CS‑exposed group. In addition, the expression levels of Bcl‑2, BAX and caspase‑3 p12 in lung tissue were detected by western blotting or immunohistochemical staining. The expression levels of Bcl‑2 decreased and those of caspase3 p12 were increased in response to CS exposure when compared with those in the control group. These effects were prevented by treatment with NAC. In vitro, the effect of CS extract (CSE) on rat lung epithelial‑6‑T‑antigen negative (RLE‑6TN) cells was observed, flow cytometry was used to detect intracellular reactive oxygen species (ROS) levels and the occurrence of apoptosis, and the content of glutathione (GSH) was detected using a colorimetric assay. Additionally, the expression levels of heme oxygenase‑1 (HO‑1), p53 and Bcl‑2 were examined by western blotting, and HO‑1 mRNA expression was also examined using reverse transcription‑quantitative PCR. The results of the present study revealed that CSE induced apoptosis of RLE‑6TN cells, accompanied by increased levels of intracellular ROS and exhaustion of GSH. Significantly increased protein levels of HO‑1 and p53, as well as decreased protein levels of Bcl‑2 were also observed. These effects were prevented by administration of NAC. Overall, these findings suggested that CS could promote apoptosis in rat lung tissues and alveolar epithelial cells by inducing intracellular oxidative injury, and NAC may serve an antioxidant role by replenishing the intracellular GSH content.
Collapse
Affiliation(s)
- Jiameng Chen
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yuefeng Cheng
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Huijuan Cui
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shuangyan Li
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lantian Duan
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zongxian Jiao
- Department of Pathology, Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
3
|
Lu C, Liu Y, Ren F, Zhang H, Hou Y, Zhang H, Chen Z, Du X. HO-1: An emerging target in fibrosis. J Cell Physiol 2025; 240:e31465. [PMID: 39420552 DOI: 10.1002/jcp.31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Fibrosis, an aberrant reparative response to tissue injury, involves a disruption in the equilibrium between the synthesis and degradation of the extracellular matrix, leading to its excessive accumulation within normal tissues, and culminating in organ dysfunction. Manifesting in the terminal stages of nearly all chronic ailments, fibrosis carries a high mortality rate and poses a significant threat to human health. Heme oxygenase-1 (HO-1) emerges as an endogenous protective agent, mitigating tissue damage through its antioxidant, anti-inflammatory, and antiapoptotic properties. Numerous studies have corroborated HO-1's potential as a therapeutic target in anti-fibrosis treatment. This review delves into the structural and functional attributes, and the upstream and downstream pathways of HO-1. Additionally, the regulatory networks and mechanisms of HO-1 in cells associated with fibrosis are elucidated. The role of HO-1 in various fibrosis-related diseases is also explored. Collectively, this comprehensive information serves as a foundation for future research and augments the viability of HO-1 as a therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Chenxi Lu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yuan Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feifei Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Haoran Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yafang Hou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Zhao Y, Yao Z, Lu L, Xu S, Sun J, Zhu Y, Wu Y, Yu Z. Carbon monoxide-releasing molecule-3 exerts neuroprotection effects after cardiac arrest in mice: A randomized controlled study. Resusc Plus 2024; 19:100703. [PMID: 39040821 PMCID: PMC11260602 DOI: 10.1016/j.resplu.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Background Post-cardiac arrest brain injury (PCABI) is the leading cause of death in survivors of cardiac arrest (CA). Carbon monoxide-releasing molecule (CORM-3) is a water-soluble exogenous carbon monoxide that has been shown to have neuroprotection benefits in several neurological disease models. However, the effects of CORM-3 on PCABI is still unclear. Methods A mice model combined asystole with hemorrhage was used. Mice were anesthetized and randomized into 4 groups (n = 12/group) and underwent either 9.5 min CA followed by cardiopulmonary resuscitation (CPR) or sham surgery. CORM-3 (30 mg/kg) or vehicle (normal saline) were administered at 1 h after return of spontaneous circulation or sham surgery. Survival, neurologic deficits, alterations in the permeability of the brain-blood barrier and cerebral blood flow, changes of oxidative stress level, level of neuroinflammation and neuronal degeneration, and the activation of Nrf2/HO-1 signaling pathway were measured. Results In CORM-3 treated mice that underwent CA/CPR, significantly improved survival (75.00% vs. 58.33%, P = 0.0146 (24 h) and 66.67% vs. 16.67%, P < 0.0001 (72 h)) and neurological function were observed at 24 h and 72 h after ROSC (P < 0.05 for each). Additionally, increased cerebral blood flow, expression of tight junctions, and reduced reactive oxygen species generation at 24 h after ROSC were observed (P < 0.05 for each). CORM-3 treated mice had less neuron death and alleviated neuroinflammation at 72 h after ROSC (P < 0.05 for each). Notably, the Nrf2/HO-1 signaling pathway was significantly activated in mice subjected to CA/CPR with CORM-3 treatment. Conclusions CORM-3 could improve survival and exert neuroprotection after CA/CPR in mice. CORM-3 may be a novel and promising pharmacological therapy for PCABI.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianfei Sun
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanping Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Rose KN, Zorlu M, Fassini A, Lee H, Cai W, Xue X, Lin S, Kivisakk P, Schwarzschild MA, Chen X, Gomperts SN. Neuroprotection of low dose carbon monoxide in Parkinson's disease models commensurate with the reduced risk of Parkinson's among smokers. NPJ Parkinsons Dis 2024; 10:152. [PMID: 39174550 PMCID: PMC11341721 DOI: 10.1038/s41531-024-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Paradoxically, cigarette smoking is associated with a reduced risk of Parkinson's Disease (PD). This led us to hypothesize that carbon monoxide (CO) levels, which are constitutively but modestly elevated in smokers, might contribute to neuroprotection. Using rodent models of PD based on α-synuclein (αSyn) accumulation and oxidative stress, we show that low-dose CO mitigates neurodegeneration and reduces αSyn pathology. Oral CO administration activated signaling cascades mediated by heme oxygenase-1 (HO-1), which have been implicated in limiting oxidative stress, and in promoting αSyn degradation, thereby conferring neuroprotection. Consistent with the neuroprotective effect of smoking, HO-1 levels in cerebrospinal fluid were higher in human smokers compared to nonsmokers. Moreover, in PD brain samples, HO-1 levels were higher in neurons without αSyn pathology. Thus, CO in rodent PD models reduces pathology and increases oxidative stress responses, phenocopying possible protective effects of smoking evident in PD patients. These data highlight the potential for low-dose CO-modulated pathways to slow symptom onset and limit pathology in PD patients.
