1
|
Wang H, Yang Y, Ni Z, Qiao X, Guo Y, Wang X, Cao D, Wang Y, Ruan C. Advances in the molecular mechanisms of zinc-finger transcription factors in neurodevelopmental disorders. IBRO Neurosci Rep 2025; 18:409-413. [PMID: 40124112 PMCID: PMC11930196 DOI: 10.1016/j.ibneur.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) constitute a heterogeneous group of early-onset brain dysfunction disorders, which may arise from genetic or acquired etiologies. These disorders are characterized by behavioral and cognitive deficits that predominantly manifest during childhood development, thereby potentially impairing an individual's performance in learning, sports, and social situations. A comprehensive understanding of the pathogenesis of NDDs is crucial for the development of targeted therapeutic interventions. Zinc-finger transcription factors (ZFPs) play a pivotal role in regulating gene expression by modulating the binding of RNA polymerase to DNA, thereby either activating or repressing gene transcription. In recent years, the BCL11 gene family of ZFPs has garnered significant attention due to its critical involvement in nervous system development. This review aims to elucidate the structure and molecular functions of the BCL11 gene family, discuss its impact on the development of the central nervous system, and explore its association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hailin Wang
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
- Xi'an Children's Hospital Research Institute, Xi'an, Shaanxi 710003, China
| | - Ziwei Ni
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Xiaoting Qiao
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Yaqian Guo
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Xiaomin Wang
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Duo Cao
- School of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yayun Wang
- National Experimental Center of Air Force Medical University, Xi'an, Shaanxi 716000, China
| | - Cailian Ruan
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
- Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Qiu L, Yang T, Guo Q, Hua T, Bi Y, Chu P, Bai H, Chen S, Chang G. C 2H 2-type zinc-finger protein BCL11B suppresses avian Leukosis virus subgroup J replication by regulating apoptosis. Int J Biol Macromol 2024; 275:133644. [PMID: 38964687 DOI: 10.1016/j.ijbiomac.2024.133644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Apoptosis plays a crucial role in host antiviral defense. The avian leukosis virus subgroup J (ALV-J), an avian oncogenic retrovirus, has been shown to suppress apoptosis while promoting its own replication. ALV-J induces myeloid tumors and hemangiomas in chickens resulting in significant economic losses for commercial layer and meat-type chicken production. B-cell lymphoma/leukemia 11B (Bcl11b) encodes a C2H2-type zinc finger protein-BCL11B, that exerts critical functions in cell proliferation, differentiation, and plays an essential role in the immune system. Previous study has been shown that Bcl11b is associated with ALV-J infection. In this study, we further investigated the pathological changes in ALV-J infected cells and examined the role and expression regulation of chicken Bcl11b. Our results demonstrate that Bcl11b, as an interferon-stimulated gene (ISG), encodes C2H2-type zinc finger protein BCL11B that promotes apoptosis to inhibit ALV-J infection. Additionally, gga-miR-1612 and gga-miR-6701-3p regulate apoptosis and are involved in ALV-J infection by targeting Bcl11b, thus revealing immune response strategies between the host and ALV-J. Although the underlying mechanisms require further validation, Bcl11b and its regulatory miRNAs are the first to demonstrate inhibition of ALV-J replication via apoptosis. BCL11B can a valuable target for treating diseases triggered by ALV-J infection.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Tian Hua
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Murthy S, Nongthomba U. Role of the BCL11A/B Homologue Chronophage (Cph) in Locomotor Behaviour of Drosophila melanogaster. Neuroscience 2024; 551:1-16. [PMID: 38763224 DOI: 10.1016/j.neuroscience.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Functioning of the nervous system requires proper formation and specification of neurons as well as accurate connectivity and signalling between them. Locomotor behaviour depends upon these events that occur during neural development, and any aberration in them could result in motor disorders. Transcription factors are believed to be master regulators that control these processes, but very few linked to behaviour have been identified so far. The Drosophila homologue of BCL11A (CTIP1) and BCL11B (CTIP2), Chronophage (Cph), was recently shown to be involved in temporal patterning of neural stem cells but its role in post-mitotic neurons is not known. We show that knockdown of Cph in neurons during development results in animals with locomotor defects at both larval and adult stages. The defects are more severe in adults, with inability to stand, uncoordinated behaviour and complete loss of ability to walk, climb, or fly. These defects are similar to the motor difficulties observed in some patients with mutations in BCL11A and BCL11B. Electrophysiological recordings showed reduced evoked activity and irregular neuronal firing. All Cph-expressing neurons in the ventral nerve cord are glutamatergic. Our results imply that Cph modulates primary locomotor activity through configuration of glutamatergic neurons. Thus, this study ascribes a hitherto unknown role to Cph in locomotor behaviour of Drosophila melanogaster.
