1
|
Xiao Y, He Y, Zhong D, Liu B, Tang Z, Lan X, Dong Y, Du H, Liu Y, Luo J. Effect of Engineered Cyanobacterial Capsules on a Neurogenic Bladder after Spinal Cord Injury. ACS NANO 2025; 19:11841-11860. [PMID: 40116782 DOI: 10.1021/acsnano.4c14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The presence of a neurogenic bladder is a severe but common complication of spinal cord injury (SCI). Multiple pathological factors, such as hypoxia, ischemia, and oxidative stress caused by SCI, promote M1 microglial polarization and the release of proinflammatory factors to amplify inflammation. An excessive inflammatory response stimulates the generation of reactive oxygen species (ROS) and induces oxidative stress to promote neuronal ferroptosis, thus leading to bladder dysfunction after SCI. Therefore, promoting the recovery of neural function by regulating the interaction between microglia and neurons is important. For this purpose, we developed an engineered immunoregulatory cyanobacterial capsule named siRNA@Cyanzyme, which consists of MnO2@zeolitic-imidazolate framework@cyanobacteria (Cyanzyme) and a small-interfering RNA targeting ACSL4 (siRNA-ACSL4). Cyanzyme reversed M1 microglial polarization via photosynthetic oxygen to promote anti-inflammatory factor release. MnO2 nanoenzymes grown on the surface of ZIF-8 eliminated excessive ROS to reduce oxidative stress. Moreover, Cyanzyme increased the delivery efficiency of siRNA-ACSL4, which is a key regulator of ferroptosis. Both treatments alleviated GABAergic neuron damage to mitigate bladder dysfunction. Our data demonstrated that siRNA@Cyanzyme effectively reversed M1 microglial polarization, reduced neuronal ferroptosis, and ultimately restored neurogenic bladder function.
Collapse
Affiliation(s)
- Yuhong Xiao
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yizhe He
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Da Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330006, P.R. China
| | - Bo Liu
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - ZhiBo Tang
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoyong Lan
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - YiYang Dong
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huixian Du
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Liu
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Luo
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Su F, Pfundstein G, Sah S, Zhang S, Keable R, Hagan DW, Sharpe LJ, Clemens KJ, Begg D, Phelps EA, Brown AJ, Leshchyns'ka I, Sytnyk V. Neuronal growth regulator 1 (NEGR1) promotes the synaptic targeting of glutamic acid decarboxylase 65 (GAD65). J Neurochem 2025; 169:e16279. [PMID: 39676071 DOI: 10.1111/jnc.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Neuronal growth regulator 1 (NEGR1) is a synaptic plasma membrane localized cell adhesion molecule implicated in a wide spectrum of psychiatric disorders. By RNAseq analysis of the transcriptomic changes in the brain of NEGR1-deficient mice, we found that NEGR1 deficiency affects the expression of the Gad2 gene. We show that glutamic acid decarboxylase 65 (GAD65), the Gad2 - encoded enzyme synthesizing the inhibitory neurotransmitter GABA on synaptic vesicles, accumulates non-synaptically in brains of NEGR1-deficient mice. The density of non-synaptic GAD65 accumulations is also increased in NEGR1 deficient cultured hypothalamic neurons, and this effect is rescued by re-expression of NEGR1. By using a novel biosensor of the plasma membrane attachment of GAD65, we demonstrate that GAD65 attaches to the plasma membrane. NEGR1 promotes palmitoylation-dependent clearance of GAD65 from the plasma membrane and targeting of GAD65 to plasma membrane-derived endocytic vesicles. In NEGR1 deficient cultured hypothalamic neurons, the synaptic and extrasynaptic levels of the plasma membrane attached GAD65 are increased, and the synaptic levels of GABA are reduced. NEGR1-deficient mice are characterized by reduced body weight, lower GABAergic synapse densities in the arcuate nucleus, and blunted responsiveness to the reinforcing effects of food rewards. Our results indicate that abnormalities in synaptic GABA synthesis can contribute to brain disorders associated with abnormal expression of NEGR1 in humans.
Collapse
Affiliation(s)
- Feifei Su
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Shuyue Zhang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Kelly J Clemens
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Denovan Begg
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Käver L, Hinney A, Rajcsanyi LS, Maier HB, Frieling H, Steiger H, Voelz C, Beyer C, Trinh S, Seitz J. Epigenetic alterations in patients with anorexia nervosa-a systematic review. Mol Psychiatry 2024; 29:3900-3914. [PMID: 38849516 PMCID: PMC11609096 DOI: 10.1038/s41380-024-02601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024]
Abstract
Anorexia nervosa (AN) is a complex metabolic and psychological disorder that is influenced by both heritable genetic components and environmental factors. Exposure to various environmental influences can lead to epigenetically induced changes in gene expression. Epigenetic research in AN is still in its infancy, and studies to date are limited in determining clear, valid links to disease onset and progression are limited. Therefore, the aim of this systematic review was to compile and critically evaluate the available results of epigenetic studies specifically in AN and to provide recommendations for future studies. In accordance with the PRISMA guidelines, a systematic literature search was performed in three different databases (PubMed, Embase, and Web of Science) through May 2023. Twenty-three original papers or conference abstracts on epigenetic studies in AN were collected. Epigenome-wide association studies (EWASs), which analyze DNA methylation across the genome in patients with AN and identify potential disease-relevant changes in promoter/regulatory regions of genes, are the most promising for future research. To date, five EWASs on AN have been published, suggesting a potential reversibility of malnutrition-induced epigenetic changes once patients recover. Hence, determining differential DNA methylation levels could serve as a biomarker for disease status or early diagnosis and might be involved in disease progression or chronification. For future research, EWASs with a larger sample size, longitudinal study design and uniform methods should be performed to contribute to the understanding of the pathophysiology of AN, the development of individual interventions and a better prognosis for affected patients.
Collapse
Affiliation(s)
- Larissa Käver
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Howard Steiger
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Clara Voelz
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
| |
Collapse
|
4
|
Li S, Ni H, Wang Y, Wu X, Bi J, Ou H, Li Z, Ping J, Wang Z, Chen R, Yang Q, Jiang M, Cao L, Jiang T, Ren S, Zhao C. Gain of bipolar disorder-related lncRNA AP1AR-DT in mice induces depressive and anxiety-like behaviors by reducing Negr1-mediated excitatory synaptic transmission. BMC Med 2024; 22:543. [PMID: 39558356 PMCID: PMC11575081 DOI: 10.1186/s12916-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Bipolar disorder is a complex polygenic disorder that is characterized by recurrent episodes of depression and mania, the heterogeneity of which is likely complicated by epigenetic modifications that remain to be elucidated. METHODS We performed transcriptomic analysis of peripheral blood RNA from monozygotic (MZ) twins discordant for bipolar disorder to identify disease-associated differentially expressed long noncoding RNAs (DE-lncRNAs), which were further validated in the PsychENCODE brain RNA-seq dataset. We then performed behavioral tests, electrophysiological assays, chromatin immunoprecipitation, and PCR to investigate the function of DE-lncRNAs in the mouse and cell models. Statistical analyses were performed using GraphPad Prism 9.0 or SPSS. RESULTS We identified a bipolar disorder-associated upregulated long non-coding RNA (lncRNA), AP1AR-DT. We observed that overexpression of AP1AR-DT in the mouse medial prefrontal cortex (mPFC) resulted in a reduction of both the total spine density and the spontaneous excitatory postsynaptic current (sEPSC) frequency of mPFC neurons as well as depressive and anxiety-like behaviors. A combination of the results of brain transcriptome analysis of AP1AR-DT overexpressing mice brains with the known genes associated with bipolar disorder revealed that NEGR1, which encodes neuronal growth regulator 1, is one of the AP1AR-DT targets and is reduced in vivo upon gain of AP1AR-DT in mice. We further demonstrated that overexpression of recombinant Negr1 in the mPFC neurons of AP1AR-DTOE mice ameliorates depressive and anxiety-like behaviors and normalizes the reduced excitatory synaptic transmission induced by the gain of AP1AR-DT. We finally identified that AP1AR-DT reduces NEGR1 expression by competing for the transcriptional activator NRF1 in the overlapping binding site of the NEGR1 promoter region. CONCLUSIONS The epigenetic and pathophysiological mechanism linking AP1AR-DT to the modulation of depressive and anxiety-like behaviors and excitatory synaptic function provides etiological implications for bipolar disorder.