Collapse
Affiliation(s)
- K N Rose
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - M Zorlu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - A Fassini
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - H Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - W Cai
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - X Xue
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S Lin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - P Kivisakk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - M A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - X Chen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S N Gomperts
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Noguchi I, Maeda H, Kobayashi K, Nagasaki T, Kato H, Yanagisawa H, Wada N, Kanazawa G, Kaji T, Sakai H, Fujimaki S, Ono Y, Taguchi K, Chuang VTG, Saruwatari J, Otagiri M, Watanabe H, Maruyama T. Carbon monoxide-loaded cell therapy as an exercise mimetic for sarcopenia treatment. Free Radic Biol Med 2024; 220:67-77. [PMID: 38657755 DOI: 10.1016/j.freeradbiomed.2024.04.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Sarcopenia is characterized by loss of muscle strength and muscle mass with aging. The growing number of sarcopenia patients as a result of the aging population has no viable treatment. Exercise maintains muscle strength and mass by increasing peroxisome growth factor activating receptor γ-conjugating factor-1α (PGC-1α) and Akt signaling in skeletal muscle. The present study focused on the carbon monoxide (CO), endogenous activator of PGC-1α and Akt, and investigated the therapeutic potential of CO-loaded red blood cells (CO-RBCs), which is bioinspired from in vivo CO delivery system, as an exercise mimetic for the treatment of sarcopenia. Treatment of C2C12 myoblasts with the CO-donor increased the protein levels of PGC-1α which enhanced mitochondrial biogenesis and energy production. The CO-donor treatment also activated Akt, indicating that CO promotes muscle synthesis. CO levels were significantly elevated in the skeletal muscle of normal mice after intravenous administration of CO-RBCs. Furthermore, CO-RBCs restored the mRNA expression levels of PGC-1α in the skeletal muscle of two experimental sarcopenia mouse models, denervated (Den) and hindlimb unloading (HU) models. CO-RBCs also restored muscle mass in Den mice by activating Akt signaling and suppressing the muscle atrophy factors myostatin and atrogin-1, and oxidative stress. Treadmill tests further showed that the reduced running distance in HU mice was significantly restored by CO-RBC administration. These findings suggest that CO-RBCs have potential as an exercise mimetic for sarcopenia treatment.
Collapse
Affiliation(s)
- Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hiromasa Kato
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Gai Kanazawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Tsubasa Kaji
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan.
| | - Shin Fujimaki
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Victor Tuan Giam Chuang
- Pharmacy Discipline, Curtin Medical School, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, Western Australia, Australia.
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan.
| | - Hiroshi Watanabe
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Yang X, Mao Q, Wang B. On the Question of CO's Ability to Induce HO-1 Expression in Cell Culture: A Comparative Study Using Different CO Sources. ACS Chem Biol 2024; 19:725-735. [PMID: 38340055 PMCID: PMC10949199 DOI: 10.1021/acschembio.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
With the recognition of the endogenous signaling roles and pharmacological functions of carbon monoxide (CO), there is an increasing need to understand CO's mechanism of actions. Along this line, chemical donors have been introduced as CO surrogates for ease of delivery, dosage control, and sometimes the ability to target. Among all of the donors, two ruthenium-carbonyl complexes, CORM-2 and -3, are arguably the most commonly used tools for about 20 years in studying the mechanism of actions of CO. Largely based on data using these two CORMs, there has been a widely accepted inference that the upregulation of heme oxygenase-1 (HO-1) expression is one of the key mechanisms for CO's actions. However, recent years have seen reports of very pronounced chemical reactivities and CO-independent activities of these CORMs. We are interested in examining this question by conducting comparative studies using CO gas, CORM-2/-3, and organic CO donors in RAW264.7, HeLa, and HepG2 cell cultures. CORM-2 and CORM-3 treatment showed significant dose-dependent induction of HO-1 compared to "controls," while incubation for 6 h with 250-500 ppm CO gas did not increase the HO-1 protein expression and mRNA transcription level. A further increase of the CO concentration to 5% did not lead to HO-1 expression either. Additionally, we demonstrate that CORM-2/-3 releases minimal amounts of CO under the experimental conditions. These results indicate that the HO-1 induction effects of CORM-2/-3 are not attributable to CO. We also assessed two organic CO prodrugs, BW-CO-103 and BW-CO-111. BW-CO-111 but not BW-CO-103 dose-dependently increased HO-1 levels in RAW264.7 and HeLa cells. We subsequently studied the mechanism of induction with an Nrf2-luciferase reporter assay, showing that the HO-1 induction activity is likely due to the activation of Nrf2 by the CO donors. Overall, CO alone is unable to induce HO-1 or activate Nrf2 under various conditions in vitro. As such, there is no evidence to support attributing the HO-1 induction effect of the CO donors such as CORM-2/-3 and BW-CO-111 in cell culture to CO. This comparative study demonstrates the critical need to consider possible CO-independent effects of a chemical CO donor before attributing the observed biological effects to CO. It is also important to note that such in vitro results cannot be directly extrapolated to in vivo studies because of the increased level of complexity and the likelihood of secondary and/or synergistic effects in the latter.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Qiyue Mao
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
8
|
He L, Zhang R, Yang M, Lu M. The role of astrocyte in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166992. [PMID: 38128844 DOI: 10.1016/j.bbadis.2023.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Maiqiao Yang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
9
|
Rose KN, Zorlu M, Xue X, Fassini A, Cai W, Lin S, Webb P, Schwarzschild MA, Chen X, Gomperts SN. Neuroprotection of low dose carbon monoxide in Parkinson's disease models commensurate with the reduced risk of Parkinson's among smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.27.542565. [PMID: 37398030 PMCID: PMC10312428 DOI: 10.1101/2023.05.27.542565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Paradoxically, cigarette smoking is associated with a reduced risk of Parkinson's disease (PD). This led us to hypothesize that carbon monoxide (CO) levels, which are constitutively but modestly elevated in smokers, might contribute to neuroprotection. Using rodent models of PD based on α-synuclein (αSyn) accumulation and oxidative stress, we show that low-dose CO mitigates neurodegeneration and reduces αSyn pathology. Oral CO administration activated signaling cascades mediated by heme oxygenase-1 (HO-1), which have been implicated in limiting oxidative stress, and in promoting αSyn degradation, thereby conferring neuroprotection. Consistent with a neuroprotective effect of smoking, HO-1 levels in cerebrospinal fluid were higher in human smokers compared to nonsmokers. Moreover, in PD brain samples, HO-1 levels were higher in neurons without αSyn pathology. Thus, CO in rodent PD models reduces pathology and increases oxidative stress responses, phenocopying possible protective effects of smoking evident in PD patients. These data highlight the potential for low-dose CO modulated pathways to slow symptom onset and limit pathology in PD patients.
Collapse
|
10
|
Poonasri M, Mankhong S, Chiranthanut N, Srisook K. 4-methoxycinnamyl p-coumarate reduces neuroinflammation by blocking NF-κB, MAPK, and Akt/GSK-3β pathways and enhancing Nrf2/HO-1 signaling cascade in microglial cells. Biomed Pharmacother 2023; 168:115808. [PMID: 37922650 DOI: 10.1016/j.biopha.2023.115808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
The active compound, 4-methoxycinnamyl p-coumarate (MCC), derived from the rhizome of Etlingera pavieana (Pierre ex Gagnep) R.M.Sm., has been shown to exert anti-inflammatory effects in several inflammatory models. However, its effects on microglial cells remain elusive. In the current study, we aimed to investigate the anti-neuroinflammatory activities of MCC and determine the potential mechanisms underlying its action on lipopolysaccharide (LPS)-induced BV2 microglial cells. Our results revealed that MCC significantly reduced the secretion of nitric oxide (NO) and prostaglandin E2, concomitantly inhibiting the expression levels of inducible NO synthase and cyclooxygenase-2 mRNA and proteins. Additionally, MCC effectively decreased the production of reactive oxygen species in LPS-induced BV2 microglial cells. MCC also attenuates the activation of NF-κB by suppressing the phosphorylation of IκBα and NF-κB p65 subunits and by blocking the nuclear translocation of NF-κB p65 subunits. Furthermore, MCC significantly reduced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β). In addition, MCC markedly increased the expression of heme oxygenase-1 (HO-1) by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Collectively, our findings suggest that the anti-inflammatory activities of MCC could be attributed to its ability to suppress the activation of NF-κB, MAPK, and Akt/GSK-3β while enhancing that of Nrf2-mediated HO-1. Accordingly, MCC has promising therapeutic potential to treat neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Mayuree Poonasri
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi 20131, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Sakulrat Mankhong
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Klaokwan Srisook
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi 20131, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand.