Collapse
Affiliation(s)
- Smrithi Murthy
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
4
|
Neumann AM, Britsch S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules 2024; 14:669. [PMID: 38927072 PMCID: PMC11202058 DOI: 10.3390/biom14060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
An epilepsy diagnosis reduces a patient's quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury-an emerging perspective on the epileptogenic process in acquired forms of epilepsy.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
5
|
Ding J, Wu J, Hou X, Yang L, Gao Y, Zheng J, Jia N, He Z, Zhang H, Wang C, Qi X, Huang J, Pei X, Wang J. α-synuclein-lack expression rescues methamphetamine-induced mossy fiber degeneration in dorsal hippocampal CA3. Neurotoxicology 2024; 101:36-45. [PMID: 38311184 DOI: 10.1016/j.neuro.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Methamphetamine (METH) - induced cognitive impairments may be related to synaptic degeneration at mossy fiber terminals, critical for spatial memory formation in hippocampal circuits. We have previously found METH-induced neurodegeneration in the striatum by increasing the α-synuclein (α-SYN) level. However, whether and how the METH-induced mossy fiber degeneration is also blamed for the abnormal accumulation of α-SYN remains to be elucidated. Chronic METH exposure decreased mossy fiber density but upregulatedα-SYN and phosphorylated TAU (TAU-pSer396) in hippocampal CA3, associated with glial cell overactivation, axonal neuropathies, and memory impairment. Notably, the knockout of the α-SYN gene significantly alleviated the METH-induced mossy fiber degeneration and memory impairment. Meanwhile, the TAU-pSer396 accumulation and glial activation were ameliorated by α-SYN knockout. Our findings suggest an essential role of α-SYN in mediating METH-induced mossy fiber degeneration, providing promising therapeutic and prophylactic targets for METH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jun Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaotao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China; Guangdong Provincial Key Laboratory of Genetic Disease Diagnostic, Guangzhou, China
| | - Li Yang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Zheng He
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Hui Zhang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Chengfei Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
6
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
7
|
Koumoundourou A, Rannap M, De Bruyckere E, Nestel S, Reissner C, Egorov AV, Liu P, Missler M, Heimrich B, Draguhn A, Britsch S. Regulation of hippocampal mossy fiber-CA3 synapse function by a Bcl11b/C1ql2/Nrxn3(25b+) pathway. eLife 2024; 12:RP89854. [PMID: 38358390 PMCID: PMC10942602 DOI: 10.7554/elife.89854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear. We show in mice that the synaptic organizer molecule C1ql2 is a direct functional target of Bcl11b that regulates synaptic vesicle recruitment and long-term potentiation at mossy fiber-CA3 synapses in vivo and in vitro. Furthermore, we demonstrate C1ql2 to exert its functions through direct interaction with a specific splice variant of neurexin-3, Nrxn3(25b+). Interruption of C1ql2-Nrxn3(25b+) interaction by expression of a non-binding C1ql2 mutant or by deletion of Nrxn3 in the dentate gyrus granule neurons recapitulates major parts of the Bcl11b as well as C1ql2 mutant phenotype. Together, this study identifies a novel C1ql2-Nrxn3(25b+)-dependent signaling pathway through which Bcl11b controls mossy fiber-CA3 synapse function. Thus, our findings contribute to the mechanistic understanding of neurodevelopmental disorders accompanied by synaptic dysfunction.
