1
|
Tang Z, Wei C, Deng X, Lin Q, Hu Q, Li S, Wang J, Wu Y, Liu D, Fang M, Zhan T. Serum proteomic and metabolomic profiling of hepatocellular carcinoma patients co-infected with Clonorchis sinensis. Front Immunol 2025; 15:1489077. [PMID: 39840062 PMCID: PMC11746118 DOI: 10.3389/fimmu.2024.1489077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Background Clonorchis sinensis (C. sinensis) infection is a significant risk factor for hepatocellular carcinoma (HCC), yet its underlying mechanisms remain poorly understood. This study aimed to investigate the impact of C. sinensis infection on the serum proteomic and metabolomic profiling of HCC patients, focusing on the potential mechanisms. Method A retrospective clinical analysis was conducted on 1121 HCC patients, comparing those with and without C. sinensis infection. The influence of C. sinensis on serum proteome and metabolome in HCC was further assessed. Result C. sinensis infection correlated with a younger age at cancer onset, male predominance, advanced cancer stage, liver cirrhosis, and microvascular invasion in HCC patients. It also associated with shorter overall survival (OS) and recurrence-free survival (RFS). The levels of blood lipids (e.g., APO-A, HDL-C, and TG) were significantly altered after C. sinensis infection. Proteomic and metabolomic analyses revealed metabolic reprogramming caused by C. sinensis, with excessive depletion of argininosuccinate synthase (ASS) and D-glucose as potential factors in C. sinensis-associated HCC malignancy. Key molecules ILF2, CNN2, OLFM4, NOTCH3, and LysoPA were implicated in HCC progression. Furthermore, C. sinensis triggered inflammation, insulin resistance, and pro-tumor immune escape, and exacerbated the complication of degenerative diseases. Conclusion This study not only provides compelling evidence for elucidating the mechanisms underlying C. sinensis-mediated HCC development but also identifies potential therapeutic targets for HCC patients co-infected with C. sinensis.
Collapse
Affiliation(s)
- Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Shitao Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jilong Wang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuhong Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Dengyu Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
- Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tingzheng Zhan
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Rodríguez L, Lagos F, Mastrogiovanni M, Flores A, Plaza A, Telleria F, Palomo I, Fuentes E, Trostchansky A. Tomato pomace-derived nitrated fatty acids: Synthesis and antiplatelet activity. Biomed Pharmacother 2024; 177:117154. [PMID: 39018868 DOI: 10.1016/j.biopha.2024.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
This study investigates the antiplatelet properties of tomato pulp to combat cardiovascular diseases. Notably, it examines the formation of nitrated fatty acids (NO2-FA) in tomato pomace, renowned for its potential antiplatelet effects. Through diverse assays, including tandem mass spectrometry, microplate-based platelet aggregation, and flow cytometry, the research identifies NO2-OA, NO2-LA, and NO2-LnA as pivotal antiplatelet compounds. It demonstrates the concentration-dependent antiplatelet effects of nitrated tomato pomace against thrombin receptor activator peptide 6 (TRAP-6) and collagen-induced platelet activation, alongside the modulation of platelet activation markers. Additionally, synergistic effects were observed with nitrated tomato pomace extracts. The findings suggest therapeutic potential for NO2-FA derived from tomato pomace in preventing blood clot formation, with nitrated extracts exhibiting superior efficacy compared to non-nitrated ones. This research highlights the promising role of natural products, such as tomato pomace, in mitigating cardiovascular risks and proposes novel strategies for population health enhancement and cardiovascular disease management.
Collapse
Affiliation(s)
- Lyanne Rodríguez
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| | - Felipe Lagos
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Flores
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Andrea Plaza
- Centro de Estudios en Alimentos Procesados-CEAP, Conicyt, Programa Regional R19A10001, Gore Maule, Talca 3480094, Chile
| | - Francisca Telleria
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Chowdhury FA, Colussi N, Sharma M, Wood KC, Xu JZ, Freeman BA, Schopfer FJ, Straub AC. Fatty acid nitroalkenes - Multi-target agents for the treatment of sickle cell disease. Redox Biol 2023; 68:102941. [PMID: 37907055 PMCID: PMC10632539 DOI: 10.1016/j.redox.2023.102941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Sickle cell disease (SCD) is a hereditary hematological disease with high morbidity and mortality rates worldwide. Despite being monogenic, SCD patients display a plethora of disease-associated complications including anemia, oxidative stress, sterile inflammation, vaso-occlusive crisis-related pain, and vasculopathy, all of which contribute to multiorgan dysfunction and failure. Over the past decade, numerous small molecule drugs, biologics, and gene-based interventions have been evaluated; however, only four disease-modifying drug therapies are presently FDA approved. Barriers regarding effectiveness, accessibility, affordability, tolerance, and compliance of the current polypharmacy-based disease-management approaches are challenging. As such, there is an unmet pharmacological need for safer, more efficacious, and logistically accessible treatment options for SCD patients. Herein, we evaluate the potential of small molecule nitroalkenes such as nitro-fatty acid (NO2-FA) as a therapy for SCD. These agents are electrophilic and exert anti-inflammatory and tissue repair effects through an ability to transiently post-translationally bind to and modify transcription factors, pro-inflammatory enzymes and cell signaling mediators. Preclinical and clinical studies affirm safety of the drug class and a murine model of SCD reveals protection against inflammation, fibrosis, and vascular dysfunction. Despite protective cardiac, renal, pulmonary, and central nervous system effects of nitroalkenes, they have not previously been considered as therapy for SCD. We highlight the pathways targeted by this drug class, which can potentially prevent the end-organ damage associated with SCD and contrast their prospective therapeutic benefits for SCD as opposed to current polypharmacy approaches.
