1
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
2
|
Xu YS, Xiang J, Lin SJ. Functional role of P2X7 purinergic receptor in cancer and cancer-related pain. Purinergic Signal 2024:10.1007/s11302-024-10019-w. [PMID: 38771429 DOI: 10.1007/s11302-024-10019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.
Collapse
Affiliation(s)
- Yong-Sheng Xu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Jun Xiang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China.
| |
Collapse
|
3
|
Gil-Redondo JC, Queipo MJ, Trueba Y, Llorente-Sáez C, Serrano J, Ortega F, Gómez-Villafuertes R, Pérez-Sen R, Delicado EG. DUSP1/MKP-1 represents another piece in the P2X7R intracellular signaling puzzle in cerebellar cells: our last journey with Mª Teresa along the purinergic pathways of Eden. Purinergic Signal 2024; 20:127-144. [PMID: 37776398 PMCID: PMC10997573 DOI: 10.1007/s11302-023-09970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The P2X7 receptor (P2X7R) stands out within the purinergic family as it has exclusive pharmacological and regulatory features, and it fulfills distinct roles depending on the type of stimulation and cellular environment. Tonic activation of P2X7R promotes cell proliferation, whereas sustained activation is associated with cell death. Yet strikingly, prolonged P2X7R activation in rat cerebellar granule neurons and astrocytes does not affect cell survival. The intracellular pathways activated by P2X7Rs involve proteins like MAPKs, ERK1/2 and p38, and interactions with growth factor receptors could explain their behavior in populations of rat cerebellar cells. In this study, we set out to characterize the intracellular mechanisms through which P2X7Rs and Trk receptors, EGFR (epidermal growth factor receptor) and BDNFR (brain-derived neurotrophic factor receptor), regulate the dual-specificity phosphatase DUSP1. In cerebellar astrocytes, the regulation of DUSP1 expression by P2X7R depends on ERK and p38 activation. EGFR stimulation can also induce DUSP1 expression, albeit less strongly than P2X7R. Conversely, EGF was virtually ineffective in regulating DUSP1 in granule neurons, a cell type in which BDNF is the main regulator of DUSP1 expression and P2X7R only induces a mild response. Indeed, the regulation of DUSP1 elicited by BDNF reflects the balance between both transcriptional and post-transcriptional mechanisms. Importantly, when the regulation of DUSP1 expression is compromised, the viability of both astrocytes and neurons is impaired, suggesting this phosphatase is essential to maintain proper cell cytoarchitecture and functioning.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yaiza Trueba
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Celia Llorente-Sáez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Julia Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
5
|
Abundance of Dual Specificity Phosphatase (DUSP) 1 and DUSP6 mRNA Is Regulated by Hippo Signaling in Bovine Pre-ovulatory Granulosa Cells. Reprod Sci 2022; 30:1782-1788. [DOI: 10.1007/s43032-022-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
|
6
|
Ahmedy OA, El-Tanbouly DM, Al-Mokaddem AK, El-Said YA. Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats. Life Sci 2022; 309:121040. [DOI: 10.1016/j.lfs.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
7
|
Chang MY, Hsu SH, Ma LY, Chou LF, Hung CC, Tian YC, Yang CW. Effects of Suramin on Polycystic Kidney Disease in a Mouse Model of Polycystin-1 Deficiency. Int J Mol Sci 2022; 23:ijms23158499. [PMID: 35955634 PMCID: PMC9369130 DOI: 10.3390/ijms23158499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The aberrant activation of the purinergic signaling pathway has been shown to promote cyst growth and fluid secretion in autosomal dominant polycystic kidney disease (ADPKD). Suramin is an anti-parasitic drug that has strong anti-purinergic properties. Whether suramin could have a therapeutic effect on ADPKD has not been fully investigated. We examined the effect of suramin on cyst progression in a Pkd1 microRNAs transgenic mouse model that presented stable Pkd1 knockdown and moderate disease progression. The Pkd1-deficient mice were treated with suramin (60 mg/kg) by intraperitoneal injection twice a week from postnatal days 35 to 90. Kidney-to-body weight ratios, cyst indices, and blood urea nitrogen (BUN) levels were measured. Cell proliferation and macrophage infiltration were determined by immunohistochemistry. The suramin-treated group had significantly lower renal cyst densities, cell proliferation, and macrophage infiltration compared with saline-treated controls. Suramin significantly inhibited ERK phosphorylation and the expression of Il1b, Il6, Nlrp3, Tgfb, Fn1, P2rx7, and P2ry2 mRNAs in the kidneys. However, BUN levels remained high despite the reduction in cyst growth. Furthermore, plasma cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) levels were significantly higher in the suramin-treated group compared with the control group. Periodic acid-Schiff staining revealed degenerative changes and epithelial cell vacuolation in the non-cystic renal tubules, which indicated phospholipidosis following suramin treatment. These results suggest that suramin may reduce renal cyst growth and inflammation, but the associated tubular cell injuries could limit its therapeutic potential. Other purinergic receptor antagonists with less nephrotoxicity may deserve further investigation for the treatment of ADPKD.