Collapse
Affiliation(s)
| | - Märt Rannap
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | | | - Sigrun Nestel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of MünsterMünsterGermany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | - Pengtao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
- Centre for Translational Stem Cell BiologyHong KongChina
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of MünsterMünsterGermany
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm UniversityUlmGermany
| |
Collapse
|
8
|
Kruse P, Brandes G, Hemeling H, Huang Z, Wrede C, Hegermann J, Vlachos A, Lenz M. Synaptopodin Regulates Denervation-Induced Plasticity at Hippocampal Mossy Fiber Synapses. Cells 2024; 13:114. [PMID: 38247806 PMCID: PMC10814840 DOI: 10.3390/cells13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
9
|
Meneses-San Juan D, Lamas M, Ramírez-Rodríguez GB. Repetitive Transcranial Magnetic Stimulation Reduces Depressive-like Behaviors, Modifies Dendritic Plasticity, and Generates Global Epigenetic Changes in the Frontal Cortex and Hippocampus in a Rodent Model of Chronic Stress. Cells 2023; 12:2062. [PMID: 37626872 PMCID: PMC10453847 DOI: 10.3390/cells12162062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is the most common affective disorder worldwide, accounting for 4.4% of the global population, a figure that could increase in the coming decades. In depression, there exists a reduction in the availability of dendritic spines in the frontal cortex (FC) and hippocampus (Hp). In addition, histone modification and DNA methylation are also dysregulated epigenetic mechanisms in depression. Repetitive transcranial magnetic stimulation (rTMS) is a technique that is used to treat depression. However, the epigenetic mechanisms of its therapeutic effect are still not known. Therefore, in this study, we evaluated the antidepressant effect of 5 Hz rTMS and examined its effect on dendritic remodeling, immunoreactivity of synapse proteins, histone modification, and DNA methylation in the FC and Hp in a model of chronic mild stress. Our data indicated that stress generated depressive-like behaviors and that rTMS reverses this effect, romotes the formation of dendritic spines, and favors the presynaptic connection in the FC and DG (dentate gyrus), in addition to increasing histone H3 trimethylation and DNA methylation. These results suggest that the antidepressant effect of rTMS is associated with dendritic remodeling, which is probably regulated by epigenetic mechanisms. These data are a first approximation of the impact of rTMS at the epigenetic level in the context of depression. Therefore, it is necessary to analyze in future studies as to which genes are regulated by these mechanisms, and how they are associated with the neuroplastic modifications promoted by rTMS.
Collapse
Affiliation(s)
- David Meneses-San Juan
- National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
- Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Mónica Lamas
- Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | | |
Collapse
|
10
|
Zhang C, Li X, Huang W, Wang L, Shi Q. Spatially aware self-representation learning for tissue structure characterization and spatial functional genes identification. Brief Bioinform 2023; 24:bbad197. [PMID: 37253698 DOI: 10.1093/bib/bbad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Spatially resolved transcriptomics (SRT) enable the comprehensive characterization of transcriptomic profiles in the context of tissue microenvironments. Unveiling spatial transcriptional heterogeneity needs to effectively incorporate spatial information accounting for the substantial spatial correlation of expression measurements. Here, we develop a computational method, SpaSRL (spatially aware self-representation learning), which flexibly enhances and decodes spatial transcriptional signals to simultaneously achieve spatial domain detection and spatial functional genes identification. This novel tunable spatially aware strategy of SpaSRL not only balances spatial and transcriptional coherence for the two tasks, but also can transfer spatial correlation constraint between them based on a unified model. In addition, this joint analysis by SpaSRL deciphers accurate and fine-grained tissue structures and ensures the effective extraction of biologically informative genes underlying spatial architecture. We verified the superiority of SpaSRL on spatial domain detection, spatial functional genes identification and data denoising using multiple SRT datasets obtained by different platforms and tissue sections. Our results illustrate SpaSRL's utility in flexible integration of spatial information and novel discovery of biological insights from spatial transcriptomic datasets.