| |
Collapse
|
11
|
Li J, Huang Y, Ma T, Liu Y, Luo Y, Gao L, Li Z, Ye Z. Carbon Monoxide Releasing Molecule-3 Alleviates Oxidative Stress and Apoptosis in Selenite-Induced Cataract in Rats via Activating Nrf2/HO-1 Pathway. Curr Eye Res 2023; 48:919-929. [PMID: 37395371 DOI: 10.1080/02713683.2023.2232569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE This study investigated the protective effect of carbon monoxide releasing molecule-3 (CORM-3), the classical donor of carbon monoxide, on selenite-induced cataract in rats and explore its possible mechanism. METHODS Sprague-Dawley rat pups treated with sodium selenite (Na2SeO3) were chosen as the cataract model. Fifty rat pups were randomly divided into 5 groups: Control group, Na2SeO3 (3.46 mg/kg) group, low-dose CORM-3 (8 mg/kg/d) + Na2SeO3 group, high-dose CORM-3 (16 mg/kg/d) + Na2SeO3 group, and inactivated CORM-3 (iCORM-3) (8 mg/kg/d) + Na2SeO3 group. The protective effect of CORM-3 was tested by lens opacity scores, hematoxylin and eosin staining, TdT-mediated dUTP nick-end labeling assay, and enzyme-linked immunosorbent assay. Besides, quantitative real-time PCR and western blotting were used for mechanism validation. RESULTS Na2SeO3 induced nuclear cataract rapidly and stably, and the achievement ratio of Na2SeO3 group was 100%. CORM-3 alleviated lens opacity of selenite-induced cataract and attenuated the morphological changes of the rat lens. The levels of antioxidant enzymes GSH and SOD in rat lens were also increased by CORM-3 treatment. CORM-3 significantly reduced the ratio of apoptotic lens epithelial cells, besides, CORM-3 decreased the expression of Cleaved Caspase-3 and Bax induced by selenite and increased the expression of Bcl-2 in rat lens inhibited by selenite. Moreover, Nrf-2 and HO-1 were upregulated and Keap1 was downregulated after CORM-3 treatment. While iCORM-3 did not exert the same effect as CORM-3. CONCLUSIONS Exogenous CO released from CORM-3 alleviates oxidative stress and apoptosis in selenite-induced rat cataract via activating Nrf2/HO-1 pathway. CORM-3 may serve as a promising preventive and therapeutic strategy for cataract.
Collapse
Affiliation(s)
- Jinglan Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yating Liu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yu Luo
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Heme Oxygenase-1 Overexpression Promotes Uveal Melanoma Progression and Is Associated with Poor Clinical Outcomes. Antioxidants (Basel) 2022; 11:antiox11101997. [PMID: 36290720 PMCID: PMC9598584 DOI: 10.3390/antiox11101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/05/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor in adults. To date, the main strategies to counteract its progression consist of focal radiation on the tumor site and ocular enucleation. Furthermore, many UM patients develop liver metastasis within 10 years following diagnosis, eventually resulting in a poorer prognosis for those patients. Dissecting the molecular mechanism involved in UM progression may lead to identify novel prognostic markers with significative clinical applications. The aim of the present study was to evaluate the role of Heme Oxygenase 1 (HO-1) in regulating UM progression. UM cell lines (92.1) were treated with Hemin (CONC e time), a strong inducer of HO-1, and VP13/47, a selective inhibitor of its enzymatic activity. Interestingly, our results showed an enhanced 92.1 cellular proliferation and wound healing ability following an HO-1 increase, overall unveiling the role played by this protein in tumor progression. Similar results were obtained following treatment with two different CO releasing molecules (CORM-3 and CORM-A1). These results were further confirmed in a clinical setting using our UM cohort. Our results demonstrated an increased median HO-1 expression in metastasizing UM when compared to nonmetastasizing patients. Overall, our results showed that HO-1 derived CO plays a major role in UM progression and HO-1 protein expression may serve as a potential prognostic and therapeutical factor in UM patients.
Collapse
|
13
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
15
|
Mancuso C. The brain heme oxygenase/biliverdin reductase system as a target in drug research and development. Expert Opin Ther Targets 2022; 26:361-374. [PMID: 35285395 DOI: 10.1080/14728222.2022.2052848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The heme oxygenase/biliverdin reductase (HO/BVR) system is involved in heme metabolism. The inducible isoform of HO (HO-1) and BVR both exert cytoprotective effects by enhancing cell stress response. In this context, some xenobiotics, which target HO-1, including herbal products, behave as neuroprotectants in several experimental models of neurodegeneration. Despite this, no drug having either HO-1 or BVR as a main target is currently available. AREAS COVERED After a description of the brain HO/BVR system, the paper analyzes the main classes of drugs acting on the nervous system, with HO as second-level target, and their neuroprotective potential. Finally, the difficulties that exist for the development of drugs acting on HO/BVR and the possible ways to overcome these hurdles are examined. EXPERT OPINION Although the limited clinical evidence has restricted the translational research on the HO/BVR system, mainly because of the dual nature of its by-products, there has been growing interest in the therapeutic potential of these enzymes. Scientists should boost the translational research on the HO/BVR system which could be supported by the significant evidence provided by preclinical studies.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Chang Y, Chang JT, Lee MY, Huang MZ, Chao YFCC, Shih YL, Hwang YR. Does Far-Infrared Therapy Improve Peritoneal Function and Reduce Recurrent Peritonitis in Peritoneal Dialysis Patients? J Clin Med 2022; 11:jcm11061624. [PMID: 35329948 PMCID: PMC8955287 DOI: 10.3390/jcm11061624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/30/2023] Open
Abstract
The use of peritoneal dialysis in end-stage renal disease is increasing in clinical practice. The main purpose of this study was to evaluate the effect of far-infrared radiation therapy on inflammation and the cellular immunity of patients undergoing peritoneal dialysis. We recruited 56 patients undergoing peritoneal dialysis, and we included 32 patients for the experimental group and 24 patients from the control group in the final analysis. The experimental evaluation in our study was as follows: (1) We used abdominal computed tomography to explore the changes in abdominal blood vessels. (2) We compared the effects of peritoneal dialysis using blood glucose, HbAlC, albumin, urea nitrogen, creatinine, white blood cells, hs-CRP; peritoneal Kt/V of peritoneal function, and eGFR. (3) We compared the cytokines’ concentrations in the two groups while controlling for the other cytokines. Results and Discussion: (1) There was no significant difference in the abdominal blood vessels of the experimental group relative to the control group according to abdominal CT over the 6 months. (2) Our study demonstrates statistically significant effects of FIR therapy on the following parameters: creatinine (p = 0.039 *) and hs-CRP (p < 0.001 **) levels decreased significantly, and eGFR (p = 0.043 *), glucose (p < 0.001 **), and albumin (p = 0.048 *) levels increased significantly. Our study found that in the experimental group, creatinine and hs-CRP levels decreased significantly due to FIR therapy for 6 months. However, our study also found that the glucose level was significantly different after FIR therapy for 6 months. Peritoneal dialysis combined with FIR can reduce the side effects of the glucose in the dialysis buffer, which interferes with peritoneal inflammation and peritoneal mesothelial cell fibrosis. (3) In addition, we also found that no statistically significant difference in any inflammatory cytokine after FIR therapy. IFN-γ (p = 0.124), IL-12p70 (p = 0.093), IL-18 (p = 0.213), and TNF-α (p = 0.254) did not exhibit significant improvements after peritoneal dialysis with FIR treatment over 6 months. Conclusions: We found that the effectiveness of peritoneal dialysis was improved significantly with FIR therapy, and significant improvements in the peritoneal permeability and inflammatory response were observed.