Collapse
Affiliation(s)
- Shufen Li
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Hongyu Ni
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Yaping Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Xiaohui Wu
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Jianqiang Bi
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Haiyan Ou
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Zhongwei Li
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Junjiao Ping
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Renhao Chen
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Qiong Yang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Meijun Jiang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Liping Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Siqiang Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China.
| | - Cunyou Zhao
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Singh K, Jayaram M, Hanumantharaju A, Tõnissoo T, Jagomäe T, Mikheim K, Muthuraman S, Gilbert SF, Plaas M, Schäfer MKE, Innos J, Lilleväli K, Philips MA, Vasar E. The IgLON family of cell adhesion molecules expressed in developing neural circuits ensure the proper functioning of the sensory system in mice. Sci Rep 2024; 14:22593. [PMID: 39349721 PMCID: PMC11442611 DOI: 10.1038/s41598-024-73358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Deletions and malfunctions of the IgLON family of cell adhesion molecules are associated with anatomical, behavioral, and metabolic manifestations of neuropsychiatric disorders. We have previously shown that IgLON genes are expressed in sensory nuclei/pathways and that IgLON proteins modulate sensory processing. Here, we examined the expression of IgLON alternative promoter-specific isoforms during embryonic development and studied the sensory consequences of the anatomical changes when one of the IgLON genes, Negr1, is knocked out. At the embryonal age of E12.5 and E13.5, various IgLONs were distributed differentially and dynamically in the developing sensory areas within the central and peripheral nervous system, as well as in limbs and mammary glands. Sensory tests showed that Negr1 deficiency causes differences in vestibular function and temperature sensitivity in the knockout mice. Sex-specific differences were noted across olfaction, vestibular functioning, temperature regulation, and mechanical sensitivity. Our findings highlight the involvement of IgLON molecules during sensory circuit formation and suggest Negr1's critical role in somatosensory processing.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Arpana Hanumantharaju
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46-221, Ria 23-204, 51010, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Kaie Mikheim
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Srirathi Muthuraman
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- The Centre of Estonian Rural Research and Knowledge, 48309, Jõgeva Alevik, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
6
|
Price T, Shiers S, Mazhar K, Wangzhou A, Haberberger R, Lesnak J, Sankaranarayanan I, Tavares-Ferreira D, Cervantes A, Funk G, Horton P, Vines E, Dussor G. Nageotte nodules in human DRG reveal neurodegeneration in painful diabetic neuropathy. RESEARCH SQUARE 2024:rs.3.rs-5006011. [PMID: 39399674 PMCID: PMC11469377 DOI: 10.21203/rs.3.rs-5006011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Diabetic neuropathy is frequently accompanied by pain and loss of sensation attributed to axonal dieback. We recovered dorsal root ganglia (DRGs) from 90 organ donors, 19 of whom had medical indices for diabetic painful neuropathy (DPN). Nageotte nodules, dead sensory neurons engulfed by non-neuronal cells, were abundant in DPN DRGs and accounted for 25% of all neurons. Peripherin-and Nav1.7-positive dystrophic axons invaded Nageotte nodules, forming small neuroma-like structures. Using histology and spatial sequencing, we demonstrate that Nageotte nodules are mainly composed of satellite glia and non-myelinating Schwann cells that express SPP1 and are intertwined with sprouting sensory axons originating from neighboring neurons. Our findings solve a 100-year mystery of the nature of Nageotte nodules linking these pathological structures to pain and sensory loss in DPN.
Collapse
|
7
|
Kim KH, Noh K, Lee J, Lee S, Lee SJ. NEGR1 Modulates Mouse Affective Discrimination by Regulating Adult Olfactory Neurogenesis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100355. [PMID: 39170714 PMCID: PMC11338060 DOI: 10.1016/j.bpsgos.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 08/23/2024] Open
Abstract
Background Affective recognition and sensory processing are impaired in people with autism. However, no mouse model of autism comanifesting these symptoms is available, thereby limiting the exploration of the relationship between affective recognition and sensory processing in autism and the molecular mechanisms involved. Methods With Negr1 -/- mice, we conducted the affective state discrimination test and an odor habituation/dishabituation test. Data were analyzed using the k-means clustering method. We also employed a whole-cell patch clamp and bromodeoxyuridine incorporation assay to investigate underlying mechanisms. Results When encountering mice exposed to restraint stress or chronic pain, wild-type mice discriminated between them by either approaching the stressed mouse or avoiding the painful mouse, whereas Negr1 -/- mice showed unbiased social interactions with them. Next, we demonstrated that both wild-type and Negr1 -/- mice used their olfaction for social interaction in the experimental context, but Negr1 -/- mice showed aberrant olfactory habituation and dishabituation against social odors. In electrophysiological studies, inhibitory inputs to the mitral cells in the olfactory bulb were increased in Negr1 -/- mice compared with wild-type mice, and subsequently their excitability was decreased. As a potential underlying mechanism, we found that adult neurogenesis in the subventricular zone was diminished in Negr1 -/- mice, which resulted in decreased integration of newly generated inhibitory neurons in the olfactory bulb. Conclusions NEGR1 contributes to mouse affective recognition, possibly by regulating olfactory neurogenesis and subsequent olfactory sensory processing. We propose a novel neurobiological mechanism of autism-related behaviors based on disrupted adult olfactory neurogenesis.
Collapse
Affiliation(s)
- Kwang Hwan Kim
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, Republic of Korea
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jaesung Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Shiers SI, Mazhar K, Wangzhou A, Haberberger R, Lesnak JB, Sankaranarayanan I, Tavares-Ferreira D, Cervantes A, Funk G, Horton P, Vines E, Dussor G, Price TJ. Nageotte nodules in human DRG reveal neurodegeneration in painful diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609215. [PMID: 39229145 PMCID: PMC11370606 DOI: 10.1101/2024.08.22.609215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diabetic neuropathy is frequently accompanied by pain and loss of sensation attributed to axonal dieback. We recovered dorsal root ganglia (DRGs) from 90 organ donors, 19 of whom had medical indices for diabetic painful neuropathy (DPN). Nageotte nodules, dead sensory neurons engulfed by non-neuronal cells, were abundant in DPN DRGs and accounted for 25% of all neurons. Peripherin-and Nav1.7-positive dystrophic axons invaded Nageotte nodules, forming small neuroma-like structures. Using histology and spatial sequencing, we demonstrate that Nageotte nodules are mainly composed of satellite glia and non-myelinating Schwann cells that express SPP1 and are intertwined with sprouting sensory axons originating from neighboring neurons. Our findings solve a 100-year mystery of the nature of Nageotte nodules linking these pathological structures to pain and sensory loss in DPN.