Collapse
Affiliation(s)
- Chuanchao Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xinxing Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wendong Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lequn Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Liu R, Dong W, Xiong D, Hu L, Zhang H, Yuan X, Tang Z, Fu F, Yang X, Wu X. Single-cell RNA-sequencing identifies various proportions of excitatory and inhibitory neurons in cultured human fetal brain cortical tissues. Front Neurosci 2023; 17:1177747. [PMID: 37449269 PMCID: PMC10338112 DOI: 10.3389/fnins.2023.1177747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Cortical neural progenitor cells possess the capacity to differentiate into both excitatory and inhibitory neurons. However, the precise proportions in which these progenitor cells differentiate remain unclear. Methods Human fetal prefrontal cortical tissues were collected at various fetal stages and cultured in vitro. Bulk and single-cell RNA sequencing techniques were employed to analyze the resulting neuronal cell types, cell proportions, and the expression levels of cell-type marker genes. Results The culture of fetal prefrontal cortex tissues obtained at gestation weeks 11 and 20 predominantly consisted of excitatory and inhibitory neurons, respectively. This abrupt transition in cell proportions was primarily driven by the differential lineage specificity of neural progenitors in the fetal cortical tissues at distinct stages of fetal brain development. Additionally, it was observed that the transcriptional profiles of cultured fetal cortical tissues were strongly influenced by the presence of FGF2. Discussion This study presents a novel strategy to obtain excitatory and inhibitory neuronal cells from the culture of fetal cortical tissues. The findings shed light on the mechanisms underlying neurogenesis and provide an approach that might contribute to future research investigating the pathophysiology of various neural disorders.
Collapse
Affiliation(s)
- Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Dong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dan Xiong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haoran Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoping Yuan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xia Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Segklia K, Matsas R, Papastefanaki F. Brain Infection by Group B Streptococcus Induces Inflammation and Affects Neurogenesis in the Adult Mouse Hippocampus. Cells 2023; 12:1570. [PMID: 37371040 DOI: 10.3390/cells12121570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Central nervous system infections caused by pathogens crossing the blood-brain barrier are extremely damaging and trigger cellular alterations and neuroinflammation. Bacterial brain infection, in particular, is a major cause of hippocampal neuronal degeneration. Hippocampal neurogenesis, a continuous multistep process occurring throughout life in the adult brain, could compensate for such neuronal loss. However, the high rates of cognitive and other sequelae from bacterial meningitis/encephalitis suggest that endogenous repair mechanisms might be severely affected. In the current study, we used Group B Streptococcus (GBS) strain NEM316, to establish an adult mouse model of brain infection and determine its impact on adult neurogenesis. Experimental encephalitis elicited neurological deficits and death, induced inflammation, and affected neurogenesis in the dentate gyrus of the adult hippocampus by suppressing the proliferation of progenitor cells and the generation of newborn neurons. These effects were specifically associated with hippocampal neurogenesis while subventricular zone neurogenesis was not affected. Overall, our data provide new insights regarding the effect of GBS infection on adult brain neurogenesis.