Collapse
|
8
|
Santa-Coloma TA. Overlapping synthetic peptides as a tool to map protein-protein interactions ̶ FSH as a model system of nonadditive interactions. Biochim Biophys Acta Gen Subj 2022; 1866:130153. [DOI: 10.1016/j.bbagen.2022.130153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
9
|
Gu F, Zhang K, Li J, Xie X, Wen Q, Sui Z, Su Z, Yu T. Changes of Migration, Immunoregulation and Osteogenic Differentiation of Mesenchymal Stem Cells in Different Stages of Inflammation. Int J Med Sci 2022; 19:25-33. [PMID: 34975296 PMCID: PMC8692114 DOI: 10.7150/ijms.58428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Bone infection has always been the focus of orthopedic research. Mesenchymal stem cells (MSCs) are the natural progenitors of osteoblasts, and the process of osteogenesis is triggered in response to different signals from the extracellular matrix. MSCs exert important functions including secretion and immune regulation and also play a key role in bone regeneration. The biological behavior of MSCs in acute and chronic inflammation, especially the transformation between acute inflammation and chronic inflammation, has aroused great interest among researchers. This paper reviews the recent literature and summarizes the behavior and biological characteristics of MSCs in acute and chronic inflammation to stimulate further research on MSCs and treatment of bone diseases.
Collapse
Affiliation(s)
- Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ke Zhang
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiangbi Li
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaoping Xie
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qiangqiang Wen
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zilong Su
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
10
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2021; 46:2586-2600. [PMID: 33216313 PMCID: PMC8134618 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
11
|
JKAP, Th1 cells, and Th17 cells are dysregulated and inter-correlated, among them JKAP and Th17 cells relate to cognitive impairment progression in Alzheimer's disease patients. Ir J Med Sci 2021; 191:1855-1861. [PMID: 34595688 DOI: 10.1007/s11845-021-02749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND JNK pathway-associated phosphatase (JKAP) is engaged in Alzheimer's disease (AD) pathology via regulating immune response, cluster of differentiation 4 positive (CD4+) T cell differentiation, inflammation, and phosphorylated tau (p-tau). This study aimed to investigate its clinical value serving as a biomarker for AD. METHODS Fifty AD patients, 50 Parkinson's disease (PD) patients, and 50 controls (patients with non-degenerative neurological diseases with normal cognition) were enrolled. Their β-protein 42 (Aβ42), total tau (t-tau), p-tau, and Mini-Mental State Examination (MMSE) scale were assessed. Furthermore, JKAP in serum and T-help type 1 (Th1) and T-help type 17 (Th17) cells in CD4+ T cells were measured. RESULTS JKAP level was lower, while Th17 cell proportion (but not Th1 cell proportion) was higher in AD patients compared with PD patients and controls (all P < 0.01). Besides, JKAP level negatively correlated with both Th1 (r = - 0.306, P = 0.030) and Th17 (r = - 0.380, P = 0.006) cell proportions in AD patients but not PD patients and controls. Furthermore, in AD patients, JKAP positively correlated with Aβ42 (r = 0.307, P = 0.030) and MMSE score (r = 0.350, P = 0.013) while negatively correlated with p-tau (r = - 0.280, P = 0.048); Th17 cell proportion negatively associated with Aβ42 (r = - 0.281, P = 0.048) and MMSE score (r = - 0.366, P = 0.009). Notably, JKAP was negatively related to 1-year (r = - 0.297, P = 0.038) and 2-year MMSE decline (r = - 0.304, P = 0.048); Th17 cell proportion was positively linked with 1-year (r = 0.392; P = 0.008), 2-year (r = 0.482, P = 0.001), and 3-year (r = 0.365, P = 0.013) MMSE decline. CONCLUSION JKAP, Th1 cells, and Th17 cells are dysregulated and inter-correlated; among them, JKAP and Th17 cells relate to cognitive impairment progression in AD patients.