Collapse
Affiliation(s)
- Fabliha A Chowdhury
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Colussi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Malini Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Z Xu
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA.
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Chaves-Filho AB, Diniz LS, Santos RS, Lima RS, Oreliana H, Pinto IFD, Dantas LS, Inague A, Faria RL, Medeiros MHG, Glezer I, Festuccia WT, Yoshinaga MY, Miyamoto S. Plasma oxylipin profiling by high resolution mass spectrometry reveal signatures of inflammation and hypermetabolism in amyotrophic lateral sclerosis. Free Radic Biol Med 2023; 208:285-298. [PMID: 37619957 DOI: 10.1016/j.freeradbiomed.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons, systemic hypermetabolism, and inflammation. In this context, oxylipins have been investigated as signaling molecules linked to neurodegeneration, although their specific role in ALS remains unclear. Importantly, most methods focused on oxylipin analysis are based on low-resolution mass spectrometry, which usually confers high sensitivity, but not great accuracy for molecular characterization, as provided by high-resolution MS (HRMS). Here, we established an ultra-high performance liquid chromatography HRMS (LC-HRMS) method for simultaneous analysis of 126 oxylipins in plasma. Intra- and inter-day method validation showed high sensitivity (0.3-25 pg), accuracy and precision for more than 90% of quality controls. This method was applied in plasma of ALS rats overexpressing the mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A) at asymptomatic (ALS 70 days old) and symptomatic stages (ALS 120 days old), and their respective age-matched wild type controls. From the 56 oxylipins identified in plasma, 17 species were significantly altered. Remarkably, most of oxylipins linked to inflammation and oxidative stress derived from arachidonic acid (AA), like prostaglandins and mono-hydroxides, were increased in ALS 120 d rats. In addition, ketones derived from AA and linoleic acid (LA) were increased in both WT 120 d and ALS 120 d groups, supporting that age also modulates oxylipin metabolism in plasma. Interestingly, the LA-derived diols involved in fatty acid uptake and β-oxidation, 9(10)-DiHOME and 12(13)-DiHOME, were decreased in ALS 120 d rats and showed significant synergic effects between age and disease factors. In summary, we validated a high-throughput LC-HRMS method for oxylipin analysis and provided a comprehensive overview of plasma oxylipins involved in ALS disease progression. Noteworthy, the oxylipins altered in plasma have potential to be investigated as biomarkers for inflammation and hypermetabolism in ALS.
Collapse
Affiliation(s)
- Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil; Departamento de Fisiologia, Instituto de Ciências Biomédicas, University of São Paulo, Brazil.
| | - Larissa S Diniz
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Rosangela S Santos
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Hector Oreliana
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Isabella F D Pinto
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Lucas S Dantas
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Rodrigo L Faria
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Isaías Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Federal University of São Paulo, Brazil
| | - William T Festuccia
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, University of São Paulo, Brazil
| | - Marcos Y Yoshinaga
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil.
