1
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
2
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Jansen NA, Cestèle S, Marco SS, Schenke M, Stewart K, Patel J, Tolner EA, Brunklaus A, Mantegazza M, van den Maagdenberg AMJM. Brainstem depolarization-induced lethal apnea associated with gain-of-function SCN1AL263V is prevented by sodium channel blockade. Proc Natl Acad Sci U S A 2024; 121:e2309000121. [PMID: 38547067 PMCID: PMC10998578 DOI: 10.1073/pnas.2309000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Apneic events are frightening but largely benign events that often occur in infants. Here, we report apparent life-threatening apneic events in an infant with the homozygous SCN1AL263V missense mutation, which causes familial hemiplegic migraine type 3 in heterozygous family members, in the absence of epilepsy. Observations consistent with the events in the infant were made in an Scn1aL263V knock-in mouse model, in which apnea was preceded by a large brainstem DC-shift, indicative of profound brainstem depolarization. The L263V mutation caused gain of NaV1.1 function effects in transfected HEK293 cells. Sodium channel blockade mitigated the gain-of-function characteristics, rescued lethal apnea in Scn1aL263V mice, and decreased the frequency of severe apneic events in the patient. Hence, this study shows that SCN1AL263V can cause life-threatening apneic events, which in a mouse model were caused by profound brainstem depolarization. In addition to being potentially relevant to sudden infant death syndrome pathophysiology, these data indicate that sodium channel blockers may be considered therapeutic for apneic events in patients with these and other gain-of-function SCN1A mutations.
Collapse
Affiliation(s)
- Nico A. Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Sandrine Cestèle
- Université Côte d’Azur, Valbonne-Sophia Antipolis06560, France
- Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
| | - Silvia Sanchez Marco
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, University Hospitals Bristol, BristolBS2 8BJ, United Kingdom
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Kirsty Stewart
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, GlasgowG51 4TF, United Kingdom
| | - Jayesh Patel
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, University Hospitals Bristol, BristolBS2 8BJ, United Kingdom
| | - Else A. Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden2333 ZA, The Netherlands
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, GlasgowG51 4TF, United Kingdom
- School of Health and Wellbeing, University of Glasgow, GlasgowG12 8TB, United Kingdom
| | - Massimo Mantegazza
- Université Côte d’Azur, Valbonne-Sophia Antipolis06560, France
- Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis06560, France
- Inserm, Valbonne-Sophia Antipolis06560, France
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden2333 ZA, The Netherlands
| |
Collapse
|
4
|
Sutherland HG, Jenkins B, Griffiths LR. Genetics of migraine: complexity, implications, and potential clinical applications. Lancet Neurol 2024; 23:429-446. [PMID: 38508838 DOI: 10.1016/s1474-4422(24)00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/22/2024]
Abstract
Migraine is a common neurological disorder with large burden in terms of disability for individuals and costs for society. Accurate diagnosis and effective treatments remain priorities. Understanding the genetic factors that contribute to migraine risk and symptom manifestation could improve individual management. Migraine has a strong genetic basis that includes both monogenic and polygenic forms. Some distinct, rare, familial migraine subtypes are caused by pathogenic variants in genes involved in ion transport and neurotransmitter release, suggesting an underlying vulnerability of the excitatory-inhibitory balance in the brain, which might be exacerbated by disruption of homoeostasis and lead to migraine. For more prevalent migraine subtypes, genetic studies have identified many susceptibility loci, implicating genes involved in both neuronal and vascular pathways. Genetic factors can also reveal the nature of relationships between migraine and its associated biomarkers and comorbidities and could potentially be used to identify new therapeutic targets and predict treatment response.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bronwyn Jenkins
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Lemaire L, Desroches M, Krupa M, Mantegazza M. Idealized multiple-timescale model of cortical spreading depolarization initiation and pre-epileptic hyperexcitability caused by Na V1.1/SCN1A mutations. J Math Biol 2023; 86:92. [PMID: 37171678 DOI: 10.1007/s00285-023-01917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
NaV1.1 (SCN1A) is a voltage-gated sodium channel mainly expressed in GABAergic neurons. Loss of function mutations of NaV1.1 lead to epileptic disorders, while gain of function mutations cause a migraine in which cortical spreading depolarizations (CSDs) are involved. It is still debated how these opposite effects initiate two different manifestations of neuronal hyperactivity: epileptic seizures and CSD. To investigate this question, we previously built a conductance-based model of two neurons (GABAergic and pyramidal), with dynamic ion concentrations (Lemaire et al. in PLoS Comput Biol 17(7):e1009239, 2021. https://doi.org/10.1371/journal.pcbi.1009239 ). When implementing either NaV1.1 migraine or epileptogenic mutations, ion concentration modifications acted as slow processes driving the system to the corresponding pathological firing regime. However, the large dimensionality of the model complicated the exploitation of its implicit multi-timescale structure. Here, we substantially simplify our biophysical model to a minimal version more suitable for bifurcation analysis. The explicit timescale separation allows us to apply slow-fast theory, where slow variables are treated as parameters in the fast singular limit. In this setting, we reproduce both pathological transitions as dynamic bifurcations in the full system. In the epilepsy condition, we shift the spike-terminating bifurcation to lower inputs for the GABAergic neuron, to model an increased susceptibility to depolarization block. The resulting failure of synaptic inhibition triggers hyperactivity of the pyramidal neuron. In the migraine scenario, spiking-induced release of potassium leads to the abrupt increase of the extracellular potassium concentration. This causes a dynamic spike-terminating bifurcation of both neurons, which we interpret as CSD initiation.