Collapse
|
12
|
P2X7 receptors in the central nervous system. Biochem Pharmacol 2021; 187:114472. [PMID: 33587917 DOI: 10.1016/j.bcp.2021.114472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
For the past three decades, our laboratory has conducted pioneering research to elucidate the complexity of purinergic signaling in the CNS, alone and in collaboration with other groups, inspired by the ground-breaking efforts of Geoffrey Burnstock. This review summarizes our contribution to understand the nucleotide receptor signaling in the CNS with a special focus on the P2X7 receptor.
Collapse
|
13
|
Salient brain entities labelled in P2rx7-EGFP reporter mouse embryos include the septum, roof plate glial specializations and circumventricular ependymal organs. Brain Struct Funct 2021; 226:715-741. [PMID: 33427974 PMCID: PMC7981336 DOI: 10.1007/s00429-020-02204-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The purinergic system is one of the oldest cell-to-cell communication mechanisms and exhibits relevant functions in the regulation of the central nervous system (CNS) development. Amongst the components of the purinergic system, the ionotropic P2X7 receptor (P2X7R) stands out as a potential regulator of brain pathology and physiology. Thus, P2X7R is known to regulate crucial aspects of neuronal cell biology, including axonal elongation, path-finding, synapse formation and neuroprotection. Moreover, P2X7R modulates neuroinflammation and is posed as a therapeutic target in inflammatory, oncogenic and degenerative disorders. However, the lack of reliable technical and pharmacological approaches to detect this receptor represents a major hurdle in its study. Here, we took advantage of the P2rx7-EGFP reporter mouse, which expresses enhanced green fluorescence protein (EGFP) immediately downstream of the P2rx7 proximal promoter, to conduct a detailed study of its distribution. We performed a comprehensive analysis of the pattern of P2X7R expression in the brain of E18.5 mouse embryos revealing interesting areas within the CNS. Particularly, strong labelling was found in the septum, as well as along the entire neural roof plate zone of the brain, except chorioidal roof areas, but including specialized circumventricular roof formations, such as the subfornical and subcommissural organs (SFO; SCO). Moreover, our results reveal what seems a novel circumventricular organ, named by us postarcuate organ (PArcO). Furthermore, this study sheds light on the ongoing debate regarding the specific presence of P2X7R in neurons and may be of interest for the elucidation of additional roles of P2X7R in the idiosyncratic histologic development of the CNS and related systemic functions.