| |
Collapse
|
5
|
Chen X, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen W, Chen Y, Qiao R, Xie P. Multi-Omics Analysis Reveals Age-Related Microbial and Metabolite Alterations in Non-Human Primates. Microorganisms 2023; 11:2406. [PMID: 37894064 PMCID: PMC10609416 DOI: 10.3390/microorganisms11102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a systemic physiological degenerative process, with alterations in gut microbiota and host metabolism. However, due to the interference of multiple confounding factors, aging-associated molecular characteristics have not been elucidated completely. Therefore, based on 16S ribosomal RNA (rRNA) gene sequencing and non-targeted metabolomic detection, our study systematically analyzed the composition and function of the gut microbiome, serum, and fecal metabolome of 36 male rhesus monkeys spanning from 3 to 26 years old, which completely covers juvenile, adult, and old stages. We observed significant correlations between 41 gut genera and age. Moreover, 86 fecal and 49 serum metabolites exhibited significant age-related correlations, primarily categorized into lipids and lipid-like molecules, organic oxygen compounds, organic acids and derivatives, and organoheterocyclic compounds. Further results suggested that aging is associated with significant downregulation of various amino acids constituting proteins, elevation of lipids, particularly saturated fatty acids, and steroids. Additionally, age-dependent changes were observed in multiple immune-regulatory molecules, antioxidant stress metabolites, and neurotransmitters. Notably, multiple age-dependent genera showed strong correlations in these changes. Together, our results provided new evidence for changing characteristics of gut microbes and host metabolism during aging. However, more research is needed in the future to verify our findings.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiyun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siwen Gui
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Renjie Qiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Alessenko AV, Gutner UA, Shupik MA. Involvement of Lipids in the Pathogenesis of Amyotrophic Lateral Sclerosis. Life (Basel) 2023; 13:life13020510. [PMID: 36836867 PMCID: PMC9966871 DOI: 10.3390/life13020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons. To study its underlying mechanisms, a variety of models are currently used at the cellular level and in animals with mutations in multiple ALS associated genes, including SOD1, C9ORF72, TDP-43, and FUS. Key mechanisms involved in the disease include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammatory, and immune reactions. In addition, significant metabolism alterations of various lipids classes, including phospholipids, fatty acids, sphingolipids, and others have been increasingly recognized. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons observed in the disease, have been intensively studied. In this context, sphingolipids, which are the most important sources of secondary messengers transmitting signals for cell proliferation, differentiation, and apoptosis, are gaining increasing attention in the context of ALS pathogenesis given their role in the development of neuroinflammatory and immune responses. This review describes changes in lipids content and activity of enzymes involved in their metabolism in ALS, both summarizing current evidence from animal models and clinical studies and discussing the potential of new drugs among modulators of lipid metabolism enzymes.
Collapse
|
7
|
Agrawal I, Lim YS, Ng SY, Ling SC. Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Transl Neurodegener 2022; 11:48. [DOI: 10.1186/s40035-022-00322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractLipids, defined by low solubility in water and high solubility in nonpolar solvents, can be classified into fatty acids, glycerolipids, glycerophospholipids, sphingolipids, and sterols. Lipids not only regulate integrity and fluidity of biological membranes, but also serve as energy storage and bioactive molecules for signaling. Causal mutations in SPTLC1 (serine palmitoyltransferase long chain subunit 1) gene within the lipogenic pathway have been identified in amyotrophic lateral sclerosis (ALS), a paralytic and fatal motor neuron disease. Furthermore, lipid dysmetabolism within the central nervous system and circulation is associated with ALS. Here, we aim to delineate the diverse roles of different lipid classes and understand how lipid dysmetabolism may contribute to ALS pathogenesis. Among the different lipids, accumulation of ceramides, arachidonic acid, and lysophosphatidylcholine is commonly emerging as detrimental to motor neurons. We end with exploring the potential ALS therapeutics by reducing these toxic lipids.
Collapse
|
8
|
Kubat Oktem E, Aydin B, Yazar M, Arga KY. Integrative Analysis of Motor Neuron and Microglial Transcriptomes from SOD1 G93A Mice Models Uncover Potential Drug Treatments for ALS. J Mol Neurosci 2022; 72:2360-2376. [PMID: 36178612 DOI: 10.1007/s12031-022-02071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neurons that mainly affects the motor cortex, brainstem, and spinal cord. Under disease conditions, microglia could possess two distinct profiles, M1 (toxic) and M2 (protective), with the M2 profile observed at disease onset. SOD1 (superoxide dismutase 1) gene mutations account for up to 20% of familial ALS cases. Comparative gene expression differences in M2-protective (early) stage SOD1G93A microglia and age-matched SOD1G93A motor neurons are poorly understood. We evaluated the differential gene expression profiles in SOD1G93A microglia and SOD1G93A motor neurons utilizing publicly available transcriptomics data and bioinformatics analyses, constructed biomolecular networks around them, and identified gene clusters as potential drug targets. Following a drug repositioning strategy, 5 small compounds (belinostat, auranofin, BRD-K78930611, AZD-8055, and COT-10b) were repositioned as potential ALS therapeutic candidates that mimic the protective state of microglia and reverse the toxic state of motor neurons. We anticipate that this study will provide new insights into the ALS pathophysiology linking the M2 state of microglia and drug repositioning.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Kuzey Yerleşkesi H Blok, Ünalan Sk. D100 Karayolu Yanyol 34700, Istanbul, Turkey.
