1
|
Niemeyer CS, Merle L, Bubak AN, Baxter BD, Gentile Polese A, Colon-Reyes K, Vang S, Hassell JE, Bruce KD, Nagel MA, Restrepo D. Olfactory and trigeminal routes of HSV-1 CNS infection with regional microglial heterogeneity. J Virol 2024; 98:e0096824. [PMID: 39475273 PMCID: PMC11575344 DOI: 10.1128/jvi.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 11/06/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) primarily targets the oral and nasal epithelia before establishing latency in the trigeminal ganglion (TG) and other peripheral ganglia. HSV-1 can also infect and become latent in the central nervous system (CNS) independent of latency in the TGs. Recent studies suggest entry to the CNS via two distinct routes: the TG-brainstem connection and olfactory nerve; however, to date, there is no characterization of brain regions targeted during HSV-1 primary infection. Furthermore, the immune response by microglia may also contribute to the heterogeneity between different brain regions. However, the response to HSV-1 by microglia has not been characterized in a region-specific manner. This study investigated the time course of HSV-1 spread within the olfactory epithelium (OE) and CNS following intranasal inoculation and the corresponding macrophage/microglial response in a C57BL/6 mouse model. We found an apical to basal spread of HSV-1 within the OE and underlying tissue accompanied by an inflammatory response of macrophages. OE infection was followed by infection of a small subset of brain regions targeted by the TG in the brainstem and other cranial nerve nuclei, including the vagus and hypoglossal nerve. Furthermore, other brain regions were positive for HSV-1 antigens, such as the locus coeruleus (LC), raphe nucleus (RaN), and hypothalamus while sparing the hippocampus and cortex. Within each brain region, microglia activation also varied widely. These findings provide critical insights into the region-specific dissemination of HSV-1 within the CNS, elucidating potential mechanisms linking viral infection to neurological and neurodegenerative diseases.IMPORTANCEThis study shows how herpes simplex virus type 1 (HSV-1) spreads within the brain after infecting the nasal passages. Our data reveal the distinct pattern of HSV-1 through the brain during a non-encephalitic infection. Furthermore, microglial activation was also temporally and spatially specific, with some regions of the brain having sustained microglial activation even in the absence of viral antigens. Previous reports have identified specific brain regions found to be positive for HSV-1 infection; however, to date, there has not been a concise investigation of the anatomical spread of HSV-1 and the brain regions consistently vulnerable to viral entry and spread. Understanding these region-specific differences in infection and immune response is crucial because it links HSV-1 infection to potential triggers for neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christy S. Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laetitia Merle
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Andrew N. Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - B. Dnate’ Baxter
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katherine Colon-Reyes
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sandy Vang
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E. Hassell
- Department of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kimberley D. Bruce
- Department of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria A. Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Niemeyer CS, Merle L, Bubak AN, Dnate' Baxter B, Polese AG, Colon-Reyes K, Vang S, Hassell JE, Bruce KD, Nagel MA, Restrepo D. Olfactory and Trigeminal Routes of HSV-1 CNS Infection with Regional Microglial Heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614340. [PMID: 39386674 PMCID: PMC11463476 DOI: 10.1101/2024.09.22.614340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) primarily targets the oral and nasal epithelia before establishing latency in the trigeminal and other peripheral ganglia (TG). HSV-1 can also infect and go latent in the central nervous system (CNS) independent of latency in the TGs. Recent studies suggest entry to the CNS via two distinct routes: the TG-brainstem connection and olfactory nerve; however, to date, there is no characterization of brain regions targeted during HSV-1 primary infection. Furthermore, the immune response by microglia may also contribute to the heterogeneity between different brain regions. However, the response to HSV-1 by microglia has not been characterized in a region-specific manner. This study investigated the time course of HSV-1 spread within the olfactory epithelium (OE) and CNS following intranasal inoculation and the corresponding macrophage/microglial response in a C57BL/6 mouse model. We found an apical to basal spread of HSV-1 within the OE and underlying tissue accompanied by an inflammatory response of macrophages. OE Infection was followed by infection of a small subset of brain regions targeted by the TG in the brainstem, as well as other cranial nerve nuclei, including the vagus and hypoglossal nerve. Furthermore, other brain regions were positive for HSV-1 antigens, such as the locus coeruleus (LC), raphe nucleus (RaN), and