Collapse
Affiliation(s)
- Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
13
|
Yu Y, Jia X, Yin H, Jiang H, Du Y, Yang F, Yang Z, Li H. A novel variant in BCL11B in an individual with neurodevelopmental delay: A case report. Mol Genet Genomic Med 2023; 11:e2132. [PMID: 36683525 PMCID: PMC10094078 DOI: 10.1002/mgg3.2132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND B-Cell CLL/Lymphoma 11B (BCL11B) is a C2 H2 zinc finger transcription factor that has broad biological functions and is essential for the development of the immune system, neural system, cardiovascular system, dermis, and dentition. Variants of BCL11B have been found in patients with neurodevelopmental disorders and immunodeficiency. MATERIALS AND METHODS Whole-exome sequencing (WES) and clinical examinations were performed to identify the etiology of our patient. A variant in the BCL11B gene, NM_138576.4: c.1206delG (p.Phe403Serfs*2) was found and led to frameshift truncation. RESULTS We reported a male patient with developmental delay and cerebral palsy who carried the BCL11B variant. The detailed clinical features, such as brain structure and immune detection, were described and reviewed in comparison to previous patients. CONCLUSIONS The BCL11B-related neurodevelopmental disorders are rare, and only 17 variants in 25 patients have been found to date. Our report expands the variants spectrum of BCL11B and increases the case of neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Yonglin Yu
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Xiaoyi Jia
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Hongwei Yin
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Hongfang Jiang
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yu Du
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | | | | | - Haifeng Li
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| |
Collapse
|
14
|
Identification of key adipogenic transcription factors for the pork belly parameters via the association weight matrix. Meat Sci 2023; 195:109015. [DOI: 10.1016/j.meatsci.2022.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
15
|
Wiegreffe C, Wahl T, Joos NS, Bonnefont J, Liu P, Britsch S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6‐dependent pathway. EMBO Rep 2022; 23:e54104. [PMID: 35766181 PMCID: PMC9346488 DOI: 10.15252/embr.202154104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper‐layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6‐dependent molecular pathway in regulation of developmental cell death during corticogenesis.
Collapse
Affiliation(s)
| | - Tobias Wahl
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| | | | - Jerome Bonnefont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI) Université Libre de Bruxelles (ULB) Brussels Belgium
- VIB‐KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neuroscience Leuven Brain Institute Leuven Belgium
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| |
Collapse
|
16
|
Fu W, Franchini L, Orlandi C. Comprehensive Spatial Profile of the Orphan G Protein Coupled Receptor GPRC5B Expression in Mouse Brain. Front Neurosci 2022; 16:891544. [PMID: 35812210 PMCID: PMC9259939 DOI: 10.3389/fnins.2022.891544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Orphan G Protein Coupled Receptors (GPCRs) are GPCRs whose endogenous ligands are unknown or still debated. Due to the lack of pharmacological modulators, the physiological function of orphan GPCRs is understudied. However, relevant physiological roles associated with orphan GPCRs have been revealed by analysis of animal models and genome wide association studies illuminating an untapped potential for drug discovery. G Protein Coupled Receptor class C Group 5 Member B (GPRC5B) is among the most expressed GPCRs in the central nervous system. Thus, the expression profiling of GPRC5B is an essential step toward understanding GPRC5B function in health and disease. In this study, we generated new GPRC5B polyclonal antibodies and investigated the expression levels of GPRC5B across different organs and brain regions. We identified high levels of GPRC5B glycosylation both in transfected cells and in mouse brain. Moreover, in situ hybridization imaging analysis indicated that Gprc5b was expressed at the highest level in olfactory bulb, hippocampus, cerebellum, and pons. To dissect expression within various neuronal populations, we conducted a comprehensive spatial profiling of Gprc5b across excitatory and inhibitory neuronal types in medial prefrontal cortex, motor cortex, hippocampal regions, hypothalamus, and cerebellum. Overall, we discovered that GABAergic neurons displayed higher Gprc5b expression levels than glutamatergic neurons in most of the analyzed regions with the important exception of the hippocampal dentate gyrus. Overall, the expression analysis of GPRC5B in mouse brain will guide functional studies ultimately positioning GPRC5B in pathophysiological mechanisms and drug discovery.
Collapse
|
17
|
Tolve M, Ulusoy A, Patikas N, Islam KUS, Bodea GO, Öztürk E, Broske B, Mentani A, Wagener A, van Loo KMJ, Britsch S, Liu P, Khaled WT, Metzakopian E, Baader SL, Di Monte DA, Blaess S. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep 2021; 36:109697. [PMID: 34525371 DOI: 10.1016/j.celrep.2021.109697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.