Collapse
Affiliation(s)
- Stephanie I Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Khadijah Mazhar
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Andi Wangzhou
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | | | - Joseph B Lesnak
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Diana Tavares-Ferreira
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | | | | | | | | | - Gregory Dussor
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| |
Collapse
|
9
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
10
|
Lee SY, Shoji H, Shimozawa A, Aoyagi H, Sato Y, Tsumagari K, Terumitsu M, Motegi H, Okada K, Sekiguchi K, Kuromitsu J, Nakahara J, Miyakawa T, Ito D. Phenotypic Insights Into Anti-IgLON5 Disease in IgLON5-Deficient Mice. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200234. [PMID: 38657185 PMCID: PMC11087031 DOI: 10.1212/nxi.0000000000200234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Anti-IgLON5 disease is an autoimmune neurodegenerative disorder characterized by various phenotypes, notably sleep and movement disorders and tau pathology. Although the disease is known to be associated with the neuronal cell adhesion protein IgLON5, the physiologic function of IgLON5 remains elusive. There are conflicting views on whether autoantibodies cause loss of function, activation of IgLON5, or inflammation-associated neuronal damage, ultimately leading to the disease. We generated IgLON5 knockout (-/-) mice to investigate the functions of IgLON5 and elucidate the pathomechanism of anti-IgLON5 disease. METHODS IgLON5 knockout (-/-) mice underwent behavioral tests investigating motor function, psychiatric function (notably anxiety and depression), social and exploratory behaviors, spatial learning and memory, and sensory perception. Histologic analysis was conducted to investigate tau aggregation in mice with tauopathy. RESULTS IgLON5-/- mice had poorer performance in the wire hang and rotarod tests (which are tests for motor function) than wild-type mice. Moreover, IgLON5-/- mice exhibited decreased anxiety-like behavior and/or hyperactivity in behavior tests, including light/dark transition test and open field test. IgLON5-/- mice also exhibited poorer remote memory in the contextual fear conditioning test. However, neither sleeping disabilities assessed by EEG nor tau aggregation was detected in the knockout mice. DISCUSSION These results suggest that IgLON5 is associated with activity, anxiety, motor ability, and contextual fear memory. Comparing the various phenotypes of anti-IgLON5 disease, anti-IgLON5 disease might partially be associated with loss of function of IgLON5; however, other phenotypes, such as sleep disorders and tau aggregation, can be caused by gain of function of IgLON5 and/or neuronal damage due to inflammation. Further studies are needed to elucidate the role of IgLON5 in the pathogenesis of anti-IgLON5 diseases.
Collapse
Affiliation(s)
- Sin Yi Lee
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Shoji
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Aki Shimozawa
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Aoyagi
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Sato
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Kazuya Tsumagari
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Mika Terumitsu
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Okada
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Koji Sekiguchi
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Junro Kuromitsu
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Jin Nakahara
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Ito
- From the Department of Neurology (S.Y.L., H.M., K.O., K.S., J.N.), Keio University School of Medicine, Tokyo; Division of Systems Medical Science (H.S., T.M.), Center for Medical Science, Fujita Health University, Toyoake; Eisai-Keio Innovation Laboratory for Dementia (A.S., H.A., Y.S., M.T., J.K.), Human Biology Integration, DHBL, Eisai Co., Ltd., Shinjuku-ku; Proteome Homeostasis Research Unit (K.T.), RIKEN Center for Integrative Medical Sciences, Yokohama; Department of Neurology (H.M.), The Jikei University School of Medicine; and Department of Physiology/Memory Center (D.I.), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Viggiano M, Ceroni F, Visconti P, Posar A, Scaduto MC, Sandoni L, Baravelli I, Cameli C, Rochat MJ, Maresca A, Vaisfeld A, Gentilini D, Calzari L, Carelli V, Zody MC, Maestrini E, Bacchelli E. Genomic analysis of 116 autism families strengthens known risk genes and highlights promising candidates. NPJ Genom Med 2024; 9:21. [PMID: 38519481 PMCID: PMC10959942 DOI: 10.1038/s41525-024-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.
Collapse
Affiliation(s)
- Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Laura Sandoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Irene Baravelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessandro Vaisfeld
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | | | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
12
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
13
|
Landa J, Serafim AB, Alba M, Maudes E, Molina-Porcel L, Garcia-Serra A, Mannara F, Dalmau J, Graus F, Sabater L. IgLON5 deficiency produces behavioral alterations in a knockout mouse model. Front Immunol 2024; 15:1347948. [PMID: 38370417 PMCID: PMC10869603 DOI: 10.3389/fimmu.2024.1347948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Background Anti-IgLON5 disease is a neurological disorder characterized by autoantibodies against IgLON5 and pathological evidence of neurodegeneration. IgLON5 is a cell adhesion molecule of unknown function that is highly expressed in the brain. Our aim was to investigate the impact of IgLON5 loss-of-function in evaluating brain morphology, social behavior, and the development of symptoms observed in an IgLON5 knockout (IgLON5-KO) mouse model. Methods The IgLON5-KO mice were generated using CRISPR-Cas9 technology. Immunohistochemistry on fixed sagittal brain sections and Western blotting brain lysates were used to confirm IgLON5 silencing and to evaluate the presence of other cell surface proteins. Two- month-old IgLON5-KO and wild-type (WT) mice underwent a comprehensive battery of behavioral tests to assess 1) locomotion, 2) memory, 3) anxiety, 4) social interaction, and 5) depressive-like behavior. Brain sections were examined for the presence of anatomical abnormalities and deposits of hyperphosphorylated tau in young adult (2-month-old) and aged (22-month-old) mice. Results Mice did not develop neurological symptoms reminiscent of those seen in patients with anti-IgLON5 disease. Behavioral testing revealed that 2-month-old IgLON5-KO mice showed subtle alterations in motor coordination and balance. IgLON5-KO females exhibited hyperactivity during night and day. Males were observed to have depressive-like behavior and excessive nest-building behavior. Neuropathological studies did not reveal brain morphological alterations or hyperphosphorylated tau deposits. Conclusion IgLON5-KO mice showed subtle alterations in behavior and deficits in fine motor coordination but did not develop the clinical phenotype of anti-IgLON5 disease.
Collapse
Affiliation(s)
- Jon Landa
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Ana Beatriz Serafim
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Mercedes Alba
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Estibaliz Maudes
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurological Tissue Bank, Biobanc, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Garcia-Serra
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Francesco Mannara
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Josep Dalmau
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Francesc Graus
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
| | - Lidia Sabater
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer-Caixa Research Institute (CRI), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
14
|
Bacchelli E, Viggiano M, Ceroni F, Visconti P, Posar A, Scaduto M, Sandoni L, Baravelli I, Cameli C, Rochat M, Maresca A, Vaisfeld A, Gentilini D, Calzari L, Carelli V, Zody M, Maestrini E. Whole genome analysis of rare deleterious variants adds further evidence to BRSK2 and other risk genes in Autism Spectrum Disorder. RESEARCH SQUARE 2023:rs.3.rs-3468592. [PMID: 37961520 PMCID: PMC10635364 DOI: 10.21203/rs.3.rs-3468592/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We have performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 9 severe de novo pdSNVs in genes not previously implicated in ASD (RASAL2, RAP1A, IRX5, SLC9A1, AGPAT3, MGAT3, RAB8B, MGAT5B, YME1L1), highlighted novel candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, but this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in new ASD/NDD candidates. In conclusion, our study strengthens the role of BRSK2 and other neurodevelopmental genes in ASD risk, highlights novel candidates and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.
Collapse
Affiliation(s)
| | | | | | | | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | - Maria Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | | | | | | | - Magali Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
16
|
McLean DT, Meudt JJ, Lopez Rivera LD, Schomberg DT, Pavelec DM, Duellman TT, Buehler DG, Schwartz PB, Graham M, Lee LM, Graff KD, Reichert JL, Bon-Durant SS, Konsitzke CM, Ronnekleiv-Kelly SM, Shanmuganayagam D, Rubinstein CD. Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model. Front Oncol 2023; 13:1253659. [PMID: 37817770 PMCID: PMC10561395 DOI: 10.3389/fonc.2023.1253659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.
Collapse
Affiliation(s)
- Dalton T. McLean
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Loren D. Lopez Rivera
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Dominic T. Schomberg
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Derek M. Pavelec
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Tyler T. Duellman
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Darya G. Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Patrick B. Schwartz
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa Graham
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Laura M. Lee
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Keri D. Graff
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jamie L. Reichert
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Sandra S. Bon-Durant
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles M. Konsitzke
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, WI, United States
| | - C. Dustin Rubinstein
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
17
|
Sah S, Keable R, Pfundstein G, Clemens KJ, Begg D, Schachner M, Leshchyns'ka I, Sytnyk V. Deficiency in the neural cell adhesion molecule 2 (NCAM2) reduces axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), affects axonal organization in the hippocampus, and leads to behavioral deficits. Cereb Cortex 2023; 33:10047-10065. [PMID: 37522285 DOI: 10.1093/cercor/bhad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 01/26/2023] [Indexed: 08/01/2023] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened. This abnormal axonal organization correlates with impaired short-term spatial memory and cognitive flexibility in NCAM2-deficient male and female mice. Self-grooming, rearing, digging and olfactory acuity are increased in NCAM2-deficient male mice, when compared with littermate wild-type mice of the same sex. NCAM2-deficient female mice also show increased self-grooming, but are reduced in rearing, and do not differ from female wild-type mice in olfactory acuity and digging behavior. Our results indicate that errors in axonal guidance and organization caused by impaired BACE1 function can underlie the manifestation of neurodevelopmental disorders, including autism as found in humans with deletions of the NCAM2 gene.