hypothalamus, while sparing the hippocampus and cortex. Within each brain region, microglia activation also varied widely. These findings provide critical insights into the region-specific dissemination of HSV-1 within the CNS, elucidating potential mechanisms linking viral infection to neurological and neurodegenerative diseases. Importance This study sheds light on how herpes simplex virus type 1 (HSV-1) spreads within the brain after infecting the nasal passages. Our data reveals the distinct pattern of HSV-1 through the brain during a non-encephalitic infection. Furthermore, microglial activation was also temporally and spatially specific, with some regions of the brain having sustained microglial activation even in the absence of viral antigen. Previous reports have identified specific regions of the brain found to be positive for HSV-1 infection; however, to date, there has not been a concise investigation of the anatomical spread of HSV-1 and the regions of the brain consistently vulnerable to viral entry and spread. Understanding these region-specific differences in infection and immune response is crucial because it links HSV-1 infection to potential triggers for neurological and neurodegenerative diseases.
Collapse
|
3
|
Jaramillo JCM, Aitken CM, Lawrence AJ, Ryan PJ. Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation. J Chem Neuroanat 2024; 137:102403. [PMID: 38452468 DOI: 10.1016/j.jchemneu.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
Collapse
Affiliation(s)
- Janine C M Jaramillo
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Connor M Aitken
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Hwang E, Portillo B, Grose K, Fujikawa T, Williams KW. Exercise-induced hypothalamic neuroplasticity: Implications for energy and glucose metabolism. Mol Metab 2023; 73:101745. [PMID: 37268247 PMCID: PMC10326746 DOI: 10.1016/j.molmet.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Neuroplasticity refers to the brain's ability to undergo functional and structural changes in response to diverse challenges. Converging evidence supports the notion that exercise serves as a metabolic challenge, triggering the release of multiple factors both in the periphery and within the brain. These factors actively contribute to plasticity in the brain, and in turn, regulate energy and glucose metabolism. SCOPE OF REVIEW The primary focus of this review is to explore the impact of exercise-induced plasticity in the brain on metabolic homeostasis, with an emphasis on the role of the hypothalamus in this process. Additionally, the review provides an overview of various factors induced by exercise that contribute to energy balance and glucose metabolism. Notably, these factors exert their effects, at least in part, through actions within the hypothalamus and more broadly in the central nervous system. MAJOR CONCLUSIONS Exercise elicits both transient and sustained changes in metabolism, accompanied by changes in neural activity within specific brain regions. Importantly, the contribution of exercise-induced plasticity and the underlying mechanisms by which neuroplasticity influences the effects of exercise are not well understood. Recent work has begun to overcome this gap in knowledge by examining the complex interactions of exercise-induced factors which alter neural circuit properties to influence metabolism.
Collapse
Affiliation(s)
- Eunsang Hwang
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bryan Portillo
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
5
|
Skovbjerg G, Roostalu U, Salinas CG, Skytte JL, Perens J, Clemmensen C, Elster L, Frich CK, Hansen HH, Hecksher-Sørensen J. Uncovering CNS access of lipidated exendin-4 analogues by quantitative whole-brain 3D light sheet imaging. Neuropharmacology 2023:109637. [PMID: 37391028 DOI: 10.1016/j.neuropharm.2023.109637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution. Here, we applied LSFM to map CNS distribution of the clinically relevant GLP-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) and lipidated analogues following peripheral administration. Mice received an intravenous dose (100 nmol/kg) of IR800 fluorophore-labelled Ex4 (Ex4), Ex4 acylated with a C16-monoacid (Ex4_C16MA) or C18-diacid (Ex4_C18DA). Other mice were administered C16MA-acylated exendin 9-39 (Ex9-39_C16MA), a selective GLP-1R antagonist, serving as negative control for GLP-1R mediated agonist internalization. Two hours post-dosing, brain distribution of Ex4 and analogues was predominantly restricted to the circumventricular organs, notably area postrema and nucleus of the solitary tract. Ex4_C16MA and Ex9-39_C16MA also distributed to the paraventricular hypothalamic nucleus and medial habenula. Notably, Ex4_C18DA was detected in deeper-lying brain structures such as dorsomedial/ventromedial hypothalamic nuclei and the dentate gyrus. Similar CNS distribution maps of Ex4-C16MA and Ex9-39_C16MA suggest that brain access of lipidated Ex4 analogues is independent on GLP-1 receptor internalization. The cerebrovasculature was devoid of specific labelling, hence not supporting a direct role of GLP-1 RAs in BBB function. In conclusion, peptide lipidation increases CNS accessibility of Ex4. Our fully automated LSFM pipeline is suitable for mapping whole-brain distribution of fluorescently labelled drugs.