Collapse
Affiliation(s)
- Yuanmay Chang
- Institute of Long-Term Care, MacKay Medical College, New Taipei 25245, Taiwan;
- Correspondence: ; Tel.: +886-919991261
| | - Jui-Ting Chang
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
| | - Mei-Yi Lee
- Department of Physical Therapy, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Mei-Zen Huang
- Department of Nursing, National Tainan Junior College of Nursing, Tainan 70007, Taiwan;
| | | | - Yung-Luen Shih
- Laboratory Medicine, Department of Pathology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
| | - Yao-Rong Hwang
- Institute of Long-Term Care, MacKay Medical College, New Taipei 25245, Taiwan;
| |
Collapse
|
17
|
A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene? Antioxidants (Basel) 2022; 11:antiox11020276. [PMID: 35204159 PMCID: PMC8868141 DOI: 10.3390/antiox11020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation, is involved in the maintenance of cellular homeostasis, exerting a cytoprotective role by its antioxidative and anti-inflammatory functions. HO-1 and its end products, biliverdin, carbon monoxide and free iron (Fe2+), confer cytoprotection against inflammatory and oxidative injury. Additionally, HO-1 exerts antiviral properties against a diverse range of viral infections by interfering with replication or activating the interferon (IFN) pathway. Severe cases of coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are characterized by systemic hyperinflammation, which, in some cases, leads to severe or fatal symptoms as a consequence of respiratory failure, lung and heart damage, kidney failure, and nervous system complications. This review summarizes the current research on the protective role of HO-1 in inflammatory diseases and against a wide range of viral infections, positioning HO-1 as an attractive target to ameliorate clinical manifestations during COVID-19.
Collapse
|
18
|
Luo Y, Ullah R, Wang J, Du Y, Huang S, Meng L, Gao Y, Gong M, Galaj E, Yin X, Shi H. Exogenous Carbon Monoxide Produces Rapid Antidepressant- and Anxiolytic-Like Effects. Front Pharmacol 2021; 12:757417. [PMID: 34867375 PMCID: PMC8637155 DOI: 10.3389/fphar.2021.757417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO), a byproduct of heme catalyzed by heme oxygenase (HO), has been reported to exert antioxidant and anti-inflammatory actions, and to produce significant neuroprotective effects. The potential effects of CO and even HO on depressive-like behaviors are still poorly understood. Utilizing several approaches including adeno-associated virus (AAV)-mediated overexpression of HO-1, systemic CO-releasing molecules (CO-RMs), CO-rich saline or CO gas treatment procedures in combination with hydrogen peroxide (H2O2)-induced PC12 cell injury model, and lipopolysaccharide (LPS)-induced depression mouse model, the present study aimed to investigate the potential antidepressant- and anxiolytic-like effects of endogenous and exogenous CO administration in vivo and in vitro. The results of in vitro experiments showed that both CO-RM-3 and CO-RM-A1 pretreatment blocked H2O2-induced cellular injuries by increasing cell survival and decreasing cell apoptosis and necrosis. Similar to the effects of CO-RM-3 and CO-RM-A1 pretreatment, AAV-mediated HO-1 overexpression in the dorsal hippocampus produced significant antidepressant-like activities in mice under normal conditions. Further investigation showed that the CO gas treatment significantly blocked LPS-induced depressive- and anxiety-like behaviors in mice. Taken together, our results suggest that the activation of HO-1 and/or exogenous CO administration produces protective effects and exerts antidepressant- and anxiolytic-like effects. These data uncover a novel function of the HO-1/CO system that appears to be a promising therapeutic target for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Rafi Ullah
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Wang
- Department of Obstetrics and Gynecology, The No.1 Hospital of Yongnian District Handan City, Handan, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Ewa Galaj
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, United States
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Dugbartey GJ, Alornyo KK, Luke PPW, Sener A. Application of carbon monoxide in kidney and heart transplantation: A novel pharmacological strategy for a broader use of suboptimal renal and cardiac grafts. Pharmacol Res 2021; 173:105883. [PMID: 34525329 DOI: 10.1016/j.phrs.2021.105883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022]
Abstract
Carbon monoxide (CO) was historically regarded solely as a poisonous gas that binds to hemoglobin and reduces oxygen-carrying capacity of blood at high concentrations. However, recent findings show that it is endogenously produced in mammalian cells as a by-product of heme degradation by heme oxygenase, and has received a significant attention as a medical gas that influences a myriad of physiological and pathological processes. At low physiological concentrations, CO exhibits several therapeutic properties including antioxidant, anti-inflammatory, anti-apoptotic, anti-fibrotic, anti-thrombotic, anti-proliferative and vasodilatory properties, making it a candidate molecule that could protect organs in various pathological conditions including cold ischemia-reperfusion injury (IRI) in kidney and heart transplantation. Cold IRI is a well-recognized and complicated cascade of interconnected pathological pathways that poses a significant barrier to successful outcomes after kidney and heart transplantation. A substantial body of preclinical evidence demonstrates that CO gas and CO-releasing molecules (CO-RMs) prevent cold IRI in renal and cardiac grafts through several molecular and cellular mechanisms. In this review, we discuss recent advances in research involving the use of CO as a novel pharmacological strategy to attenuate cold IRI in preclinical models of kidney and heart transplantation through its administration to the organ donor prior to organ procurement or delivery into organ preservation solution during cold storage and to the organ recipient during reperfusion and after transplantation. We also discuss the underlying molecular mechanisms of cyto- and organ protection by CO during transplantation, and suggest its clinical use in the near future to improve long-term transplantation outcomes.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Patrick P W Luke
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
20
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
21
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Carbon Monoxide Releasing Molecule-3 Enhances Heme Oxygenase-1 Induction via ROS-Dependent FoxO1 and Nrf2 in Brain Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5521196. [PMID: 34194603 PMCID: PMC8214505 DOI: 10.1155/2021/5521196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Carbon monoxide releasing molecule-3 (CORM-3) has been shown to protect inflammatory diseases via the upregulation of heme oxygenases-1 (HO-1). However, in rat brain astrocytes (RBA-1), the mechanisms underlying CORM-3-induced HO-1 remain poorly defined. This study used western blot, real-time PCR, and promoter activity assays to determine the levels of HO-1 expression and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidium (DHE) to measure reactive oxygen species (ROS). We found that CORM-3-induced HO-1 expression was mediated through ROS generation by Nox or mitochondria. The signaling components were differentiated by pharmacological inhibitors and small interfering RNA (siRNA). Subcellular fractions, immunofluorescent staining, and chromatin immunoprecipitation assay were used to evaluate the nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The roles of mTOR and FoxO1 in CORM-3-stimulated responses are still unknown in RBA-1 cells. Our results demonstrated that transfection with siRNAs or pretreatment with pharmacological inhibitors attenuated the levels of HO-1 and phosphorylation of signaling components including Akt, mTOR, FoxO1, and Nrf2 stimulated by CORM-3. Moreover, pretreatment with N-acetyl-L-cysteine, diphenyleneiodonium chloride, apocynin, or rotenone blocked nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The present study concluded that in RBA-1 cells, CORM-3-induced HO-1 expression is, at least partially, mediated through Nox and mitochondria/ROS-dependent PI3K/Akt/mTOR cascade to activate FoxO1 or ROS leading to activation of Nrf2 activity.