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey.,Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Narzt MS, Kremslehner C, Golabi B, Nagelreiter IM, Malikovic J, Hussein AM, Plasenzotti R, Korz V, Lubec G, Gruber F, Lubec J. Molecular species of oxidized phospholipids in brain differentiate between learning- and memory impaired and unimpaired aged rats. Amino Acids 2022; 54:1311-1326. [PMID: 35817992 PMCID: PMC9372013 DOI: 10.1007/s00726-022-03183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
| | | | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Roberto Plasenzotti
- Center for Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria.
| |
Collapse
|
10
|
Bello-Medina PC, Rodríguez-Martínez E, Prado-Alcalá RA, Rivas-Arancibia S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. Neurologia 2022; 37:277-286. [PMID: 30857788 DOI: 10.1016/j.nrl.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Overpopulation and industrial growth result in an increase in air pollution, mainly due to suspended particulate matter and the formation of ozone. Repeated exposure to low doses of ozone, such as on a day with high air pollution levels, results in a state of chronic oxidative stress, causing the loss of dendritic spines, alterations in cerebral plasticity and in learning and memory mechanisms, and neuronal death and a loss of brain repair capacity. This has a direct impact on human health, increasing the incidence of chronic and degenerative diseases. DEVELOPMENT We performed a search of the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2000 and 2018 and addressing the main consequences of ozone exposure on synaptic plasticity, information processing in cognitive processes, and the alterations that may lead to the development of neurodegenerative diseases. CONCLUSIONS This review describes one of the pathophysiological mechanisms of the effect of repeated exposure to low doses of ozone, which causes loss of synaptic plasticity by producing a state of chronic oxidative stress. This brain function is key to both information processing and the generation of structural changes in neuronal populations. We also address the effect of chronic ozone exposure on brain tissue and the close relationship between ozone pollution and the appearance and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Rodríguez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
11
|
Basu P, Kim JH, Saeed S, Martins-Green M. Using systems biology approaches to identify signalling pathways activated during chronic wound initiation. Wound Repair Regen 2021; 29:881-898. [PMID: 34536049 DOI: 10.1111/wrr.12963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Chronic wounds are a significant health problem worldwide. However, nothing is known about how chronic wounds initiate and develop. Here we use a chronic wound model in diabetic mice and a Systems Biology Approach using nanoString nCounter technology and weighted gene correlation network analysis (WGCNA), with tissues collected at 6, 12, 24 and 48 h post-wounding, to identify metabolic signalling pathways involved in initiation of chronicity. Normalized counts obtained from the nanoString nCounter Mouse Metabolic Panel were used for the WGCNA, which groups genes into co-expression modules to visualize the correlation network. Genes with significant module membership and gene trait significance (p < 0.05) were used to identify signalling pathways that are important for the development of chronicity. The pathway analysis using the Reactome database showed stabilization of PTEN, which down-regulates PI3K/AKT1, which in turn down-regulates Nrf2, as shown by ELISA, thus disabling antioxidant production, resulting in high oxidative stress levels. We find that pathways involved in inflammation, including those that generate pro-inflammatory lipids derived from arachidonic acid metabolism, IFNγ and catecholamines, occur. Moreover, HIF3α is over-expressed, potentially blocking Hif1α and preventing activation of growth factors and cytokines that promote granulation tissue formation. We also find that FGF1 is under-expressed, while thrombospondin-1 is over-expressed, resulting in decreased angiogenesis, a process that is critical for healing. Finally, enzymes involved in glycolysis are down-regulated, resulting in decreased production of pyruvate, a molecule critical for ATP production, leading to extensive cell death and wound paralysis. These findings offer new avenues of study that may lead to the development of novel treatments of CW to be administered right after debridement.
Collapse
Affiliation(s)
- Proma Basu
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Jane Hannah Kim
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Shayan Saeed
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | | |
Collapse
|
12
|
Bello-Medina PC, Rodríguez-Martínez E, Prado-Alcalá RA, Rivas-Arancibia S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:277-286. [PMID: 34531154 DOI: 10.1016/j.nrleng.2018.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Overpopulation and industrial growth result in an increase in air pollution, mainly due to suspended particulate matter and the formation of ozone. Repeated exposure to low doses of ozone, such as on a day with high air pollution levels, results in a state of chronic oxidative stress, causing the loss of dendritic spines, alterations in cerebral plasticity and in learning and memory mechanisms, and neuronal death and a loss of brain repair capacity. This has a direct impact on human health, increasing the incidence of chronic and degenerative diseases. DEVELOPMENT We performed a search of the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2000 and 2018 and addressing the main consequences of ozone exposure on synaptic plasticity, information processing in cognitive processes, and the alterations that may lead to the development of neurodegenerative diseases. CONCLUSIONS This review describes one of the pathophysiological mechanisms of the effect of repeated exposure to low doses of ozone, which causes loss of synaptic plasticity by producing a state of chronic oxidative stress. This brain function is key to both information processing and the generation of structural changes in neuronal populations. We also address the effect of chronic ozone exposure on brain tissue and the close relationship between ozone pollution and the appearance and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - E Rodríguez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Sánchez-Calvo B, Cassina A, Mastrogiovanni M, Santos M, Trias E, Kelley EE, Rubbo H, Trostchansky A. Olive oil-derived nitro-fatty acids: protection of mitochondrial function in non-alcoholic fatty liver disease. J Nutr Biochem 2021; 94:108646. [PMID: 33838229 PMCID: PMC8197755 DOI: 10.1016/j.jnutbio.2021.108646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.