Collapse
|
14
|
Gil-Redondo JC, Iturri J, Ortega F, Pérez-Sen R, Weber A, Miras-Portugal MT, Toca-Herrera JL, Delicado EG. Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy. Int J Mol Sci 2021; 22:ijms22020624. [PMID: 33435130 PMCID: PMC7827192 DOI: 10.3390/ijms22020624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Jagoba Iturri
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - Andreas Weber
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - José Luis Toca-Herrera
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Esmerilda G. Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| |
Collapse
|
15
|
Chandrasekhar A, Komirishetty P, Areti A, Krishnan A, Zochodne DW. Dual Specificity Phosphatases Support Axon Plasticity and Viability. Mol Neurobiol 2021; 58:391-407. [PMID: 32959171 DOI: 10.1007/s12035-020-02119-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
In peripheral neuropathies, axonal degeneration (AxD) impairs the prognosis for recovery. Here, we describe a role for dual specificity phosphatases (DUSPs; MAP kinase phosphatases, MKPs), in supporting autonomous axon plasticity and viability. Both DUSPs 1 and 4 were identified within intact or axotomized sensory neurons. Knockdown of DUSP 1 or 4 independently or combined impaired neurite outgrowth in adult dissociated sensory neurons. Furthermore, adult sensory neurons with DUSP knockdown were rendered sensitive to axonopathy in vitro following exposure to low, subtoxic TrpV1 (transient receptor potential cation channel subfamily V member 1) activation by capsaicin, an intervention normally supportive of growth. This was not prevented by concurrent DLK (dual leucine zipper kinase) knockdown. Ex vivo neurofilament dissolution was heightened by DUSP inhibition within explanted nerves. In vivo DUSP knockdown or inhibition was associated with more rapid loss of motor axon excitability. The addition of SARM1 (sterile alpha and TIR motif containing 1) siRNA abrogated DUSP1 and 4 mediated loss of excitability. DUSP knockdown accelerated neurofilament breakdown and there was earlier morphological evidence of myelinated axon degeneration distal to axotomy. Taken together, the findings identify a key role for DUSPs in supporting axon plasticity and survival.
Collapse
Affiliation(s)
- Ambika Chandrasekhar
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Prashanth Komirishetty
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Aparna Areti
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Anand Krishnan
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Douglas W Zochodne
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
16
|
Qian Y, Wang Q, Jiao J, Wang G, Gu Z, Huang D, Wang Z. Intrathecal injection of dexmedetomidine ameliorates chronic neuropathic pain via the modulation of MPK3/ERK1/2 in a mouse model of chronic neuropathic pain. Neurol Res 2019; 41:1059-1068. [PMID: 31584354 DOI: 10.1080/01616412.2019.1672391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective: Despite the application of dexmedetomidine (DEX) as a perioperative adjuvant in local analgesia, the exact analgesic mechanism underpinning chronic neuropathic pain (CNP) awaits our elucidation. Methods: We investigated the molecular mechanisms of the anti-nociceptive effect of DEX on neuropathic pain in a mouse model induced by chronic constriction injury (CCI). Results: DEX administration significantly increased the paw withdrawal latency (PWL) values 0.5 to 2 h post-injection in CCI-induced CNP mice at day 5 to 21 versus dimethyl sulfoxide (DMSO)-treated mice, confirming its analgesic effect. The c-Fos expression was significantly elevated in CCI mice versus the sham-operated group, whereas the elevation was mitigated by DEX injection. Subsequently, the involvement of MKP1 and MKP3 in the pathogenesis of chronic neuropathic pain was evaluated. Western blotting analyses revealed significant decrease in both MKP1 and MKP3 in the spinal cord in CCI group versus the sham group. DEX markedly elevated the MKP3 expression and modestly reduced the MKP1 expression, with insignificant difference in the latter. Co-injection of BCI (an MKP3 inhibitor) and DEX evidently reduced the PWL values in CCI mice. Furthermore, DEX significantly downregulated the phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2, down-stream effector of MKP3 in CCI mice, whereas the downregulation was reversed by BCI. Conclusion: We confirmed that DEX exerts the analgesic effect on chronic neuropathic pain via the regulation of MKP3/ERK1/2 signaling pathway, which may contribute to clarification of the molecular mechanism and novel therapy for chronic neuropathic pain.