Collapse
Affiliation(s)
- Grethe Skovbjerg
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Urmas Roostalu
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | | | - Jacob L Skytte
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Johanna Perens
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Lisbeth Elster
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | | | | | | |
Collapse
|
6
|
Suh SB, Lee N, Kim J, Kim S, Jang S, Park JK, Lee K, Choi SY, Kwon HJ, Lee CH. Metformin ameliorates olanzapine-induced obesity and glucose intolerance by regulating hypothalamic inflammation and microglial activation in female mice. Front Pharmacol 2022; 13:906717. [PMID: 36313357 PMCID: PMC9596779 DOI: 10.3389/fphar.2022.906717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Olanzapine (OLZ), a widely used second-generation antipsychotic drug, is known to cause metabolic side effects, including diabetes and obesity. Interestingly, OLZ-induced metabolic side effects have been demonstrated to be more profound in females in human studies and animal models. Metformin (MET) is often used as a medication for the metabolic side effects of OLZ. However, the mechanisms underlying OLZ-induced metabolic disturbances and their treatment remain unclear. Recent evidence has suggested that hypothalamic inflammation is a key component of the pathophysiology of metabolic disorders. On this background, we conducted this study with the following three objectives: 1) to investigate whether OLZ can independently induce hypothalamic microgliosis; 2) to examine whether there are sex-dependent differences in OLZ-induced hypothalamic microgliosis; and 3) to examine whether MET affects hypothalamic microgliosis. We found that administration of OLZ for 5 days induced systemic glucose intolerance and hypothalamic microgliosis and inflammation. Of note, both hypothalamic microglial activation and systemic glucose intolerance were far more evident in female mice than in male mice. The administration of MET attenuated hypothalamic microglial activation and prevented OLZ-induced systemic glucose intolerance and hypothalamic leptin resistance. Minocycline, a tetracycline derivative that prevents microgliosis, showed similar results when centrally injected. Our findings reveal that OLZ induces metabolic disorders by causing hypothalamic inflammation and that this inflammation is alleviated by MET administration.
Collapse
Affiliation(s)
- Sang Bum Suh
- University of Ulsan College of Medicine, Seoul, South Korea
| | - Nayoung Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jaedeok Kim
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Saeha Kim
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Sooyeon Jang
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jong Kook Park
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, South Korea
- *Correspondence: Chan Hee Lee,
| |
Collapse
|
7
|
Houtz J, Liao GY, An JJ, Xu B. Discrete TrkB-expressing neurons of the dorsomedial hypothalamus regulate feeding and thermogenesis. Proc Natl Acad Sci U S A 2021; 118:e2017218118. [PMID: 33468645 PMCID: PMC7848633 DOI: 10.1073/pnas.2017218118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in the TrkB neurotrophin receptor lead to profound obesity in humans, and expression of TrkB in the dorsomedial hypothalamus (DMH) is critical for maintaining energy homeostasis. However, the functional implications of TrkB-fexpressing neurons in the DMH (DMHTrkB) on energy expenditure are unclear. Additionally, the neurocircuitry underlying the effect of DMHTrkB neurons on energy homeostasis has not been explored. In this study, we show that activation of DMHTrkB neurons leads to a robust increase in adaptive thermogenesis and energy expenditure without altering heart rate or blood pressure, while silencing DMHTrkB neurons impairs thermogenesis. Furthermore, we reveal neuroanatomically and functionally distinct populations of DMHTrkB neurons that regulate food intake or thermogenesis. Activation of DMHTrkB neurons projecting to the raphe pallidus (RPa) stimulates thermogenesis and increased energy expenditure, whereas DMHTrkB neurons that send collaterals to the paraventricular hypothalamus (PVH) and preoptic area (POA) inhibit feeding. Together, our findings provide evidence that DMHTrkB neuronal activity plays an important role in regulating energy expenditure and delineate distinct neurocircuits that underly the separate effects of DMHTrkB neuronal activity on food intake and thermogenesis.