Collapse
Affiliation(s)
- Louisiane Lemaire
- Inria at Université Côte d'Azur, MathNeuro Project-Team, Valbonne-Sophia Antipolis, France.
- Institute for Theoretical Biology, Humboldt-University of Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience, Berlin, Germany.
| | - Mathieu Desroches
- Inria at Université Côte d'Azur, MathNeuro Project-Team, Valbonne-Sophia Antipolis, France
| | - Martin Krupa
- Inria at Université Côte d'Azur, MathNeuro Project-Team, Valbonne-Sophia Antipolis, France
- Laboratoire Jean-Alexandre Dieudonné, Université Côte d'Azur, Nice, France
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), Université Côte d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- INSERM, Valbonne-Sophia Antipolis, France
| |
Collapse
|
6
|
Matricardi S, Cestèle S, Trivisano M, Kassabian B, Leroudier N, Vittorini R, Nosadini M, Cesaroni E, Siliquini S, Marinaccio C, Longaretti F, Podestà B, Operto FF, Luisi C, Sartori S, Boniver C, Specchio N, Vigevano F, Marini C, Mantegazza M. Gain of function SCN1A disease-causing variants: Expanding the phenotypic spectrum and functional studies guiding the choice of effective antiseizure medication. Epilepsia 2023; 64:1331-1347. [PMID: 36636894 DOI: 10.1111/epi.17509] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study was undertaken to refine the spectrum of SCN1A epileptic disorders other than Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+) and optimize antiseizure management by correlating phenotype-genotype relationship and functional consequences of SCN1A variants in a cohort of patients. METHODS Sixteen probands carrying SCN1A pathogenic variants were ascertained via a national collaborative network. We also performed a literature review including individuals with SCN1A variants causing non-DS and non-GEFS+ phenotypes and compared the features of the two cohorts. Whole cell patch clamp experiments were performed for three representative SCN1A pathogenic variants. RESULTS Nine of the 16 probands (56%) had de novo pathogenic variants causing developmental and epileptic encephalopathy (DEE) with seizure onset at a median age of 2 months and severe intellectual disability. Seven of the 16 probands (54%), five with inherited and two with de novo variants, manifested focal epilepsies with mild or no intellectual disability. Sodium channel blockers never worsened seizures, and 50% of patients experienced long periods of seizure freedom. We found 13 SCN1A missense variants; eight of them were novel and never reported. Functional studies of three representative variants showed a gain of channel function. The literature review led to the identification of 44 individuals with SCN1A variants and non-DS, non-GEFS+ phenotypes. The comparison with our cohort highlighted that DEE phenotypes are a common feature. SIGNIFICANCE The boundaries of SCN1A disorders are wide and still expanding. In our cohort, >50% of patients manifested focal epilepsies, which are thus a frequent feature of SCN1A pathogenic variants beyond DS and GEFS+. SCN1A testing should therefore be included in the diagnostic workup of pediatric, familial and nonfamilial, focal epilepsies. Alternatively, non-DS/non-GEFS+ phenotypes might be associated with gain of channel function, and sodium channel blockers could control seizures by counteracting excessive channel function. Functional analysis evaluating the consequences of pathogenic SCN1A variants is thus relevant to tailor the appropriate antiseizure medication.