Collapse
Affiliation(s)
- Beatriz Sánchez-Calvo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Nutrición Básica, Escuela de Nutrición, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariela Santos
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, United States
| | - Homero Rubbo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CENIBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
14
|
Trostchansky A, Wood I, Rubbo H. Regulation of arachidonic acid oxidation and metabolism by lipid electrophiles. Prostaglandins Other Lipid Mediat 2021; 152:106482. [PMID: 33007446 DOI: 10.1016/j.prostaglandins.2020.106482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Arachidonic acid (AA) is a precursor of enzymatic and non-enzymatic oxidized products such as prostaglandins, thromboxanes, leukotrienes, lipoxins, and isoprostanes. These products may exert signaling or damaging roles during physiological and pathological conditions, some of them being markers of oxidative stress linked to inflammation. Recent data support the concept that cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 (CYP450) followed by cytosolic and microsomal dehydrogenases can convert AA to lipid-derived electrophiles (LDE). Lipid-derived electrophiles are fatty acid derivatives bearing an electron-withdrawing group that can react with nucleophiles at proteins, DNA, and small antioxidant molecules exerting potent signaling properties. This review aims to describe the formation, sources, and electrophilic anti-inflammatory actions of key mammalian LDE.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Irene Wood
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Silva JM, Nobre MSC, Albino SL, Lócio LL, Nascimento APS, Scotti L, Scotti MT, Oshiro-Junior JA, Lima MCA, Mendonça-Junior FJB, Moura RO. Secondary Metabolites with Antioxidant Activities for the Putative Treatment of Amyotrophic Lateral Sclerosis (ALS): "Experimental Evidences". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5642029. [PMID: 33299526 PMCID: PMC7707995 DOI: 10.1155/2020/5642029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids, coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties, consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural origin for the treatment of ALS.
Collapse
Affiliation(s)
- Jamire M. Silva
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Michelangela S. C. Nobre
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Sonaly L. Albino
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Lucas L. Lócio
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Agnis P. S. Nascimento
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - Marcus T. Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - João A. Oshiro-Junior
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Maria C. A. Lima
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
| | - Francisco J. B. Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, 58071-160 João Pessoa PB, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| |
Collapse
|
16
|
Tracey TJ, Kirk SE, Steyn FJ, Ngo ST. The role of lipids in the central nervous system and their pathological implications in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2020; 112:69-81. [PMID: 32962914 DOI: 10.1016/j.semcdb.2020.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Lipids play an important role in the central nervous system (CNS). They contribute to the structural integrity and physical characteristics of cell and organelle membranes, act as bioactive signalling molecules, and are utilised as fuel sources for mitochondrial metabolism. The intricate homeostatic mechanisms underpinning lipid handling and metabolism across two major CNS cell types; neurons and astrocytes, are integral for cellular health and maintenance. Here, we explore the various roles of lipids in these two cell types. Given that changes in lipid metabolism have been identified in a number of neurodegenerative diseases, we also discuss changes in lipid handling and utilisation in the context of amyotrophic lateral sclerosis (ALS), in order to identify key cellular processes affected by the disease, and inform future areas of research.