Collapse
Affiliation(s)
- Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kelly J Clemens
- School of Psychology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Denovan Begg
- School of Psychology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, United States
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Lee J, Kim S, Lee B, Kim YB, Kim KH, Chung G, Lee SJ, Lee S, Sun W, Park HK, Choi SY. Major depression-related factor NEGR1 controls salivary secretion in mouse submandibular glands. iScience 2023; 26:106773. [PMID: 37216094 PMCID: PMC10196562 DOI: 10.1016/j.isci.2023.106773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Salivary gland cells, which secrete water in response to neuronal stimulation, are closely connected to other neurons. Transcriptomic studies show that salivary glands also express some proteins responsible for neuronal function. However, the physiological functions of these common neuro-exocrine factors in salivary glands are largely unknown. Here, we studied the function of Neuronal growth regulator 1 (NEGR1) in the salivary gland cells. NEGR1 was also expressed in mouse and human salivary glands. The structure of salivary glands of Negr1 knockout (KO) mice was normal. Negr1 KO mice showed tempered carbachol- or thapsigargin-induced intracellular Ca2+ increases and store-operated Ca2+ entry. Of interest, the activity of the large-conductance Ca2+-activated K+ channel (BK channel) was increased, whereas Ca2+-activated Cl- channel ANO1 channel activity was not altered in Negr1 KO mice. Pilocarpine- and carbachol-induced salivation was decreased in Negr1 KO mice. These results suggest that NEGR1 influence salivary secretion though the muscarinic Ca2+ signaling.
Collapse
Affiliation(s)
- Jisoo Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Soohyun Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Boram Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yoo-Bin Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Kwang Hwan Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Gehoon Chung
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
19
|
Bruijstens AL, Stingl C, Güzel C, Stoop MP, Wong YYM, van Pelt ED, Banwell BL, Bar-Or A, Luider TM, Neuteboom RF. Neurodegeneration and humoral response proteins in cerebrospinal fluid associate with pediatric-onset multiple sclerosis and not monophasic demyelinating syndromes in childhood. Mult Scler 2023; 29:52-62. [PMID: 36154753 PMCID: PMC9896265 DOI: 10.1177/13524585221125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pediatric-onset multiple sclerosis (POMS) represents the earliest stage of disease pathogenesis. Investigating the cerebrospinal fluid (CSF) proteome in POMS may provide novel insights into early MS processes. OBJECTIVE To analyze CSF obtained from children at time of initial central nervous system (CNS) acquired demyelinating syndrome (ADS), to compare CSF proteome of those subsequently ascertained as having POMS versus monophasic acquired demyelinating syndrome (mADS). METHODS Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry (LC-MS) was performed in a Dutch discovery cohort (POMS n = 28; mADS n = 39). Parallel reaction monitoring-mass spectrometry (PRM-MS) was performed on selected proteins more abundant in POMS in a combined Dutch and Canadian validation cohort (POMS n = 48; mADS n = 106). RESULTS Discovery identified 5580 peptides belonging to 576 proteins; 58 proteins were differentially abundant with ⩾2 peptides between POMS and mADS, of which 28 more abundant in POMS. Fourteen had increased abundance in POMS with ⩾8 unique peptides. Five selected proteins were all confirmed within validation. Adjusted for age, 2 out of 5 proteins remained more abundant in POMS, that is, Carboxypeptidase E (CPE) and Semaphorin-7A (SEMA7A). CONCLUSION This exploratory study identified several CSF proteins associated with POMS and not mADS, potentially reflecting neurodegeneration, compensatory neuroprotection, and humoral response in POMS. The proteins associated with POMS highly correlated with age at CSF sampling.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- AL Bruijstens Department of Neurology, Erasmus University Medical Center, Room Ee-2230, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Christoph Stingl
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yu Yi M Wong
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Daniëlle van Pelt
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Kaare M, Jayaram M, Jagomäe T, Singh K, Kilk K, Mikheim K, Leevik M, Leidmaa E, Varul J, Nõmm H, Rähn K, Visnapuu T, Plaas M, Lilleväli K, Schäfer MKE, Philips MA, Vasar E. Depression-Associated Negr1 Gene-Deficiency Induces Alterations in the Monoaminergic Neurotransmission Enhancing Time-Dependent Sensitization to Amphetamine in Male Mice. Brain Sci 2022; 12:1696. [PMID: 36552158 PMCID: PMC9776224 DOI: 10.3390/brainsci12121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In GWAS studies, the neural adhesion molecule encoding the neuronal growth regulator 1 (NEGR1) gene has been consistently linked with both depression and obesity. Although the linkage between NEGR1 and depression is the strongest, evidence also suggests the involvement of NEGR1 in a wide spectrum of psychiatric conditions. Here we show the expression of NEGR1 both in tyrosine- and tryptophan hydroxylase-positive cells. Negr1-/- mice show a time-dependent increase in behavioral sensitization to amphetamine associated with increased dopamine release in both the dorsal and ventral striatum. Upregulation of transcripts encoding dopamine and serotonin transporters and higher levels of several monoamines and their metabolites was evident in distinct brain areas of Negr1-/- mice. Chronic (23 days) escitalopram-induced reduction of serotonin and dopamine turnover is enhanced in Negr1-/- mice, and escitalopram rescued reduced weight of hippocampi in Negr1-/- mice. The current study is the first to show alterations in the brain monoaminergic systems in Negr1-deficient mice, suggesting that monoaminergic neural circuits contribute to both depressive and obesity-related phenotypes linked to the human NEGR1 gene.
Collapse
Affiliation(s)
- Maria Kaare
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mohan Jayaram
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Kaie Mikheim
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marko Leevik
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53129 Bonn, Germany
| | - Jane Varul
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Helis Nõmm
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kristi Rähn
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Tanel Visnapuu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Michael K. E. Schäfer
- Department of Anesthesiology, Focus Program Translational Neurosciences, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
21
|
Watanabe K, Jansen PR, Savage JE, Nandakumar P, Wang X, Hinds DA, Gelernter J, Levey DF, Polimanti R, Stein MB, Van Someren EJW, Smit AB, Posthuma D. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat Genet 2022; 54:1125-1132. [PMID: 35835914 DOI: 10.1038/s41588-022-01124-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/06/2022] [Indexed: 12/20/2022]
Abstract
Insomnia is a heritable, highly prevalent sleep disorder for which no sufficient treatment currently exists. Previous genome-wide association studies with up to 1.3 million subjects identified over 200 associated loci. This extreme polygenicity suggested that many more loci remain to be discovered. The current study almost doubled the sample size to 593,724 cases and 1,771,286 controls, thereby increasing statistical power, and identified 554 risk loci (including 364 novel loci). To capitalize on this large number of loci, we propose a novel strategy to prioritize genes using external biological resources and functional interactions between genes across risk loci. Of all 3,898 genes naively implicated from the risk loci, we prioritize 289 and find brain-tissue expression specificity and enrichment in specific gene sets of synaptic signaling functions and neuronal differentiation. We show that this novel gene prioritization strategy yields specific hypotheses on underlying mechanisms of insomnia that would have been missed by traditional approaches.
Collapse
Affiliation(s)
- Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Section Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | | | - Xin Wang
- 23andMe, Inc., Sunnyvale, CA, USA
| | | | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eus J W Van Someren
- Departments of Integrative Neurophysiology and Psychiatry InGeest, Amsterdam Neuroscience, VU University and Medical Center, Amsterdam, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands.