Collapse
|
23
|
Ríos-Arrabal S, Puentes-Pardo JD, Moreno-SanJuan S, Szuba Á, Casado J, García-Costela M, Escudero-Feliu J, Verbeni M, Cano C, González-Puga C, Martín-Lagos Maldonado A, Carazo Á, León J. Endothelin-1 as a Mediator of Heme Oxygenase-1-Induced Stemness in Colorectal Cancer: Influence of p53. J Pers Med 2021; 11:jpm11060509. [PMID: 34199777 PMCID: PMC8227293 DOI: 10.3390/jpm11060509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an antioxidant protein implicated in tumor progression, metastasis, and resistance to therapy. Elevated HO-1 expression is associated with stemness in several types of cancer, although this aspect has not yet been studied in colorectal cancer (CRC). Using an in vitro model, we demonstrated that HO-1 overexpression regulates stemness and resistance to 5-FU treatment, regardless of p53. In samples from CRC patients, HO-1 and endothelin converting enzyme-1 (ECE-1) expression correlated significantly, and p53 had no influence on this result. Carbon monoxide (CO) activated the ECE-1/endothelin-1 (ET-1) pathway, which could account for the protumoral effects of HO-1 in p53 wild-type cells, as demonstrated after treatment with bosentan (an antagonist of both ETRA and ETRB endothelin-1 receptors). Surprisingly, in cells with a non-active p53 or a mutated p53 with gain-of-function, ECE-1-produced ET-1 acted as a protective molecule, since treatment with bosentan led to increased efficiency for spheres formation and percentage of cancer stem cells (CSCs) markers. In these cells, HO-1 could activate or inactivate certain unknown routes that could induce these contrary responses after treatment with bosentan in our cell model. However more research is warranted to confirm these results. Patients carrying tumors with a high expression of both HO-1 and ECE-1 and a non-wild-type p53 should be considered for HO-1 based-therapies instead of ET-1 antagonists-based ones.
Collapse
Affiliation(s)
- Sandra Ríos-Arrabal
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Jose D. Puentes-Pardo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Sara Moreno-SanJuan
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Cytometry and Microscopy Research Service, Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Ágata Szuba
- Unidad de Gestión Clínica de Cirugía, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jorge Casado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - María García-Costela
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Julia Escudero-Feliu
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Michela Verbeni
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Carlos Cano
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Cristina González-Puga
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Cirugía, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Alicia Martín-Lagos Maldonado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Ángel Carazo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958023199
| |
Collapse
|
24
|
Sauer RS, Krummenacher I, Bankoglu EE, Yang S, Oehler B, Schöppler F, Mohammadi M, Güntzel P, Ben-Kraiem A, Holzgrabe U, Stopper H, Broscheit JA, Braunschweig H, Roewer N, Brack A, Rittner HL. Stabilization of Delphinidin in Complex with Sulfobutylether-β-Cyclodextrin Allows for Antinociception in Inflammatory Pain. Antioxid Redox Signal 2021; 34:1260-1279. [PMID: 32977733 DOI: 10.1089/ars.2019.7957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Delphinidin (DEL) is a plant-derived antioxidant with clinical potential to treat inflammatory pain but suffers from poor solubility and low bioavailability. The aim of the study was to develop a well-tolerated cyclodextrin (CD)-DEL complex with enhanced bioavailability and to investigate the mechanisms behind its antinociceptive effects in a preclinical model of inflammatory pain. Results: CD-DEL was highly soluble and stable in aqueous solution, and was nontoxic. Systemic administration of CD-DEL reversed mechanical and heat hyperalgesia, while its local application into the complete Freund's adjuvant (CFA)-induced inflamed paw dose-dependently reduced mechanical hyperalgesia, paw volume, formation of the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE), and tissue migration of CD68+ macrophages. CD-DEL also directly prevented 4-HNE-induced mechanical hyperalgesia, cold allodynia, and an increase in the intracellular calcium concentration into transient receptor potential ankyrin 1 expressing cells. Both 4-HNE- and CFA-induced reactive oxygen species (ROS) levels were sensitive to CD-DEL, while its capacity to scavenge superoxide anion radicals (inhibitory concentration 50 [IC50]: 70 ± 5 μM) was higher than that observed for hydroxyl radicals (IC50: 600 ± 50 μM). Finally, CD-DEL upregulated heme oxygenase 1 that was prevented by HMOX-1 siRNA in vitro. Innovation:In vivo application of DEL to treat inflammatory pain is facilitated by complexation with CD. Apart from its antioxidant effects, the CD-DEL has a unique second antioxidative mechanism involving capturing of 4-HNE into the CD cavity followed by displacement and release of the ROS scavenger DEL. Conclusion: CD-DEL has antinociceptive, antioxidative, and anti-inflammatory effects making it a promising formulation for the local treatment of inflammatory pain.
Collapse
Affiliation(s)
- Reine-Solange Sauer
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Julius Maximilians University Würzburg, Würzburg, Germany
| | - Ezgi Eylül Bankoglu
- Institute of Pharmacology and Toxicology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Shaobing Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beatrice Oehler
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Friedrich Schöppler
- Institute for Physical and Theoretical Chemistry and Julius Maximilians University Würzburg, Würzburg, Germany
| | - Milad Mohammadi
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Paul Güntzel
- Institute for Pharmacy and Food Chemistry, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Adel Ben-Kraiem
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Jens A Broscheit
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Julius Maximilians University Würzburg, Würzburg, Germany
| | - Norbert Roewer
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Brack
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Wang M, Yang X, Pan Z, Wang Y, De La Cruz LK, Wang B, Tan C. Towards "CO in a pill": Pharmacokinetic studies of carbon monoxide prodrugs in mice. J Control Release 2020; 327:174-185. [PMID: 32745568 PMCID: PMC7606817 DOI: 10.1016/j.jconrel.2020.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is a known endogenous signaling molecule with potential therapeutic indications in treating inflammation, cancer, neuroprotection, and sickle cell disease among many others. One of the hurdles in using CO as a therapeutic agent is the development of pharmaceutically acceptable delivery forms for various indications. Along this line, we have developed organic CO prodrugs that allow for packing this gaseous molecule into a dosage form for the goal of "carbon monoxide in a pill." This should enable non-inhalation administration including oral and intravenous routes. These prodrugs have previously demonstrated efficacy in multiple animal models. To further understand the CO delivery efficiency of these prodrugs in relation to their efficacy, we undertook the first pharmacokinetic studies on these prodrugs. In doing so, we selected five representative prodrugs with different CO release kinetics and examined their pharmacokinetics after administration via oral, intraperitoneal, and intravenous routes. It was found that all three routes were able to elevate systemic CO level with delivery efficiency in the order of intravenous, oral, and intraperitoneal routes. CO prodrugs and their CO-released products were readily cleared from the circulation. CO prodrugs demonstrate promising pharmaceutical properties in terms of oral CO delivery and minimal drug accumulation in the body. This represents the very first study of the interplay among CO release kinetics, CO prodrug clearance, route of administration, and CO delivery efficiency.