Collapse
Affiliation(s)
- Yiling Qian
- Department of Anesthesiology, Wuxi People's Hospital of Nanjing Medical University , Wuxi , Jiangsu , China
| | - Qianlun Wang
- Department of Anesthesiology, Wuxi People's Hospital of Nanjing Medical University , Wuxi , Jiangsu , China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University , Wuxi , Jiangsu , China
| | - Guilong Wang
- Department of Anesthesiology, Wuxi People's Hospital of Nanjing Medical University , Wuxi , Jiangsu , China
| | - Zhengfeng Gu
- Department of Anesthesiology, Wuxi People's Hospital of Nanjing Medical University , Wuxi , Jiangsu , China
| | - Dongxiao Huang
- Department of Anesthesiology, Wuxi People's Hospital of Nanjing Medical University , Wuxi , Jiangsu , China
| | - Zhiping Wang
- Department of Anesthesiology, Wuxi People's Hospital of Nanjing Medical University , Wuxi , Jiangsu , China.,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu , China
| |
Collapse
|
17
|
Wu G, Tan J, Li J, Sun X, Du L, Tao S. miRNA-145-5p induces apoptosis after ischemia-reperfusion by targeting dual specificity phosphatase 6. J Cell Physiol 2019; 234:16281-16289. [PMID: 30883744 DOI: 10.1002/jcp.28291] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
Disorders mainly caused by ischemia-reperfusion (I/R), including stroke and myocardial infarction, is linked to debilitating health conditions and death. Recent research indicates that microRNAs (miRNAs) mediate the process of ischemic pathology. This study investigated the effects of miR-145-5p in regulating myocardial ischemic injury. The I/R models were established in rat cardiomyocytes H9C2 and rats. Western blot analysis and quantitative polymerase chain reaction was performed to analyze protein expression. Annexin V-FITC/PI staining was conducted to evaluate cell apoptosis. The application of miR-145-5p mimics and inhibitor revealed that miR-145-5p promoted apoptosis in cardiomyocytes. Furthermore, we found that miR-145-5p directly inhibited dual specificity phosphatase 6 (DUSP6) by luciferase reporter assay. The results indicated that DUSP6 was beneficial against I/R injury through inhibiting c-Jun N-terminal kinase pathways. In conclusion, the essential roles of miR-145-5p and DUSP6 in I/R provide a novel therapeutic target to develop future intervention strategies.
Collapse
Affiliation(s)
- Gang Wu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiaying Tan
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Junping Li
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, People's Republic of China
| | - Xiaoli Sun
- Department of Cardiology, Karamay Central Hospital, Karamay, People's Republic of China
| | - Lei Du
- Department of Cardiology, Karamay Central Hospital, Karamay, People's Republic of China
| | - Sun Tao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability. Int J Mol Sci 2019; 20:ijms20112668. [PMID: 31151270 PMCID: PMC6600639 DOI: 10.3390/ijms20112668] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of signal transduction and cell responses. Abnormalities in MAPKs are associated with multiple diseases. Dual-specificity phosphatases (DUSPs) dephosphorylate many key signaling molecules, including MAPKs, leading to the regulation of duration, magnitude, or spatiotemporal profiles of MAPK activities. Hence, DUSPs need to be properly controlled. Protein post-translational modifications, such as ubiquitination, phosphorylation, methylation, and acetylation, play important roles in the regulation of protein stability and activity. Ubiquitination is critical for controlling protein degradation, activation, and interaction. For DUSPs, ubiquitination induces degradation of eight DUSPs, namely, DUSP1, DUSP4, DUSP5, DUSP6, DUSP7, DUSP8, DUSP9, and DUSP16. In addition, protein stability of DUSP2 and DUSP10 is enhanced by phosphorylation. Methylation-induced ubiquitination of DUSP14 stimulates its phosphatase activity. In this review, we summarize the knowledge of the regulation of DUSP stability and ubiquitination through post-translational modifications.