Collapse
Affiliation(s)
- Sara Matricardi
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Sandrine Cestèle
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Benedetta Kassabian
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Nathalie Leroudier
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Roberta Vittorini
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Margherita Nosadini
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Elisabetta Cesaroni
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Sabrina Siliquini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Cristina Marinaccio
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Francesca Longaretti
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Barbara Podestà
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Concetta Luisi
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Stefano Sartori
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Clementina Boniver
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù, IRCCS Children's Hospital, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Carla Marini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Massimo Mantegazza
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| |
Collapse
|
7
|
Berecki G, Bryson A, Polster T, Petrou S. Biophysical characterization and modelling of SCN1A gain-of-function predicts interneuron hyperexcitability and a predisposition to network instability through homeostatic plasticity. Neurobiol Dis 2023; 179:106059. [PMID: 36868483 DOI: 10.1016/j.nbd.2023.106059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
SCN1A gain-of-function variants are associated with early onset developmental and epileptic encephalopathies (DEEs) that possess distinct clinical features compared to Dravet syndrome caused by SCN1A loss-of-function. However, it is unclear how SCN1A gain-of-function may predispose to cortical hyper-excitability and seizures. Here, we first report the clinical features of a patient carrying a de novo SCN1A variant (T162I) associated with neonatal-onset DEE, and then characterize the biophysical properties of T162I and three other SCN1A variants associated with neonatal-onset DEE (I236V) and early infantile DEE (P1345S, R1636Q). In voltage clamp experiments, three variants (T162I, P1345S and R1636Q) exhibited changes in activation and inactivation properties that enhanced window current, consistent with gain-of-function. Dynamic action potential clamp experiments utilising model neurons incorporating Nav1.1. channels supported a gain-of-function mechanism for all four variants. Here, the T162I, I236V, P1345S, and R1636Q variants exhibited higher peak firing rates relative to wild type and the T162I and R1636Q variants produced a hyperpolarized threshold and reduced neuronal rheobase. To explore the impact of these variants upon cortical excitability, we used a spiking network model containing an excitatory pyramidal cell (PC) and parvalbumin positive (PV) interneuron population. SCN1A gain-of-function was modelled by enhancing the excitability of PV interneurons and then incorporating three simple forms of homeostatic plasticity that restored pyramidal cell firing rates. We found that homeostatic plasticity mechanisms exerted differential impact upon network function, with changes to PV-to-PC and PC-to-PC synaptic strength predisposing to network instability. Overall, our findings support a role for SCN1A gain-of-function and inhibitory interneuron hyperexcitability in early onset DEE. We propose a mechanism through which homeostatic plasticity pathways can predispose to pathological excitatory activity and contribute to phenotypic variability in SCN1A disorders.
Collapse
Affiliation(s)
- Géza Berecki
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Tilman Polster
- Krankenhaus Mara, Bethel Epilepsy Centre, Department of Epileptology, Medical School, Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA; Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
8
|
Wong JC. Gaining Awareness of Increasingly Persistent SCN1A Mutations. Epilepsy Curr 2023. [DOI: 10.1177/15357597231157484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
[Box: see text]
Collapse
|
9
|
Bryson A, Petrou S. SCN1A channelopathies: Navigating from genotype to neural circuit dysfunction. Front Neurol 2023; 14:1173460. [PMID: 37139072 PMCID: PMC10149698 DOI: 10.3389/fneur.2023.1173460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The SCN1A gene is strongly associated with epilepsy and plays a central role for supporting cortical excitation-inhibition balance through the expression of NaV1.1 within inhibitory interneurons. The phenotype of SCN1A disorders has been conceptualized as driven primarily by impaired interneuron function that predisposes to disinhibition and cortical hyperexcitability. However, recent studies have identified SCN1A gain-of-function variants associated with epilepsy, and the presence of cellular and synaptic changes in mouse models that point toward homeostatic adaptations and complex network remodeling. These findings highlight the need to understand microcircuit-scale dysfunction in SCN1A disorders to contextualize genetic and cellular disease mechanisms. Targeting the restoration of microcircuit properties may be a fruitful strategy for the development of novel therapies.
Collapse
Affiliation(s)
- Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Alexander Bryson,
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Praxis Precision Medicines, Inc., Cambridge, MA, United States
| |
Collapse
|
10
|
Brunklaus A, Feng T, Brünger T, Perez-Palma E, Heyne H, Matthews E, Semsarian C, Symonds JD, Zuberi SM, Lal D, Schorge S. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 2022; 145:4275-4286. [PMID: 35037686 PMCID: PMC9897196 DOI: 10.1093/brain/awac006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).