Collapse
Affiliation(s)
- Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yingzhe Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
26
|
Carbon Monoxide-Releasing Molecule-3 Suppresses Tumor Necrosis Factor- α- and Interleukin-1 β-Induced Expression of Junctional Molecules on Human Gingival Fibroblasts via the Heme Oxygenase-1 Pathway. Mediators Inflamm 2020; 2020:6302391. [PMID: 32410860 PMCID: PMC7204158 DOI: 10.1155/2020/6302391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Human gingival fibroblast barrier dysfunction caused by inflammation contributes to gingivitis and can lead to inflammatory periodontal disease. The disease features include upregulated epithelial permeability, increased inflammatory mediators, and downregulated junctional complex molecules. Carbon monoxide- (CO-) releasing molecule-3 (CORM-3) is a water-soluble compound that has demonstrated anti-inflammatory effects in in vitro and in vivo studies. In this study, we aimed to investigate the effects of CORM-3 on the expression of tight and adherens junction molecules on human gingival fibroblasts (HGFs) stimulated with tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). HGFs were cultured from the explants of normal human gingival tissues, which were stimulated in the presence or absence of CORM-3. Epithelial barrier function was evaluated by paracellular permeability and junctional complex molecule expression analyses. The protein and mRNA expression levels of adherens junction molecules (VE-cadherin and β-catenin) and tight junction molecules (zona occludens-1, ZO-1) were studied using western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-PCR). The mRNA and protein expression levels of these cytokines were also analyzed in HGFs transiently transfected with HO-1 small interfering RNA (siRNA) in response to TNF-α and IL-1β stimulation. CORM-3 reduced permeability and enhanced the expression of junctional complex molecules (ZO-1, VE-cadherin, and β-catenin) in TNF-α- and IL-1β-induced HGFs. However, these effects of CORM-3 were attenuated when HO-1 siRNA was transiently transfected in HGFs. These findings indicate that CORM-3 exerts anti-inflammatory effects on TNF-α- and IL-1β-stimulated HGFs via the HO-1 pathway, which suggests the promising potential of CORM-3 in the treatment of inflammatory periodontal disease.
Collapse
|
27
|
Zhang DD, Liang YF, Qi J, Kang KB, Yu XJ, Gao HL, Liu KL, Chen YM, Shi XL, Xin GR, Fu LY, Kang YM, Cui W. Carbon Monoxide Attenuates High Salt-Induced Hypertension While Reducing Pro-inflammatory Cytokines and Oxidative Stress in the Paraventricular Nucleus. Cardiovasc Toxicol 2020; 19:451-464. [PMID: 31037602 DOI: 10.1007/s12012-019-09517-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carbon monoxide (CO) presents anti-inflammatory and antioxidant activities as a new gaseous neuromessenger produced by heme oxygenase-1 (HO-1) in the body. High salt-induced hypertension is relevant to the levels of pro-inflammatory cytokines (PICs) and oxidative stress in the hypothalamic paraventricular nucleus (PVN). We explored whether CO in PVN can attenuate high salt-induced hypertension by regulating PICs or oxidative stress. Male Dahl Salt-Sensitive rats were fed high-salt (8% NaCl) or normal-salt (0.3% NaCl) diet for 4 weeks. CORM-2, ZnPP IX, or vehicle was microinjected into bilateral PVN for 6 weeks. High-salt diet increased the levels of MAP, plasma norepinephrine (NE), reactive oxygen species (ROS), and the expressions of COX2, IL-1β, IL-6, NOX2, and NOX4 significantly in PVN (p < 0.05), but decreased the expressions of HO-1 and Cu/Zn-SOD in PVN (p < 0.05). Salt increased sympathetic activity as measured by circulating norepinephrine, and increased the ratio of basal RSNA to max RSNA, in part by decreasing max RSNA. PVN microinjection of CORM-2 decreased the levels of MAP, NE, RSNA, ROS and the expressions of COX2, IL-1β, IL-6, NOX2, NOX4 significantly in PVN of hypertensive rat (p < 0.05), but increased the expressions of HO-1 and Cu/Zn-SOD significantly (p < 0.05), which were all opposite to the effects of ZnPP IX microinjected in PVN (p < 0.05). We concluded that exogenous or endogenous CO attenuates high salt-induced hypertension by regulating PICs and oxidative stress in PVN.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi, 154007, China
| | - Yan-Feng Liang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, 154007, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guo-Rui Xin
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wei Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
28
|
El-Horany HES, Gaballah HH, Helal DS. Berberine ameliorates renal injury in a rat model of D-galactose-induced aging through a PTEN/Akt-dependent mechanism. Arch Physiol Biochem 2020; 126:157-165. [PMID: 30145915 DOI: 10.1080/13813455.2018.1499117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the protective effects of berberine (BBR) against D-galactose (D-gal)-induced renal aging in rats, pointing to its ability to modulate phosphatase and tensin homolog deleted on chromosome ten (PTEN)/Akt signalling, and to attenuate oxidative stress, inflammation and apoptosis. Renal aging was induced by subcutaneous injection of D-gal for six consecutive weeks along with simultaneous oral administration of BBR and compared to control rats and rats received individual doses of either drug. BBR treatment significantly reduced the serum levels of urea and creatinine, retrieved the alterations in kidney histopathology, and restored redox balance evidenced by alleviations of the level of malondialdehyde, 8-hydroxy-2'-deoxyguanosine and activating heme oxygenase-1 enzyme. Moreover, it markedly reduced the serum levels of pro-inflammatory mediators, along with down-regulation of PTEN expression, enhanced Akt activity, as well as significantly higher immunostaining of the anti-apoptotic marker (Bcl-2). These findings hold a great promise for the use of BBR as a protecting agent against renal aging.
Collapse
Affiliation(s)
| | | | - Duaa Samir Helal
- Faculty of Medicine, Department of Histopathology,Tanta University, Tanta, Egypt
| |
Collapse
|
29
|
Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21072273. [PMID: 32218342 PMCID: PMC7177523 DOI: 10.3390/ijms21072273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
Regeneration of adult neural circuits after an injury is limited in the central nervous system (CNS). Heme oxygenase (HO) is an enzyme that produces HO metabolites, such as carbon monoxide (CO), biliverdin and iron by heme degradation. CO may act as a biological signal transduction effector in CNS regeneration by stimulating neuronal intrinsic and extrinsic mechanisms as well as mitochondrial biogenesis. CO may give directions by which the injured neurovascular system switches into regeneration mode by stimulating endogenous neural stem cells and endothelial cells to produce neurons and vessels capable of replacing injured neurons and vessels in the CNS. The present review discusses the regenerative potential of CO in acute and chronic neuroinflammatory diseases of the CNS, such as stroke, traumatic brain injury, multiple sclerosis and Alzheimer’s disease and the role of signaling pathways and neurotrophic factors. CO-mediated facilitation of cellular communications may boost regeneration, consequently forming functional adult neural circuits in CNS injury.