Collapse
|
19
|
Pérez-Sen R, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Miras-Portugal MT, Delicado EG. Dual-Specificity Phosphatase Regulation in Neurons and Glial Cells. Int J Mol Sci 2019; 20:ijms20081999. [PMID: 31018603 PMCID: PMC6514851 DOI: 10.3390/ijms20081999] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023] Open
Abstract
Dual-specificity protein phosphatases comprise a protein phosphatase subfamily with selectivity towards mitogen-activated protein (MAP) kinases, also named MKPs, or mitogen-activated protein kinase (MAPK) phosphatases. As powerful regulators of the intensity and duration of MAPK signaling, a relevant role is envisioned for dual-specificity protein phosphatases (DUSPs) in the regulation of biological processes in the nervous system, such as differentiation, synaptic plasticity, and survival. Important neural mediators include nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) that contribute to DUSP transcriptional induction and post-translational mechanisms of DUSP protein stabilization to maintain neuronal survival and differentiation. Potent DUSP gene inducers also include cannabinoids, which preserve DUSP activity in inflammatory conditions. Additionally, nucleotides activating P2X7 and P2Y13 nucleotide receptors behave as novel players in the regulation of DUSP function. They increase cell survival in stressful conditions, regulating DUSP protein turnover and inducing DUSP gene expression. In general terms, in the context of neural cells exposed to damaging conditions, the recovery of DUSP activity is neuroprotective and counteracts pro-apoptotic over-activation of p38 and JNK. In addition, remarkable changes in DUSP function take place during the onset of neuropathologies. The restoration of proper DUSP levels and recovery of MAPK homeostasis underlie the therapeutic effect, indicating that DUSPs can be relevant targets for brain diseases.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - María José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
20
|
DUSP10 Negatively Regulates the Inflammatory Response to Rhinovirus through Interleukin-1β Signaling. J Virol 2019; 93:JVI.01659-18. [PMID: 30333178 PMCID: PMC6321923 DOI: 10.1128/jvi.01659-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Rhinoviruses are one of the causes of the common cold. In patients with asthma or chronic obstructive pulmonary disease, viral infections, including those with rhinovirus, are the commonest cause of exacerbations. Novel therapeutics to limit viral inflammation are clearly required. The work presented here identifies DUSP10 as an important protein involved in limiting the inflammatory response in the airway without affecting immune control of the virus. Rhinoviral infection is a common trigger of the excessive inflammation observed during exacerbations of asthma and chronic obstructive pulmonary disease. Rhinovirus (RV) recognition by pattern recognition receptors activates the mitogen-activated protein kinase (MAPK) pathways, which are common inducers of inflammatory gene production. A family of dual-specificity phosphatases (DUSPs) can regulate MAPK function, but their roles in rhinoviral infection are not known. We hypothesized that DUSPs would negatively regulate the inflammatory response to RV infection. Our results revealed that the p38 and c-Jun N-terminal kinase (JNK) MAPKs play key roles in the inflammatory response of epithelial cells to RV infection. Three DUSPs previously shown to have roles in innate immunity (DUSPs 1, 4, and 10) were expressed in primary bronchial epithelial cells, and one of them, DUSP10, was downregulated by RV infection. Small interfering RNA-mediated knockdown of DUSP10 identified a role for the protein in negatively regulating inflammatory cytokine production in response to interleukin-1β (IL-1β), alone and in combination with RV, without any effect on RV replication. This study identifies DUSP10 as an important regulator of airway inflammation in respiratory viral infection. IMPORTANCE Rhinoviruses are one of the causes of the common cold. In patients with asthma or chronic obstructive pulmonary disease, viral infections, including those with rhinovirus, are the commonest cause of exacerbations. Novel therapeutics to limit viral inflammation are clearly required. The work presented here identifies DUSP10 as an important protein involved in limiting the inflammatory response in the airway without affecting immune control of the virus.
Collapse
|
21
|
Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Gualix J, Delicado EG, Pérez-Sen R. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2018; 151:74-83. [PMID: 30593879 DOI: 10.1016/j.brainresbull.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.
Collapse
Affiliation(s)
- Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Mª José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|