Collapse
Affiliation(s)
- T J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
| | - S E Kirk
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - F J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - S T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
17
|
Mastrogiovanni M, Trostchansky A, Rubbo H. Data of detection and characterization of nitrated conjugated-linoleic acid (NO 2-cLA) in LDL. Data Brief 2020; 28:105037. [PMID: 31909129 PMCID: PMC6940714 DOI: 10.1016/j.dib.2019.105037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 11/21/2022] Open
Abstract
Under physiological and pathophysiological conditions, lipid nitration occurs generating nitro-fatty acids (NFA) with pleiotropic activities as modulation of inflammatory cell responses. Foam cell formation and atherosclerotic lesion development have been extensively related to low-density lipoprotein (LDL) oxidation. Considering our manuscript “Fatty acid nitration in human low-density lipoprotein” (https://doi.org/10.1016/j.abb.2019.108190), herein we report the oxidation versus nitration of human LDL protein and lipid fractions. Data is shown on LDL fatty acid nitration, in particular, formation and quantitation of nitro-conjugated linoleic acid (NO2-cLA) under mild nitration conditions. In parallel to NO2-cLA formation, depletion of endogenous antioxidants, protein tyrosine nitration, and carbonyl formation is observed. Overall, our data propose the formation of a potential anti-atherogenic form of LDL carrying NFA.
Collapse
Affiliation(s)
- Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Andres Trostchansky
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| |
Collapse
|
18
|
Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland AS, Duce JA, Devedjian JC. Conservative iron chelation for neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2020; 127:189-203. [PMID: 31912279 DOI: 10.1007/s00702-019-02138-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Focal iron accumulation associated with brain iron dyshomeostasis is a pathological hallmark of various neurodegenerative diseases (NDD). The application of iron-sensitive sequences in magnetic resonance imaging has provided a useful tool to identify the underlying NDD pathology. In the three major NDD, degeneration occurs in central nervous system (CNS) regions associated with memory (Alzheimer's disease, AD), automaticity (Parkinson's disease, PD) and motor function (amyotrophic lateral sclerosis, ALS), all of which require a high oxygen demand for harnessing neuronal energy. In PD, a progressive degeneration of the substantia nigra pars compacta (SNc) is associated with the appearance of siderotic foci, largely caused by increased labile iron levels resulting from an imbalance between cell iron import, storage and export. At a molecular level, α-synuclein regulates dopamine and iron transport with PD-associated mutations in this protein causing functional disruption to these processes. Equally, in ALS, an early iron accumulation is present in neurons of the cortico-spinal motor pathway before neuropathology and secondary iron accumulation in microglia. High serum ferritin is an indicator of poor prognosis in ALS and the application of iron-sensitive sequences in magnetic resonance imaging has become a useful tool in identifying pathology. The molecular pathways that cascade down from such dyshomeostasis still remain to be fully elucidated but strong inroads have been made in recent years. Far from being a simple cause or consequence, it has recently been discovered that these alterations can trigger susceptibility to an iron-dependent cell-death pathway with unique lipoperoxidation signatures called ferroptosis. In turn, this has now provided insight into some key modulators of this cell-death pathway that could be therapeutic targets for the NDD. Interestingly, iron accumulation and ferroptosis are highly sensitive to iron chelation. However, whilst chelators that strongly scavenge intracellular iron protect against oxidative neuronal damage in mammalian models and are proven to be effective in treating systemic siderosis, these compounds are not clinically suitable due to the high risk of developing iatrogenic iron depletion and ensuing anaemia. Instead, a moderate iron chelation modality that conserves systemic iron offers a novel therapeutic strategy for neuroprotection. As demonstrated with the prototype chelator deferiprone, iron can be scavenged from labile iron complexes in the brain and transferred (conservatively) either to higher affinity acceptors in cells or extracellular transferrin. Promising preclinical and clinical proof of concept trials has led to several current large randomized clinical trials that aim to demonstrate the efficacy and safety of conservative iron chelation for NDD, notably in a long-term treatment regimen.
Collapse
Affiliation(s)
- David Devos
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France.
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France.
- Département de Pharmacologie Médicale, Université Lille INSERM 1171, CHU de Lille, 59037, Lille, France.