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Wright KM, Deighan AG, Di Francesco A, Freund A, Jojic V, Churchill GA, Raj A. Age and diet shape the genetic architecture of body weight in diversity outbred mice. eLife 2022; 11:64329. [PMID: 35838135 PMCID: PMC9286741 DOI: 10.7554/elife.64329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/20/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding how genetic variation shapes a complex trait relies on accurately quantifying both the additive genetic and genotype–environment interaction effects in an age-dependent manner. We used a linear mixed model to quantify diet-dependent genetic contributions to body weight measured through adulthood in diversity outbred female mice under five diets. We observed that heritability of body weight declined with age under all diets, except the 40% calorie restriction diet. We identified 14 loci with age-dependent associations and 19 loci with age- and diet-dependent associations, with many diet-dependent loci previously linked to neurological function and behavior in mice or humans. We found their allelic effects to be dynamic with respect to genomic background, age, and diet, identifying several loci where distinct alleles affect body weight at different ages. These results enable us to more fully understand and predict the effectiveness of dietary intervention on overall health throughout age in distinct genetic backgrounds. Body weight is one trait influenced by genes, age and environmental factors. Both internal and external environmental pressures are known to affect genetic variation over time. However, it is largely unknown how all factors – including age – interact to shape metabolism and bodyweight. Wright et al. set out to quantify the interactions between genes and diet in ageing mice and found that the effect of genetics on mouse body weight changes with age. In the experiments, Wright et al. weighed 960 female mice with diverse genetic backgrounds, starting at two months of age into adulthood. The animals were randomized to different diets at six months of age. Some mice had unlimited food access, others received 20% or 40% less calories than a typical mouse diet, and some fasted one or two days per week. Variations in their genetic background explained about 80% of differences in mice’s weight, but the influence of genetics relative to non-genetic factors decreased as they aged. Mice on the 40% calorie restriction diet were an exception to this rule and genetics accounted for 80% of their weight throughout adulthood, likely due to reduced influence from diet and reduced interactions between diet and genes. Several genes involved in metabolism, neurological function, or behavior, were associated with mouse weight. The experiments highlight the importance of considering interactions between genetics, environment, and age in determining complex traits like body weight. The results and the approaches used by Wright et al. may help other scientists learn more about how the genetic predisposition to disease changes with environmental stimuli and age.
Collapse
Affiliation(s)
- Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, United States
| | - Vladimir Jojic
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, United States
| |
Collapse
|
23
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
24
|
Learning Ability and Hippocampal Transcriptome Responses to Early and Later Life Environmental Complexities in Dual-Purpose Chicks. Animals (Basel) 2022; 12:ani12050668. [PMID: 35268235 PMCID: PMC8909157 DOI: 10.3390/ani12050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we hypothesized that complex early-life environments enhance the learning ability and the hippocampal plasticity when the individual is faced with future life challenges. Chicks were divided into a barren environment group (BG), a litter materials group (LG), and a perches and litter materials group (PLG) until 31 days of age, and then their learning abilities were tested following further rearing in barren environments for 22 days. In response to the future life challenge, the learning ability showed no differences among the three groups. In the hippocampal KEGG pathways, the LG chicks showed the downregulation of neural-related genes neuronal growth regulator 1 (NEGR1) and neurexins (NRXN1) in the cell adhesion molecules pathway compared to the BG (p < 0.05). Immune-related genes TLR2 in Malaria and Legionellosis and IL-18 and IL18R1 in the TNF signaling pathway were upregulated in the LG compared to in the BG (p < 0.05). Compared to the BG, the PLG displayed upregulated TLR2A in Malaria (p < 0.05). The PLG showed upregulated neural-related gene, i.e., neuronal acetylcholine receptor subunit alpha-7-like (CHRNA8) in the nicotine addiction pathway and secretagogin (SCGN) gene expression, as compared to the LG (p < 0.05). In conclusion, early-life environmental complexities had limited effects on the learning ability in response to a future life challenge. Early-life perches and litter materials can improve neural- and immune-related gene expression and functional pathways in the hippocampus of chicks.
Collapse
|
25
|
Abstract
The prevalence of obesity has tripled over the past four decades, imposing an enormous burden on people's health. Polygenic (or common) obesity and rare, severe, early-onset monogenic obesity are often polarized as distinct diseases. However, gene discovery studies for both forms of obesity show that they have shared genetic and biological underpinnings, pointing to a key role for the brain in the control of body weight. Genome-wide association studies (GWAS) with increasing sample sizes and advances in sequencing technology are the main drivers behind a recent flurry of new discoveries. However, it is the post-GWAS, cross-disciplinary collaborations, which combine new omics technologies and analytical approaches, that have started to facilitate translation of genetic loci into meaningful biology and new avenues for treatment.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark ,grid.59734.3c0000 0001 0670 2351Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Giles S. H. Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
26
|
Spatiotemporal expression of IgLON family members in the developing mouse nervous system. Sci Rep 2021; 11:19536. [PMID: 34599206 PMCID: PMC8486791 DOI: 10.1038/s41598-021-97768-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Differential expression of cell adhesion molecules in neuronal populations is one of the many mechanisms promoting the formation of functional neural circuits in the developing nervous system. The IgLON family consists of five cell surface immunoglobulin proteins that have been associated with various developmental disorders, such as autism spectrum disorder, schizophrenia, and major depressive disorder. However, there is still limited and fragmented information about their patterns of expression in certain regions of the developing nervous system and how their expression contributes to their function. Utilizing an in situ hybridization approach, we have analyzed the spatiotemporal expression of all IgLON family members in the developing mouse brain, spinal cord, eye, olfactory epithelium, and vomeronasal organ. At one prenatal (E16) and two postnatal (P0 and P15) ages, we show that each IgLON displays distinct expression patterns in the olfactory system, cerebral cortex, midbrain, cerebellum, spinal cord, and eye, indicating that they likely contribute to the wiring of specific neuronal circuitry. These analyses will inform future functional studies aimed at identifying additional roles for these proteins in nervous system development.
Collapse
|
27
|
Kaare M, Mikheim K, Lilleväli K, Kilk K, Jagomäe T, Leidmaa E, Piirsalu M, Porosk R, Singh K, Reimets R, Taalberg E, Schäfer MKE, Plaas M, Vasar E, Philips MA. High-Fat Diet Induces Pre-Diabetes and Distinct Sex-Specific Metabolic Alterations in Negr1-Deficient Mice. Biomedicines 2021; 9:1148. [PMID: 34572334 PMCID: PMC8466019 DOI: 10.3390/biomedicines9091148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the large GWAS studies, NEGR1 gene has been one of the most significant gene loci for body mass phenotype. The purpose of the current study was to clarify the role of NEGR1 in the maintenance of systemic metabolism, including glucose homeostasis, by using both male and female Negr1-/- mice receiving a standard or high fat diet (HFD). We found that 6 weeks of HFD leads to higher levels of blood glucose in Negr1-/- mice. In the glucose tolerance test, HFD induced phenotype difference only in male mice; Negr1-/- male mice displayed altered glucose tolerance, accompanied with upregulation of circulatory branched-chain amino acids (BCAA). The general metabolomic profile indicates that Negr1-/- mice are biased towards glyconeogenesis, fatty acid synthesis, and higher protein catabolism, all of which are amplified by HFD. Negr1 deficiency appears to induce alterations in the efficiency of energy storage; reduced food intake could be an attempt to compensate for the metabolic challenge present in the Negr1-/- males, particularly during the HFD exposure. Our results suggest that the presence of functional Negr1 allows male mice to consume more HFD and prevents the development of glucose intolerance, liver steatosis, and excessive weight gain.