Collapse
|
30
|
Yang CM, Lin CC, Yang CC, Cho RL, Hsiao LD. Mevastatin-Induced AP-1-Dependent HO-1 Expression Suppresses Vascular Cell Adhesion Molecule-1 Expression and Monocyte Adhesion on Human Pulmonary Alveolar Epithelial Cells Challenged with TNF-α. Biomolecules 2020; 10:biom10030381. [PMID: 32121588 PMCID: PMC7175369 DOI: 10.3390/biom10030381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Mevastatin (MVS) has been previously shown to induce heme oxygenase (HO)-1 expression through Nox/ROS-dependent PDGFRα/PI3K/Akt/Nrf2/ARE axis in human pulmonary alveolar epithelial cells (HPAEpiCs). However, alternative signaling pathways might involve in MVS-induced HO-1 expression. We found that tumor necrosis factor α (TNFα) induced vascular cell adhesion protein 1 (VCAM-1) expression and NF-κB p65 phosphorylation which were attenuated by pretreatment with MVS via up-regulation of HO-1, determined by Western blot and real-time qPCR. TNFα-induced VCAM-1 expression was attenuated by an NF-κB inhibitor, Bay117082. The inhibitory effects of MVS were reversed by tin protoporphyrin (SnPP)IX (an inhibitor of HO-1 activity). In addition, pretreatment with the inhibitor of pan-Protein kinase C (PKC) (GF109203X), PKCα (Gö6983), Pyk2 (PF431396), p38α MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA), and transfection with their respective siRNAs abolished MVS-induced HO-1 expression in HPAEpiCs. c-Jun (one of AP-1 subunits) was activated by PKCα, Pyk2, p38α MAPK, and JNK1/2, which turned on the transcription of the homx1 gene. The interaction between c-Jun and HO-1 promoter was confirmed by a chromatin immunoprecipitation (ChIP) assay, which was attenuated by these pharmacological inhibitors. These results suggested that MVS induces AP-1/HO-1 expression via PKCα/Pyk2/p38α MAPK- or JNK1/2-dependent c-Jun activation, which further binds with AP-1-binding site on HO-1 promoter and suppresses the TNFα-mediated inflammatory responses in HPAEpiCs. Thus, upregulation of the AP-1/HO-1 system by MVS exerts a potentially therapeutic strategy to protect against pulmonary inflammation.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (R.-L.C.); (L.-D.H.)
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-San, Tao-Yuan 33302, Taiwan;
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Rou-Ling Cho
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (R.-L.C.); (L.-D.H.)
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (R.-L.C.); (L.-D.H.)
| |
Collapse
|
31
|
Adach W, Olas B. A comparison of multifunctional donors of carbon monoxide: Their anticoagulant, antioxidant, anti-aggregatory and cytotoxicity activities in an in vitro model. Nitric Oxide 2020; 97:20-26. [PMID: 32006712 DOI: 10.1016/j.niox.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/14/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022]
Abstract
The study examines the effect of two water-soluble carbon monoxide (CO) donors, CORM-3 and CORM-A1, on selected parameters of oxidative stress and hemostasis in human plasma and blood platelets in vitro. It also compares their activity with that of the lipid-soluble CORM-2. The oxidation of amino acid residues in plasma proteins was evaluated by measuring the amounts of thiol and carbonyl groups. Plasma lipid peroxidation was measured as thiobarbituric acid reactive substance (TBARS) concentration. In addition, three haemostatic parameters of plasma were studied, viz. activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT), and one haemostatic parameter of platelets (platelet aggregation). Treatment with CORM-3 and CORM-A1 (all concentrations from 0.1 to 100 μM) decreased thiol group oxidation induced by H2O2/Fe. Incubation with CORM-3 and CORM-A1 also influenced plasma coagulation activity, e.g. CORM-3 and CORM-A1 significantly prolonged TT at the two highest tested concentrations (50 and 100 μM). Only CORM-2 at the highest tested concentration (100 μM) and CORM-3 (50 and 100 μM) reduced platelet aggregation induced by ADP. None of the tested CORMs caused platelet damage. The treatment of various diseases associated with oxidative stress, including cardiovascular diseases, may be enhanced by the administration of CO donors CORM-2 and CORM-3, these being modulators of oxidative stress and hemostasis.
Collapse
Affiliation(s)
- Weronika Adach
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Beata Olas
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
32
|
Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J Clin Med 2020; 9:jcm9010226. [PMID: 31952230 PMCID: PMC7019964 DOI: 10.3390/jcm9010226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Mevastatin (MVS), a 3-hydroxy-3-methylglutaryl coenzyme, a reductase (HMG-CoA) inhibitor, has anti-inflammatory effects potentially via up-regulation of heme oxygenase-1 (HO-1). However, the mechanisms underlying MVS-induced HO-1 expression remain largely unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). Methods: HO-1 and intercellular adhesion molecule (ICAM)-1 expression were determined using real-time PCR, Western blotting, and promoter reporter analyses. The signaling components were investigated using pharmacological inhibitors or specific small interfering RNA (siRNA)s. Interaction between Nrf2 and the antioxidant response element (ARE) binding site for the HO-1 promoter was determined by chromatin immunoprecipitation (ChIP) assay. Results: Upregulation of HO-1 by MVS attenuated the tumor necrosis factor (TNF)-α-stimulated ICAM-1 expression associated with THP-1 adhesion to HPAEpiCs. These inhibitory effects of HO-1 were reversed by tin protoporphyrin (SnPP)IX or by transfection with HO-1 siRNA. MVS-induced HO-1 expression was mediated via NADPH oxidase (Nox)-derived reactive oxygen species (ROS) generation. Activation of Nox2/ROS further stimulated the phosphorylation of p47phox, proto-oncogene tyrosine-protein kinase (c-Src), platelet-derived growth factor receptor (PDFGR)α, protein kinase B (Akt), and Nrf2, which were inhibited by siRNAs. Pretreatment with pharmacological inhibitors, including diphenyleneiodonium (DPI), apocynin (APO), N-acetyl-L-cysteine (NAC), PP1, AG1296, or LY294002, reduced the MVS-activated Nrf2 nuclear-translocation binding to the ARE on the HO-1 promoter. Conclusions: MVS-induced HO-1 is, at least in part, mediated through a p47phox/Nox2/ROS-dependent activation of c-Src/PDGFRα/PI3K/Akt-regulated Nrf2/ARE axis and suppresses the TNF-α-mediated inflammatory responses in HPAEpiCs.
Collapse
|
33
|
Wysokiński D, Lewandowska P, Zątak D, Juszczak M, Kluska M, Lizińska D, Rudolf B, Woźniak K. Photoactive CO-releasing complexes containing iron - genotoxicity and ability in HO-1 gene induction in HL-60 cells. Toxicol Res (Camb) 2019; 8:544-551. [PMID: 31367337 PMCID: PMC6621133 DOI: 10.1039/c9tx00070d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
This paper presents the results of research on the biological properties of two photoactive CO-releasing molecules containing iron, i.e. (η5-C5H5)Fe(CO)2(η1-N-maleimidato) (complex A) and (η5-C5H5)Fe(CO)2(η1-N-succinimidato) (complex B). We studied their cytotoxicity, genotoxicity and the ability of inducing the HO-1 gene in HL-60 cells. We also investigated the kinetics of DNA damage repair induced by complexes A and B. We demonstrated that complex B was not toxic to HL-60 cells in high doses (above 100 μM). The ability to induce DNA damage was higher for complex A. Importantly, there was no difference in irradiated and non-irradiated cells for both complexes. DNA damage induced by complex B was repaired efficiently, while the repair of DNA damage induced by complex A was disturbed. Complex B had a minor effect on HO-1 gene expression (less than 2-fold induction), while complex A had induced HO-1 gene expression to a great extent (over 17-fold for 10 μM) - similarly in irradiated and non-irradiated HL-60 cells. The results of our research indicate that the ability of both complexes to damage DNA and to upregulate HO-1 gene expression is not related to the release of CO. Further research is needed to test whether these compounds can be considered as potential CO carriers in humans.