| | - Z Ioav Cabantchik
- Della Pergola Chair, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904, Jerusalem, Israel
| | - Caroline Moreau
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Véronique Danel
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Laura Mahoney-Sanchez
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Hind Bouchaoui
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Flore Gouel
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Anne-Sophie Rolland
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - James A Duce
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jean-Christophe Devedjian
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
- Université du Littoral Côte d'Opale-1, place de l'Yser, BP 72033, 59375, Dunkerque Cedex, France
| |
Collapse
|
19
|
Alessenko A, Gutner U, Nebogatikov V, Shupik M, Ustyugov A. The role of lipids in the pathogenesis of lateral amyotrophic sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:108-117. [DOI: 10.17116/jnevro2020120101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
21
|
Casasnovas C, Ruiz M, Schlüter A, Naudí A, Fourcade S, Veciana M, Castañer S, Albertí A, Bargalló N, Johnson M, Raymond GV, Fatemi A, Moser AB, Villarroya F, Portero-Otín M, Artuch R, Pamplona R, Pujol A. Biomarker Identification, Safety, and Efficacy of High-Dose Antioxidants for Adrenomyeloneuropathy: a Phase II Pilot Study. Neurotherapeutics 2019; 16:1167-1182. [PMID: 31077039 PMCID: PMC6985062 DOI: 10.1007/s13311-019-00735-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
X-Adrenoleukodystrophy (X-ALD) and its adult-onset, most prevalent variant adrenomyeloneuropathy (AMN) are caused by mutations in the peroxisomal transporter of the very long-chain fatty acid ABCD1. AMN patients classically present spastic paraparesis that can progress over decades, and a satisfactory treatment is currently lacking. Oxidative stress is an early culprit in X-ALD pathogenesis. A combination of antioxidants halts the clinical progression and axonal damage in a murine model of AMN, providing a strong rationale for clinical translation. In this phase II pilot, open-label study, 13 subjects with AMN were administered a high dose of α-tocopherol, N-acetylcysteine, and α-lipoic acid in combination. The primary outcome was the validation of a set of biomarkers for monitoring the biological effects of this and future treatments. Functional clinical scales, the 6-minute walk test (6MWT), electrophysiological studies, and cerebral MRI served as secondary outcomes. Most biomarkers of oxidative damage and inflammation were normalized upon treatment, indicating an interlinked redox and inflammatory homeostasis. Two of the inflammatory markers, MCP1 and 15-HETE, were predictive of the response to treatment. We also observed a significant decrease in central motor conduction time, together with an improvement or stabilization of the 6MWT in 8/10 subjects. This study provides a series of biomarkers that are useful to monitor redox and pro-inflammatory target engagement in future trials, together with candidate biomarkers that may serve for patient stratification and disease progression, which merit replication in future clinical trials. Moreover, the clinical results suggest a positive signal for extending these studies to phase III randomized, placebo-controlled, longer-term trials with the actual identified dose. ClinicalTrials.gov Identifier: NCT01495260.
Collapse
Affiliation(s)
- Carlos Casasnovas
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Feixa Llarga s/n, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Hospital Duran i Reynals, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases, Institute of Health Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Hospital Duran i Reynals, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases, Institute of Health Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
- Institute of Neuropathology, Bellvitge Biomedical Research Institute, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Hospital Duran i Reynals, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases, Institute of Health Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
- Institute of Neuropathology, Bellvitge Biomedical Research Institute, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alba Naudí
- Biomedical Research Institute of Lleida, Montserrat Roig 2, 25008, Lleida, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Hospital Duran i Reynals, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases, Institute of Health Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
- Institute of Neuropathology, Bellvitge Biomedical Research Institute, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Misericordia Veciana
- Neurophysiology Unit, Neurology Department, Hospital Universitari de Bellvitge, Feixa Llarga s/n, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Castañer
- Centre Bellvitge, Institut de Diagnòstic per la Imatge, Feixa Llarga s/n, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonia Albertí
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Feixa Llarga s/n, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Bargalló
- Department of Neuroradiology, Hospital Clínic, Barcelona, Spain
- Magnetic Resonance Imaging Core Facility, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Johnson
- Deparment of Neurology and Pediatrics, University of Minnesota Medical Center, 516 Delaware Street Southeast, Minneapolis, Minnesota, 55455, USA
| | - Gerald V Raymond
- Deparment of Neurology and Pediatrics, University of Minnesota Medical Center, 516 Delaware Street Southeast, Minneapolis, Minnesota, 55455, USA
| | - Ali Fatemi
- Kennedy Krieger Institute, 707 North Broadway, Baltimore, Maryland, 21205, USA
| | - Ann B Moser
- Kennedy Krieger Institute, 707 North Broadway, Baltimore, Maryland, 21205, USA
| | - Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular and Institute of Biomedicine of the University of Barcelona, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
- Center for Biomedical Research in Physiopathology of Obesity and Nutrition, Bellvitge Biomedical Research Institute, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Manuel Portero-Otín
- Biomedical Research Institute of Lleida, Montserrat Roig 2, 25008, Lleida, Spain
| | - Rafael Artuch
- Center for Biomedical Research on Rare Diseases, Institute of Health Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Reinald Pamplona
- Biomedical Research Institute of Lleida, Montserrat Roig 2, 25008, Lleida, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Hospital Duran i Reynals, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
- Center for Biomedical Research on Rare Diseases, Institute of Health Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
- Institute of Neuropathology, Bellvitge Biomedical Research Institute, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
- Catalan Institution of Research and Advanced Studies, Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
22
|
Schopfer FJ, Khoo NKH. Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology. Trends Endocrinol Metab 2019; 30:505-519. [PMID: 31196614 PMCID: PMC7121905 DOI: 10.1016/j.tem.2019.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 02/04/2023]
Abstract
In addition to supporting cellular energetic demands and providing building blocks for lipid synthesis, fatty acids (FAs) are precursors of potent signaling molecules. In particular, the presence of conjugated double bonds on the fatty-acyl chain provides a preferential target for nitration generating nitro-FAs (NO2-FAs). The formation of NO2-FAs is a nonenzymatic process that requires reactive nitrogen species and occurs locally at the site of inflammation or during gastric acidification. NO2-FAs are electrophilic and display pleiotropic signaling actions through reversible protein alkylation. This review focuses on the endogenously formed NO2-FAs' mechanism of absorption, systemic distribution, signaling, and preclinical models. Understanding the dynamics of these processes will facilitate targeted dietary interventions and further the current pharmacological development aimed at low-grade inflammatory diseases.