Collapse
Affiliation(s)
- Maria Kaare
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kaie Mikheim
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kalle Kilk
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53129 Bonn, Germany;
| | - Maria Piirsalu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Rando Porosk
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Riin Reimets
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Egon Taalberg
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Michael K. E. Schäfer
- Department of Anesthesiology, Focus Program Translational Neurosciences, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| |
Collapse
|
28
|
Colbert SMC, Funkhouser SA, Johnson EC, Morrison CL, Hoeffer CA, Friedman NP, Ehringer MA, Evans LM. Novel characterization of the multivariate genetic architecture of internalizing psychopathology and alcohol use. Am J Med Genet B Neuropsychiatr Genet 2021; 186:353-366. [PMID: 34569141 PMCID: PMC8556277 DOI: 10.1002/ajmg.b.32874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/12/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Genetic correlations suggest that the genetic relationship of alcohol use with internalizing psychopathology depends on the measure of alcohol use. Problematic alcohol use (PAU) is positively genetically correlated with internalizing psychopathology, whereas alcohol consumption ranges from not significantly correlated to moderately negatively correlated with internalizing psychopathology. To explore these different genetic relationships of internalizing psychopathology with alcohol use, we performed a multivariate genome-wide association study of four correlated factors (internalizing psychopathology, PAU, quantity of alcohol consumption, and frequency of alcohol consumption) and then assessed genome-wide and local genetic covariance between these factors. We identified 14 significant regions of local, largely positive, genetic covariance between PAU and internalizing psychopathology and 12 regions of significant local genetic covariance (including both positive and negative genetic covariance) between consumption factors and internalizing psychopathology. Partitioned genetic covariance among functional annotations suggested that brain tissues contribute significantly to positive genetic covariance between internalizing psychopathology and PAU but not to the genetic covariance between internalizing psychopathology and quantity or frequency of alcohol consumption. We hypothesize that genome-wide genetic correlations between alcohol use and psychiatric traits may not capture the more complex shared or divergent genetic architectures at the locus or tissue specific level. This study highlights the complexity of genetic architectures of alcohol use and internalizing psychopathology, and the differing shared genetics of internalizing disorders with PAU compared to consumption.
Collapse
Affiliation(s)
- Sarah M. C. Colbert
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder
| | | | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine
| | - Claire L. Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Charles A. Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Integrative Physiology, University of Colorado Boulder
| | - Naomi P. Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Integrative Physiology, University of Colorado Boulder
| | - Luke M. Evans
- Institute for Behavioral Genetics, University of Colorado Boulder
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder
| |
Collapse
|
29
|
Yao Y, Xu Y, Cai Z, Liu Q, Ma Y, Li AN, Payne TJ, Li MD. Determination of shared genetic etiology and possible causal relations between tobacco smoking and depression. Psychol Med 2021; 51:1870-1879. [PMID: 32249730 DOI: 10.1017/s003329172000063x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS Cigarette smoking is strongly associated with major depressive disorder (MDD). However, any genetic etiology of such comorbidity and causal relations is poorly understood, especially at the genome-wide level. METHODS In the present in silico research, we analyzed summary data from the genome-wide association study of the Psychiatric Genetic Consortium for MDD (n = 191 005) and UK Biobank for smoking (n = 337 030) by using various biostatistical methods including Bayesian colocalization analysis, LD score regression, variant effect size correlation analysis, and Mendelian randomization (MR). RESULTS By adopting a gene prioritization approach, we identified 43 genes shared by MDD and smoking, which were significantly enriched in membrane potential, gamma-aminobutyric acid receptor activity, and retrograde endocannabinoid signaling pathways, indicating that the comorbid mechanisms are involved in the neurotransmitter system. According to linkage disequilibrium score regression, we found a strong positive correlation between MDD and current smoking (rg = 0.365; p = 7.23 × 10-25) and a negative correlation between MDD and former smoking (rg = -0.298; p = 1.59 × 10-24). MR analysis suggested that genetic liability for depression increased smoking. CONCLUSIONS These findings inform the concomitant conditions of MDD and smoking and support the use of self-medication with smoking to counteract depression.
Collapse
Affiliation(s)
- Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andria N Li
- College of Arts and Sciences, University of Virginia, VA, USA
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Jagomäe T, Singh K, Philips MA, Jayaram M, Seppa K, Tekko T, Gilbert SF, Vasar E, Lilleväli K. Alternative Promoter Use Governs the Expression of IgLON Cell Adhesion Molecules in Histogenetic Fields of the Embryonic Mouse Brain. Int J Mol Sci 2021; 22:6955. [PMID: 34203377 PMCID: PMC8268470 DOI: 10.3390/ijms22136955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023] Open
Abstract
The members of the IgLON superfamily of cell adhesion molecules facilitate fundamental cellular communication during brain development, maintain functional brain circuitry, and are associated with several neuropsychiatric disorders such as depression, autism, schizophrenia, and intellectual disabilities. Usage of alternative promoter-specific 1a and 1b mRNA isoforms in Lsamp, Opcml, Ntm, and the single promoter of Negr1 in the mouse and human brain has been previously described. To determine the precise spatiotemporal expression dynamics of Lsamp, Opcml, Ntm isoforms, and Negr1, in the developing brain, we generated isoform-specific RNA probes and carried out in situ hybridization in the developing (embryonic, E10.5, E11.5, 13.5, 17; postnatal, P0) and adult mouse brains. We show that promoter-specific expression of IgLONs is established early during pallial development (at E10.5), where it remains throughout its differentiation through adulthood. In the diencephalon, midbrain, and hindbrain, strong expression patterns are initiated a few days later and begin fading after birth, being only faintly expressed during adulthood. Thus, the expression of specific IgLONs in the developing brain may provide the means for regionally specific functionality as well as for specific regional vulnerabilities. The current study will therefore improve the understanding of how IgLON genes are implicated in the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Kadri Seppa
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Triin Tekko
- The Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA;
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
31
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
32
|
Dong Y, Fan X, Wang Z, Zhang L, Guo S. Circ_HECW2 functions as a miR-30e-5p sponge to regulate LPS-induced endothelial-mesenchymal transition by mediating NEGR1 expression. Brain Res 2020; 1748:147114. [DOI: 10.1016/j.brainres.2020.147114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
|
33
|
Taylor SC, Ferri SL, Grewal M, Smernoff Z, Bucan M, Weiner JA, Abel T, Brodkin ES. The Role of Synaptic Cell Adhesion Molecules and Associated Scaffolding Proteins in Social Affiliative Behaviors. Biol Psychiatry 2020; 88:442-451. [PMID: 32305215 PMCID: PMC7442706 DOI: 10.1016/j.biopsych.2020.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Social affiliative behaviors-engagement in positive (i.e., nonaggressive) social approach and reciprocal social interactions with a conspecific-comprise a construct within the National Institute of Mental Health Research Domain Criteria Social Processes Domain. These behaviors are disrupted in multiple human neurodevelopmental and neuropsychiatric disorders, such as autism, schizophrenia, social phobia, and others. Human genetic studies have strongly implicated synaptic cell adhesion molecules (sCAMs) in several such disorders that involve marked reductions, or other dysregulations, of social affiliative behaviors. Here, we review the literature on the role of sCAMs in social affiliative behaviors. We integrate findings pertaining to synapse structure and morphology, neurotransmission, postsynaptic signaling pathways, and neural circuitry to propose a multilevel model that addresses the impact of a diverse group of sCAMs, including neurexins, neuroligins, protocadherins, immunoglobulin superfamily proteins, and leucine-rich repeat proteins, as well as their associated scaffolding proteins, including SHANKs and others, on social affiliative behaviors. This review finds that the disruption of sCAMs often manifests in changes in social affiliative behaviors, likely through alterations in synaptic maturity, pruning, and specificity, leading to excitation/inhibition imbalance in several key regions, namely the medial prefrontal cortex, basolateral amygdala, hippocampus, anterior cingulate cortex, and ventral tegmental area. Unraveling the complex network of interacting sCAMs in glutamatergic synapses will be an important strategy for elucidating the mechanisms of social affiliative behaviors and the alteration of these behaviors in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara C Taylor
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah L Ferri
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Mahip Grewal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zoe Smernoff
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maja Bucan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua A Weiner
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Biology, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
Depression-Associated Gene Negr1-Fgfr2 Pathway Is Altered by Antidepressant Treatment. Cells 2020; 9:cells9081818. [PMID: 32751911 PMCID: PMC7464991 DOI: 10.3390/cells9081818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Negr1 gene has been significantly associated with major depression in genetic studies. Negr1 encodes for a cell adhesion molecule cleaved by the protease Adam10, thus activating Fgfr2 and promoting neuronal spine plasticity. We investigated whether antidepressants modulate the expression of genes belonging to Negr1-Fgfr2 pathway in Flinders sensitive line (FSL) rats, in a corticosterone-treated mouse model of depression, and in mouse primary neurons. Negr1 and Adam10 were the genes mostly affected by antidepressant treatment, and in opposite directions. Negr1 was down-regulated by escitalopram in the hypothalamus of FSL rats, by fluoxetine in the hippocampal dentate gyrus of corticosterone-treated mice, and by nortriptyline in hippocampal primary neurons. Adam10 mRNA was increased by nortriptyline administration in the hypothalamus, by escitalopram in the hippocampus of FSL rats, and by fluoxetine in mouse dorsal dentate gyrus. Similarly, nortriptyline increased Adam10 expression in hippocampal cultures. Fgfr2 expression was increased by nortriptyline in the hypothalamus of FSL rats and in hippocampal neurons. Lsamp, another IgLON family protein, increased in mouse dentate gyrus after fluoxetine treatment. These findings suggest that Negr1-Fgfr2 pathway plays a role in the modulation of synaptic plasticity induced by antidepressant treatment to promote therapeutic efficacy by rearranging connectivity in corticolimbic circuits impaired in depression.