Collapse
Affiliation(s)
- Jessica Houtz
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Guey-Ying Liao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Juan Ji An
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
8
|
Pedroso JAB, Dos Santos LBP, Furigo IC, Spagnol AR, Wasinski F, List EO, Kopchick JJ, Donato J. Deletion of growth hormone receptor in hypothalamic neurons affects the adaptation capacity to aerobic exercise. Peptides 2021; 135:170426. [PMID: 33069692 PMCID: PMC7855886 DOI: 10.1016/j.peptides.2020.170426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/08/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
The hypothalamus mediates important exercise-induced metabolic adaptations, possibly via hormonal signals. Hypothalamic leptin receptor (LepR)- and steroidogenic factor 1 (SF1)-expressing neurons are directly responsive to growth hormone (GH) and deletion of GH receptor (GHR) in these cells impairs neuroendocrine responses during situations of metabolic stress. In the present study, we determined whether GHR ablation in LepR- or SF1-expressing cells modifies acute and chronic metabolic adaptations to exercise. Male mice carrying deletion of GHR in LepR- or SF1-expressing cells were submitted to 8 weeks of treadmill running training. Changes in aerobic performance and exercise-induced metabolic adaptations were determined. Mice carrying GHR deletion in LepR cells showed increased aerobic performance after 8 weeks of treadmill training, whereas GHR ablation in SF1 cells prevented improvement in running capacity. Trained mice carrying GHR ablation in SF1 cells exhibited increased fat mass and reduced cross-sectional area of the gastrocnemius muscle. In contrast, deletion of GHR in LepR cells reduced fat mass and increased gastrocnemius muscle hypertrophy, energy expenditure and voluntary locomotor activity in trained mice. Although glucose tolerance was not significantly affected by targeted deletions, glycemia before and immediately after maximum running tests was altered by GHR ablation. In conclusion, GHR signaling in hypothalamic neurons regulates the adaptation capacity to aerobic exercise in a cell-specific manner. These findings suggest that GH may represent a hormonal cue that informs specific hypothalamic neurons to produce exercise-induced acute and chronic metabolic adaptations.