Collapse
Affiliation(s)
- Marianna Tolve
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Gabriela O Bodea
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ece Öztürk
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Bianca Broske
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Astrid Mentani
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Antonia Wagener
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Karen M J van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany
| | - Pengtao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, CB 21PD, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Stephan L Baader
- Institute of Anatomy, Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
18
|
Daher MT, Bausero P, Agbulut O, Li Z, Parlakian A. Bcl11b/Ctip2 in Skin, Tooth, and Craniofacial System. Front Cell Dev Biol 2020; 8:581674. [PMID: 33363142 PMCID: PMC7758212 DOI: 10.3389/fcell.2020.581674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ctip2/Bcl11b is a zinc finger transcription factor with dual action (repression/activation) that couples epigenetic regulation to gene transcription during the development of various tissues. It is involved in a variety of physiological responses under healthy and pathological conditions. Its role and mechanisms of action are best characterized in the immune and nervous systems. Furthermore, its implication in the development and homeostasis of other various tissues has also been reported. In the present review, we describe its role in skin development, adipogenesis, tooth formation and cranial suture ossification. Experimental data from several studies demonstrate the involvement of Bcl11b in the control of the balance between cell proliferation and differentiation during organ formation and repair, and more specifically in the context of stem cell self-renewal and fate determination. The impact of mutations in the coding sequences of Bcl11b on the development of diseases such as craniosynostosis is also presented. Finally, we discuss genome-wide association studies that suggest a potential influence of single nucleotide polymorphisms found in the 3’ regulatory region of Bcl11b on the homeostasis of the cardiovascular system.
Collapse
Affiliation(s)
- Marie-Thérèse Daher
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Pedro Bausero
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Ara Parlakian
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| |
Collapse
|
19
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
20
|
González-Maciel A, Romero-Velázquez RM, Alfaro-Rodríguez A, Sanchez Aparicio P, Reynoso-Robles R. Prenatal exposure to oxcarbazepine increases hippocampal apoptosis in rat offspring. J Chem Neuroanat 2019; 103:101729. [PMID: 31794794 DOI: 10.1016/j.jchemneu.2019.101729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023]
Abstract
This study assessed apoptosis in the offspring of rats exposed to oxcarbazepine (OXC) from day 7 to 15 of gestation. Three groups of pregnant Wistar rats were used: 1) Control, treated with saline solution; 2) treated with 100 mg/kg OXC; 3) treated with 100 mg/kg of carbamazepine (CBZ, as a positive control for apoptosis); the route of administration was intragastric. Apoptosis was detected at three postnatal ages using the TUNEL technique in the CA1, and CA3 regions of the hippocampus and in the dentate gyrus (DG); neurogenesis was assessed in the DG using an antibody against doublecortin. The litter characteristics were recorded. OXC increased apoptosis in all regions (p < 0.01) at the three ages evaluated. Lamination disruption occurred in CA1 and CA3 due to the neuron absence and to ectopic neurons; there were also malformations in the dorsal lamina of the DG in 38% and 25% of the pups born from rats treated with OXC and CBZ respectively. CBZ also increased apoptosis. No clear effect on neurogenesis in the DG was observed. The size of the litter was smaller (p < 0.01) in the experimental groups. Nineteen-day OXC fetuses had low weight (p < 0.01), but 21 and 30 postnatal days old CBZ and OXC pups were overweight (p < 0.01). The results demonstrate that OXC administered during gestation is pro-apoptotic, alters the cytoarchitecture of the hippocampus, reduces litter size, and probably influences postnatal weight. We provide evidence of the proapoptotic effect of CBZ when administered early in gestation.
Collapse
Affiliation(s)
- A González-Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| | - R M Romero-Velázquez
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| | - A Alfaro-Rodríguez
- Division of Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Col. Arenal de Guadalupe, Mexico City, C.P. 14389, Mexico.
| | - P Sanchez Aparicio
- Faculty of Veterinary Medicine, Department of Pharmacology, Universidad Autónoma del Estado de México, Mexico
| | - R Reynoso-Robles
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico.
| |
Collapse
|