Collapse
|
35
|
Bobyn A, Zarrei M, Zhu Y, Hoffman M, Brenner D, Resnick AC, Scherer SW, Gallo M. Ancestry and frequency of genetic variants in the general population are confounders in the characterization of germline variants linked to cancer. BMC MEDICAL GENETICS 2020; 21:92. [PMID: 32375678 PMCID: PMC7201963 DOI: 10.1186/s12881-020-01033-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pediatric high-grade gliomas (pHGGs) are incurable malignant brain cancers. Clear somatic genetic drivers are difficult to identify in the majority of cases. We hypothesized that this may be due to the existence of germline variants that influence tumor etiology and/or progression and are filtered out using traditional pipelines for somatic mutation calling. METHODS In this study, we analyzed whole-genome sequencing (WGS) datasets of matched germlines and tumor tissues to identify recurrent germline variants in pHGG patients. RESULTS We identified two structural variants that were highly recurrent in a discovery cohort of 8 pHGG patients. One was a ~ 40 kb deletion immediately upstream of the NEGR1 locus and predicted to remove the promoter region of this gene. This copy number variant (CNV) was present in all patients in our discovery cohort (n = 8) and in 86.3% of patients in our validation cohort (n = 73 cases). We also identified a second recurrent deletion 55.7 kb in size affecting the BTNL3 and BTNL8 loci. This BTNL3-8 deletion was observed in 62.5% patients in our discovery cohort, and in 17.8% of the patients in the validation cohort. Our single-cell RNA sequencing (scRNA-seq) data showed that both deletions result in disruption of transcription of the affected genes. However, analysis of genomic information from multiple non-cancer cohorts showed that both the NEGR1 promoter deletion and the BTNL3-8 deletion were CNVs occurring at high frequencies in the general population. Intriguingly, the upstream NEGR1 CNV deletion was homozygous in ~ 40% of individuals in the non-cancer population. This finding was immediately relevant because the affected genes have important physiological functions, and our analyses showed that NEGR1 expression levels have prognostic value for pHGG patient survival. We also found that these deletions occurred at different frequencies among different ethnic groups. CONCLUSIONS Our study highlights the need to integrate cancer genomic analyses and genomic data from large control populations. Failure to do so may lead to spurious association of genes with cancer etiology. Importantly, our results showcase the need for careful evaluation of differences in the frequency of genetic variants among different ethnic groups.
Collapse
Affiliation(s)
- Anna Bobyn
- Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yuankun Zhu
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mary Hoffman
- Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darren Brenner
- Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam C Resnick
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada.
| | - Marco Gallo
- Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
36
|
Tassano E, Uccella S, Giacomini T, Fiorio P, Tavella E, Malacarne M, Gimelli G, Coviello D, Ronchetto P. 1p31.1 microdeletion including only NEGR1 gene in two patients. Eur J Med Genet 2020; 63:103919. [PMID: 32209393 DOI: 10.1016/j.ejmg.2020.103919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 01/21/2023]
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been involved in neuronal growth and connectivity. Genetic variants, in or near the NEGR1 locus, have been associated with obesity and, more recently, with learning difficulties, intellectual disability, and psychiatric disorders. Here, we described the only second report of NEGR1 gene disruption in 1p31.1 microdeletion in two patients. Patient 1 is a 14-year-old female with neurological and psychiatric features present also in her family. Patient 2 is a 5-month-old infant showing global hypotonia as unique neurological features till now. This patient also carries 7p22.1 duplication, of paternal origin, that could be responsible for some malformations present in the child. We hypothesize a role of NEGR1 in producing the phenotype of our patients and compare them with other cases previously reported in the literature and DECIPHER database to better identify a possible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Sara Uccella
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Patrizia Fiorio
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisa Tavella
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Malacarne
- Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgio Gimelli
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Coviello
- Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Ronchetto
- Laboratory of Cytogenetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
37
|
Impaired Replication Timing Promotes Tissue-Specific Expression of Common Fragile Sites. Genes (Basel) 2020; 11:genes11030326. [PMID: 32204553 PMCID: PMC7140878 DOI: 10.3390/genes11030326] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Common fragile sites (CFSs) are particularly vulnerable regions of the genome that become visible as breaks, gaps, or constrictions on metaphase chromosomes when cells are under replicative stress. Impairment in DNA replication, late replication timing, enrichment of A/T nucleotides that tend to form secondary structures, the paucity of active or inducible replication origins, the generation of R-loops, and the collision between replication and transcription machineries on particularly long genes are some of the reported characteristics of CFSs that may contribute to their tissue-specific fragility. Here, we validated the induction of two CFSs previously found in the human fetal lung fibroblast line, Medical Research Council cell strain 5 (MRC-5), in another cell line derived from the same fetal tissue, Institute for Medical Research-90 cells (IMR-90). After induction of CFSs through aphidicolin, we confirmed the expression of the CFS 1p31.1 on chromosome 1 and CFS 3q13.3 on chromosome 3 in both fetal lines. Interestingly, these sites were found to not be fragile in lymphocytes, suggesting a role for epigenetic or transcriptional programs for this tissue specificity. Both these sites contained late-replicating genes NEGR1 (neuronal growth regulator 1) at 1p31.1 and LSAMP (limbic system-associated membrane protein) at 3q13.3, which are much longer, 0.880 and 1.4 Mb, respectively, than the average gene length. Given the established connection between long genes and CFS, we compiled information from the literature on all previously identified CFSs expressed in fibroblasts and lymphocytes in response to aphidicolin, including the size of the genes contained in each fragile region. Our comprehensive analysis confirmed that the genes found within CFSs are longer than the average human gene; interestingly, the two longest genes in the human genome are found within CFSs: Contactin Associated Protein 2 gene (CNTNAP2) in a lymphocytes’ CFS, and Duchenne muscular dystrophy gene (DMD) in a CFS expressed in both lymphocytes and fibroblasts. This indicates that the presence of very long genes is a unifying feature of all CFSs. We also obtained replication profiles of the 1p31.1 and 3q13.3 sites under both perturbed and unperturbed conditions using a combination of fluorescent in situ hybridization (FISH) and immunofluorescence against bromodeoxyuridine (BrdU) on interphase nuclei. Our analysis of the replication dynamics of these CFSs showed that, compared to lymphocytes where these regions are non-fragile, fibroblasts display incomplete replication of the fragile alleles, even in the absence of exogenous replication stress. Our data point to the existence of intrinsic features, in addition to the presence of long genes, which affect DNA replication of the CFSs in fibroblasts, thus promoting chromosomal instability in a tissue-specific manner.