Collapse
Affiliation(s)
- Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Nicholas K H Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Nitroalkylation of α-Synuclein by Nitro-Oleic Acid: Implications for Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:169-179. [PMID: 31140178 DOI: 10.1007/978-3-030-11488-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
α-Synuclein (α-syn) represents the main component of the amyloid aggregates present in Parkinson's disease and other neurodegenerative disorders, collectively named synucleinopathies. Although α-syn is considered a natively unfolded protein, it shows great structural flexibility which allows the protein to adopt highly rich beta-sheet structures like protofibrils, oligomers and fibrils. In addition, this protein can adopt alpha-helix rich structures when interacts with fatty acids or acidic phospholipid vesicle membranes. When analyzing the toxicity of α-syn, protein oligomers are thought to be the main neurotoxic species by mechanisms that involve modification of intracellular calcium levels, mitochondrial and lysosomal function. Extracellular fibrillar α-syn promotes intracellular protein aggregation and shows many toxic effects as well. Nitro-fatty acids (nitroalkenes) represent novel pleiotropic anti-inflammatory signaling mediators that could interact with α-syn to exert unraveling actions. Herein, we demonstrated that nitro-oleic acid (NO2-OA) nitroalkylate α-syn, forming a covalent adduct at histidine-50. The nitroalkylated-α-syn exhibited strong affinity for phospholipid vesicles, moving the protein to the membrane compartment independent of composition of the membrane phospholipids. Moreover, NO2-OA-modified α-syn showed a reduced capacity to induce α-syn fibrillization compared to the non-nitrated oleic acid. From this data we hypothesize that nitroalkenes, in particular NO2-OA, may inhibit α-syn fibril formation exerting protective actions in Parkinson's disease.
Collapse
|
24
|
Melo T, Montero-Bullón JF, Domingues P, Domingues MR. Discovery of bioactive nitrated lipids and nitro-lipid-protein adducts using mass spectrometry-based approaches. Redox Biol 2019; 23:101106. [PMID: 30718106 PMCID: PMC6859590 DOI: 10.1016/j.redox.2019.101106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Nitro-fatty acids (NO2-FA) undergo reversible Michael adduction reactions with cysteine and histidine residues leading to the post-translational modification (PTM) of proteins. This electrophilic character of NO2-FA is strictly related to their biological roles. The NO2-FA-induced PTM of signaling proteins can lead to modifications in protein structure, function, and subcellular localization. The nitro lipid-protein adducts trigger a series of downstream signaling events that culminates with anti-inflammatory, anti-hypertensive, and cytoprotective effects mediated by NO2-FA. These lipoxidation adducts have been detected and characterized both in model systems and in biological samples by using mass spectrometry (MS)-based approaches. These MS approaches allow to unequivocally identify the adduct together with the targeted residue of modification. The identification of the modified proteins allows inferring on the possible impact of the NO2-FA-induced modification. This review will focus on MS-based approaches as valuable tools to identify NO2-FA-protein adducts and to unveil the biological effect of this lipoxidation adducts.
Collapse
Affiliation(s)
- Tânia Melo
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Javier-Fernando Montero-Bullón
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Overview of Lipid Biomarkers in Amyotrophic Lateral Sclerosis (ALS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:233-241. [PMID: 31562633 DOI: 10.1007/978-3-030-21735-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease involving motor neuron (MN) degeneration in the spinal cord, brain stem and primary motor cortex. The existence of inflammatory processes around MN and axonal degeneration in ALS has been shown. Unfortunately, none of the successful therapies in ALS animal models has improved clinical outcomes in patients with ALS. Therefore, the detection of blood biomarkers to be used as screening tools for disease onset and progression has been an expanding research area with few advances in the development of drugs for the treatment of ALS. In this review, we will address the available data analyzing regarding the relationship of lipid metabolism and lipid derived- products with ALS. We will address the advances on the studies about the role that lipids plays at the onset, progression and lifespan extension of ALS patients.
Collapse
|