Collapse
Affiliation(s)
- Daniel Wysokiński
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Patrycja Lewandowska
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Daria Zątak
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Michał Juszczak
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Magdalena Kluska
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Daria Lizińska
- Department of Organic Chemistry , Faculty of Chemistry , University of Lodz , 91-403 Lodz , Poland
| | - Bogna Rudolf
- Department of Organic Chemistry , Faculty of Chemistry , University of Lodz , 91-403 Lodz , Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| |
Collapse
|
34
|
RTA 408 Inhibits Interleukin-1β-Induced MMP-9 Expression via Suppressing Protein Kinase-Dependent NF-κB and AP-1 Activation in Rat Brain Astrocytes. Int J Mol Sci 2019; 20:ijms20112826. [PMID: 31185608 PMCID: PMC6600142 DOI: 10.3390/ijms20112826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is characterized by the elevated expression of various inflammatory proteins, including matrix metalloproteinases (MMPs), induced by various pro-inflammatory mediators, which play a critical role in neurodegenerative disorders. Interleukin-1β (IL-1β) has been shown to induce the upregulation of MMP-9 through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-reactive oxygen species (ROS)-dependent signaling pathways. N-(2-cyano-3,12-dioxo-28-noroleana-1,9(11)-dien-17-yl)-2-2-difluoropropanamide (RTA 408), a novel synthetic triterpenoid, has been shown to possess anti-oxidant and anti-inflammatory properties in various types of cells. Here, we evaluated the effects of RTA 408 on IL-1β-induced inflammatory responses by suppressing MMP-9 expression in a rat brain astrocyte (RBA-1) line. IL-1β-induced MMP-9 protein and mRNA expression, and promoter activity were attenuated by RTA 408. The increased level of ROS generation in RBA-1 cells exposed to IL-1β was attenuated by RTA 408, as determined by using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and CellROX. In addition, the inhibitory effects of RTA 408 on MMP-9 expression resulted from the suppression of the IL-1β-stimulated activation of Pyk2 (proline-rich tyrosine kinase), platelet-derived growth factor receptor β (PDGFRβ), Akt, ROS, and mitogen-activated protein kinases (MAPKs). Pretreatment with RTA 408 attenuated the IL-1β-induced c-Jun phosphorylation, mRNA expression, and promoter activity. IL-1β-stimulated nuclear factor-κB (NF-κB) p65 phosphorylation, translocation, and promoter activity were also attenuated by RTA 408. Furthermore, IL-1β-induced glial fibrillary acidic protein (GFAP) protein and mRNA expression, and cell migration were attenuated by pretreatment with RTA 408. These results provide new insights into the mechanisms by which RTA 408 attenuates IL-1β-mediated inflammatory responses and exerts beneficial effects for the management of brain diseases.
Collapse
|
35
|
Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schrøder H, Skytte L, Rasmussen KL, Khandige S, Møller-Jensen J, Kjeldsen F. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 2019; 13:221-239. [DOI: 10.1080/17435390.2018.1540728] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Barbara Korzeniowska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lilian Skytte
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kaare Lund Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Lee H, Choi YK. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases. Int J Mol Sci 2018; 20:ijms20010078. [PMID: 30585210 PMCID: PMC6337166 DOI: 10.3390/ijms20010078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer's disease, and the role of several other signaling molecules.
Collapse
Affiliation(s)
- Huiju Lee
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
38
|
Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: A neutrophil problem? J Leukoc Biol 2018; 105:645-655. [PMID: 30570786 PMCID: PMC6487965 DOI: 10.1002/jlb.3ri1018-400r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Invasive bacterial disease is well described in immunocompromised hosts, including those with malaria infection. One bacterial infection frequently observed in children with Plasmodium falciparum infection is nontyphoidal salmonella (NTS) infection, in which a typically intestinal infection becomes systemic with serious, often fatal, consequences. In this review, we consider the role of malaria‐induced immunoregulatory responses in tipping the balance from tissue homeostasis during malaria infection to risk of invasive NTS. Also, neutrophils are crucial in the clearance of NTS but their ability to mount an oxidative burst and kill intracellular Salmonella is severely compromised during, and for some time after, an acute malaria infection. Here, we summarize the evidence linking malaria and invasive NTS infections; describe the role of neutrophils in clearing NTS infections; review evidence for neutrophil dysfunction in malaria infections; and explore roles of heme oxygenase‐1, IL‐10, and complement in mediating this dysfunction. Finally, given the epidemiological evidence that low density, subclinical malaria infections pose a risk for invasive NTS infections, we consider whether the high prevalence of such infections might underlie the very high incidence of invasive bacterial disease across much of sub‐Saharan Africa.
Collapse
Affiliation(s)
- Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Lauren J Galloway
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Eleanor M Riley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
39
|
Kim KW, Yoon CS, Kim YC, Oh H. Desoxo-narchinol A and Narchinol B Isolated from Nardostachys jatamansi Exert Anti-neuroinflammatory Effects by Up-regulating of Nuclear Transcription Factor Erythroid-2-Related Factor 2/Heme Oxygenase-1 Signaling. Neurotox Res 2018; 35:230-243. [PMID: 30168019 DOI: 10.1007/s12640-018-9951-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that desoxo-narchinol A and narchinol B from Nardostachys jatamansi DC (Valerianaceae) inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein in lipopolysaccharide (LPS)-stimulated BV2 and primary microglial cells. In this study, we aimed to elucidate the molecular mechanism underlying the anti-neuroinflammatory effects of desoxo-narchinol A and narchinol B. These two compounds inhibited the nuclear factor (NF)-κB pathway, by repressing the phosphorylation and degradation of inhibitor kappa B (IκB)-α, nuclear translocation of the p65/p50 heterodimer, and DNA-binding activity of the p65 subunit. Furthermore, both compounds induced heme oxygenase-1 (HO-1) protein expression, which was mediated by the activation of nuclear transcription factor erythroid-2-related factor 2 (Nrf2). Activation of the Nrf2/HO-1 pathway by desoxo-narchinol A was shown to be regulated by increased phosphorylation of p38 and extracellular signal-regulated kinase (ERK), whereas only p38 was involved in narchinol B-induced activation of the Nrf2/HO-1 pathway. In addition, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling was also involved in the activation of HO-1 by desoxo-narchinol A and narchinol B. These compounds also increased the phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine-9 residue, following phosphorylation of Akt. The anti-neuroinflammatory effect of desoxo-narchinol A and narchinol B was partially blocked by a selective HO-1 inhibitor, suggesting that this effect is partly mediated by HO-1 induction. In addition, both compounds also induced HO-1 protein expression in rat-derived primary microglial cells, which was correlated with their anti-neuroinflammatory effects in LPS-stimulated primary microglial cells. In conclusion, desoxo-narchinol A and narchinol B are potential candidates for the development of preventive agents for the regulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
40
|
An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules. Bioinorg Chem Appl 2018; 2018:8547364. [PMID: 30158958 PMCID: PMC6109489 DOI: 10.1155/2018/8547364] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide (CO) has long been known as the “silent killer” owing to its ability to form carboxyhemoglobin—the main cause of CO poisoning in humans. Its role as an endogenous neurotransmitter, however, was suggested in the early 1990s. Since then, the biological activity of CO has been widely examined via both the direct administration of CO and in the form of so-called “carbon monoxide releasing molecules (CORMs).” This overview will explore the general physiological effects and potential therapeutic applications of CO when delivered in the form of CORMs.
Collapse
|