Collapse
|
38
|
Wang X, Xu G, Yang N, Yan Y, Wu G, Sun C. Differential proteomic analysis revealed crucial egg white proteins for hatchability of chickens. Poult Sci 2019; 98:7076-7089. [PMID: 31424521 PMCID: PMC8913984 DOI: 10.3382/ps/pez459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
For healthy development, an avian embryo needs the nutritional and functional molecules maternally deposited in avian eggs. Egg white not only provides nutritional components but also exhibits functional properties, such as defenses against microbial invasion. However, the roles of the more detailed messages in embryo development remain unclear. In this study, a tandem mass tag labeling quantitation approach was used to innovatively identify the differential proteins in the egg whites of fresh eggs produced by hens with divergent high/low hatchability and in the egg whites of embryonated eggs with healthy and dead embryos. A total of 378 proteins were quantified in egg white, which is the most complete proteome identified for egg white to date, and up to 102 differential proteins were identified. GO enrichment, pathway, and hierarchical clustering analysis revealed some of the differential proteins that are the main participants in several biological processes, including blood coagulation, intermediate filament, antibacterial activity, and neurodevelopment. A list of 11 putative protein biomarkers, such as keratin (KRT19, KRT12, KRT15, and KRT6A), which is involved in cell architecture, and fibrinogen (fibrinogen alpha chain, fibrinogen beta chain, and fibrinogen gamma chain), which is related to blood coagulation, were ultimately screened. The current study screened egg white proteins that can predict low hatchability and embryonic death and deciphered the role of these proteins in embryonic development, which is meaningful for the comprehensive understanding of embryonic growth.
Collapse
Affiliation(s)
- Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiyuan Yan
- Beijing Engineering Research Center of Layer, Beijing 101206, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing 101206, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
40
|
Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry 2019; 24:1189-1205. [PMID: 30651602 DOI: 10.1038/s41380-018-0347-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
Recent genome-wide association studies on major depressive disorder have implicated neuronal growth regulator 1 (Negr1), a GPI-anchored cell adhesion molecule in the immunoglobulin LON family. Although Negr1 has been shown to regulate neurite outgrowth and synapse formation, the mechanism through which this protein affects mood disorders is still largely unknown. In this research, we characterized Negr1-deficient (negr1-/-) mice to elucidate the function of Negr1 in anxiety and depression. We found that anxiety- and depression-like behaviors increased in negr1-/- mice compared with wild-type mice. In addition, negr1-/- mice had decreased adult hippocampal neurogenesis compared to wild-type mice. Concurrently, both LTP and mEPSC in the dentate gyrus (DG) region were severely compromised in negr1-/- mice. In our effort to elucidate the underlying molecular mechanisms, we found that lipocalin-2 (Lcn2) expression was decreased in the hippocampus of negr1-/- mice compared to wild-type mice. Heterologous Lcn2 expression in the hippocampal DG of negr1-/- mice rescued anxiety- and depression-like behaviors and restored neurogenesis and mEPSC frequency to their normal levels in these mice. Furthermore, we discovered that Negr1 interacts with leukemia inhibitory factor receptor (LIFR) and modulates LIF-induced Lcn2 expression. Taken together, our data uncovered a novel mechanism of mood regulation by Negr1 involving an interaction between Negr1 and LIFR along with Lcn2 expression.
Collapse
|
41
|
Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, Bertorelli R, Papaleo F, Schäfer MK, Piccoli G, Cancedda L. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain 2019; 141:2772-2794. [PMID: 30059965 PMCID: PMC6113639 DOI: 10.1093/brain/awy190] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.
Collapse
Affiliation(s)
- Joanna Szczurkowska
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Università degli Studi di Genova, Via Balbi, 5, Genoa, Italy
| | - Francesca Pischedda
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Summa
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Rosalia Bertorelli
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Michael K Schäfer
- Department of Anesthesiology and Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Giovanni Piccoli
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| |
Collapse
|
42
|
Singh K, Jayaram M, Kaare M, Leidmaa E, Jagomäe T, Heinla I, Hickey MA, Kaasik A, Schäfer MK, Innos J, Lilleväli K, Philips MA, Vasar E. Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Sci Rep 2019; 9:5457. [PMID: 30932003 PMCID: PMC6443666 DOI: 10.1038/s41598-019-41991-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) belongs to the immunoglobulin (IgLON) superfamily of cell adhesion molecules involved in cortical layering. Recent functional and genomic studies implicate the role of NEGR1 in a wide spectrum of psychiatric disorders, such as major depression, schizophrenia and autism. Here, we investigated the impact of Negr1 deficiency on brain morphology, neuronal properties and social behavior of mice. In situ hybridization shows Negr1 expression in the brain nuclei which are central modulators of cortical-subcortical connectivity such as the island of Calleja and the reticular nucleus of thalamus. Brain morphological analysis revealed neuroanatomical abnormalities in Negr1−/− mice, including enlargement of ventricles and decrease in the volume of the whole brain, corpus callosum, globus pallidus and hippocampus. Furthermore, decreased number of parvalbumin-positive inhibitory interneurons was evident in Negr1−/− hippocampi. Behaviorally, Negr1−/− mice displayed hyperactivity in social interactions and impairments in social hierarchy. Finally, Negr1 deficiency resulted in disrupted neurite sprouting during neuritogenesis. Our results provide evidence that NEGR1 is required for balancing the ratio of excitatory/inhibitory neurons and proper formation of brain structures, which is prerequisite for adaptive behavioral profiles. Therefore, Negr1−/− mice have a high potential to provide new insights into the neural mechanisms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia. .,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Str.25, 53127, Bonn, Germany
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromso, Norway
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Michael K Schäfer
- Department for Anesthesiology, University Medical Center and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
43
|
Singh K, Lilleväli K, Gilbert SF, Bregin A, Narvik J, Jayaram M, Rahi M, Innos J, Kaasik A, Vasar E, Philips MA. The combined impact of IgLON family proteins Lsamp and Neurotrimin on developing neurons and behavioral profiles in mouse. Brain Res Bull 2018; 140:5-18. [PMID: 29605488 DOI: 10.1016/j.brainresbull.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Cell surface neural adhesion proteins are critical components in the complex orchestration of cell proliferation, apoptosis, and neuritogenesis essential for proper brain construction and behavior. We focused on the impact of two plasticity-associated IgLON family neural adhesion molecules, Neurotrimin (Ntm) and Limbic system associated membrane protein (Lsamp), on mouse behavior and its underlying neural development. Phenotyping neurons derived from the hippocampi of Lsamp-/-, Ntm-/- and Lsamp-/-Ntm-/- mice was performed in parallel with behavioral testing. While the anatomy of mutant brains revealed no gross changes, the Ntm-/- hippocampal neurons exhibited premature sprouting of neurites and manifested accelerated neurite elongation and branching. We propose that Ntm exerts an inhibitory impact on neurite outgrowth, whereas Lsamp appears to be an enhancer of the said process as premature neuritogenesis in Ntm-/- neurons is apparent only in the presence of Lsamp. We also show interplay between Lsamp and Ntm in regulating tissue homeostasis: the impact of Ntm on cellular proliferation was dependent on Lsamp, and Lsamp appeared to be a positive regulator of apoptosis in the presence of Ntm. Behavioral phenotyping indicated test-specific interactions between Lsamp and Ntm. The phenotypes of single mutant lines, such as reduced swimming speed in Morris water maze and increased activity in the elevated plus maze, were magnified in Lsamp-/-Ntm-/- mice. Altogether, evidence both from behavioral experiments and cultured hippocampal cells show combined and differential interactions between Ntm and Lsamp in the formation of hippocampal circuits and behavioral profiles. We demonstrate that mutual interactions between IgLON molecules regulate the initiation of neurite sprouting at very early ages, and even cell-autonomously, independent of their regulation of cell-cell adhesion.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Jane Narvik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Märt Rahi
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| |
Collapse
|