Collapse
Affiliation(s)
- João A B Pedroso
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Lucas B P Dos Santos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Isadora C Furigo
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Alexandre R Spagnol
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Farmacologia, Sao Paulo, 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
9
|
Harris RBS. Consuming sucrose solution promotes leptin resistance and site specifically modifies hypothalamic leptin signaling in rats. Am J Physiol Regul Integr Comp Physiol 2020; 320:R182-R194. [PMID: 33206557 DOI: 10.1152/ajpregu.00238.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats consuming 30% sucrose solution and a sucrose-free diet (LiqS) become leptin resistant, whereas rats consuming sucrose from a formulated diet (HS) remain leptin responsive. This study tested whether leptin resistance in LiqS rats extended beyond a failure to inhibit food intake and examined leptin responsiveness in the hypothalamus and hindbrain of rats offered HS, LiqS, or a sucrose-free diet (NS). Female LiqS Sprague-Dawley rats initially only partially compensated for the calories consumed as sucrose, but energy intake matched that of HS and NS rats when they were transferred to calorimetry cages. There was no effect of diet on energy expenditure, intrascapular brown fat tissue (IBAT) temperature, or fat pad weight. A peripheral injection of 2 mg of leptin/kg on day 23 or day 26 inhibited energy intake of HS and NS but not LiqS rats. Inhibition occurred earlier in HS rats than in NS rats and was associated with a smaller meal size. Leptin had no effect on energy expenditure but caused a transient rise in IBAT temperature of HS rats. Leptin increased the phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) in the hindbrain and ventromedial hypothalamus of all rats. There was a minimal effect of leptin in the arcuate nucleus, and only the dorsomedial hypothalamus showed a correlation between pSTAT3 and leptin responsiveness. These data suggest that the primary response to leptin is inhibition of food intake and the pattern of sucrose consumption, rather than calories consumed as sucrose, causes leptin resistance associated with site-specific differences in hypothalamic leptin signaling.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
10
|
Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Monosynaptic Input Mapping of Diencephalic Projections to the Cerebrospinal Fluid-Contacting Nucleus in the Rat. Front Neuroanat 2020; 14:7. [PMID: 32180709 PMCID: PMC7059736 DOI: 10.3389/fnana.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To investigate the projections the cerebrospinal fluid-contacting (CSF-contacting) nucleus receives from the diencephalon and to speculate on the functional significance of these connections. Methods: The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in SD rats according to the experimental formula of the stereotaxic coordinates. Animals were perfused 7–10 days after the injection, and the diencephalon was sliced at 40 μm with a freezing microtome. CB-immunofluorescence was performed on all diencephalic sections. The features of CB-positive neuron distribution in the diencephalon were observed with a fluorescence microscope. Results: The retrograde labeled CB-positive neurons were found in the epithalamus, subthalamus, and hypothalamus. Three functional diencephalic areas including 43 sub-regions revealed projections to the CSF-contacting nucleus. The CB-positive neurons were distributed in different density ranges: sparse, moderate, and dense. Conclusion: Based on the connectivity patterns of the CSF-contacting nucleus that receives anatomical inputs from the diencephalon, we preliminarily assume that the CSF-contacting nucleus participates in homeostasis regulation, visceral activity, stress, emotion, pain and addiction, and sleeping and arousal. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the diencephalon, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Zhang N, Zhang HY, Bi SA, Moran TH, Bi S. Differential regulation of thyrotropin-releasing hormone mRNA expression in the paraventricular nucleus and dorsomedial hypothalamus in OLETF rats. Neurosci Lett 2019; 703:79-85. [PMID: 30902570 DOI: 10.1016/j.neulet.2019.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023]
Abstract
Thyrotropin-releasing hormone (TRH) plays an important role in the regulation of energy balance. While the regulation of TRH in the paraventricular nucleus (PVN) in response to changes of energy balance has been well studied, how TRH is regulated in the dorsomedial hypothalamus (DMH) in maintaining energy homeostasis remains unclear. Here, we assessed the effects of food restriction and exercise on hypothalamic Trh expression using Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Sedentary ad lib fed OLETF rats (OLETF-SED) became hyperphagic and obese. These alterations were prevented in OLETF rats with running wheel access (OLETF-RW) or food restriction in which their food was pair-fed (OLETF-PF) to the intake of lean control rats (LETO-SED). Evaluation of hypothalamic gene expression revealed that Trh mRNA expression was increased in the PVN of OLETF-SED rats and normalized in OLETF-RW and OLETF-PF rats compared to LETO-SED rats. In contrast, the expression of Trh in the DMH was decreased in OLETF-SED rats relative to LETO-SED rats. This alteration was reversed in OLETF-RW rats as seen in LETO-SED rats, but food restriction resulted in a significant increase in DMH Trh expression in OLETF-PF rats compared to LETO-SED rats. Strikingly, while Trh mRNA expression was decreased in the PVN of intact rats in response to acute food deprivation, food deprivation resulted in increased expression of Trh in the DMH. Together, these results demonstrate the differential regulation of Trh expression in the PVN and DMH in OLETF rats and suggest that DMH TRH also contributes to hypothalamic regulation of energy balance.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Ying Zhang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia A Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|