Collapse
Affiliation(s)
- Andreas Brunklaus
- Correspondence to: Dr Andreas Brunklaus, MD Fraser of Allander Neurosciences Unit Office Block, Ground Floor, Zone 2 Royal Hospital for Children 1345 Govan Road Glasgow G51 4TF, UK E-mail:
| | | | | | - Eduardo Perez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Henrike Heyne
- Genomic and Personalized Medicine, Digital Health Center, Hasso Plattner Institute, Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, USA
- Institute for Molecular Medicine Finland: FIMM, Helsinki, Finland
| | - Emma Matthews
- Atkinson Morley Neuromuscular Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
- Sydney Medical School Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Schorge
- Correspondence may also be addressed to: Professor Stephanie Schorge, PhD Department of Neuroscience Physiology and Pharmacology UCL, London WC1E 6BT, UK E-mail:
| |
Collapse
|
11
|
Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, Vintan MA, Symonds J, Andrew J, Arzimanoglou A, Delima S, Gallois J, Hanrahan D, Lesca G, MacLeod S, Marjanovic D, McTague A, Nuñez-Enamorado N, Perez-Palma E, Scott Perry M, Pysden K, Russ-Hall SJ, Scheffer IE, Sully K, Syrbe S, Vaher U, Velayutham M, Vogt J, Weiss S, Wirrell E, Zuberi SM, Lal D, Møller RS, Mantegazza M, Cestèle S. The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain 2022; 145:3816-3831. [PMID: 35696452 PMCID: PMC9679167 DOI: 10.1093/brain/awac210] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Brain voltage-gated sodium channel NaV1.1 (SCN1A) loss-of-function variants cause the severe epilepsy Dravet syndrome, as well as milder phenotypes associated with genetic epilepsy with febrile seizures plus. Gain of function SCN1A variants are associated with familial hemiplegic migraine type 3. Novel SCN1A-related phenotypes have been described including early infantile developmental and epileptic encephalopathy with movement disorder, and more recently neonatal presentations with arthrogryposis. Here we describe the clinical, genetic and functional evaluation of affected individuals. Thirty-five patients were ascertained via an international collaborative network using a structured clinical questionnaire and from the literature. We performed whole-cell voltage-clamp electrophysiological recordings comparing sodium channels containing wild-type versus variant NaV1.1 subunits. Findings were related to Dravet syndrome and familial hemiplegic migraine type 3 variants. We identified three distinct clinical presentations differing by age at onset and presence of arthrogryposis and/or movement disorder. The most severely affected infants (n = 13) presented with congenital arthrogryposis, neonatal onset epilepsy in the first 3 days of life, tonic seizures and apnoeas, accompanied by a significant movement disorder and profound intellectual disability. Twenty-one patients presented later, between 2 weeks and 3 months of age, with a severe early infantile developmental and epileptic encephalopathy and a movement disorder. One patient presented after 3 months with developmental and epileptic encephalopathy only. Associated SCN1A variants cluster in regions of channel inactivation associated with gain of function, different to Dravet syndrome variants (odds ratio = 17.8; confidence interval = 5.4-69.3; P = 1.3 × 10-7). Functional studies of both epilepsy and familial hemiplegic migraine type 3 variants reveal alterations of gating properties in keeping with neuronal hyperexcitability. While epilepsy variants result in a moderate increase in action current amplitude consistent with mild gain of function, familial hemiplegic migraine type 3 variants induce a larger effect on gating properties, in particular the increase of persistent current, resulting in a large increase of action current amplitude, consistent with stronger gain of function. Clinically, 13 out of 16 (81%) gain of function variants were associated with a reduction in seizures in response to sodium channel blocker treatment (carbamazepine, oxcarbazepine, phenytoin, lamotrigine or lacosamide) without evidence of symptom exacerbation. Our study expands the spectrum of gain of function SCN1A-related epilepsy phenotypes, defines key clinical features, provides novel insights into the underlying disease mechanisms between SCN1A-related epilepsy and familial hemiplegic migraine type 3, and identifies sodium channel blockers as potentially efficacious therapies. Gain of function disease should be considered in early onset epilepsies with a pathogenic SCN1A variant and non-Dravet syndrome phenotype.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Tony Feng
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Carmen Fons
- Pediatric Neurology Department, CIBERER-ISCIII, Sant Joan de Déu Universitary Hospital, Institut de Recerca Sant Joan de Déu, Member of the ERN EpiCARE, Barcelona, Spain
| | - Anni Lehikoinen
- Pediatric Neurology Department, Kuopio University Hospital, Member of the ERN EpiCARE, Kuopio, Finland
| | - Eleni Panagiotakaki
- Department of Paediatric Clinical Epileptology, sleep disorders and functional neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL) and Inserm U1028/CNRS UMR5292, Lyon, France
| | - Mihaela-Adela Vintan
- ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology and Pediatric Neurology, Victor Babes, 43, 400012 Cluj-Napoca, Romania
| | - Joseph Symonds
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - James Andrew
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Alexis Arzimanoglou
- Pediatric Neurology Department, CIBERER-ISCIII, Sant Joan de Déu Universitary Hospital, Institut de Recerca Sant Joan de Déu, Member of the ERN EpiCARE, Barcelona, Spain
- Department of Paediatric Clinical Epileptology, sleep disorders and functional neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL) and Inserm U1028/CNRS UMR5292, Lyon, France
| | - Sarah Delima
- Indiana University School of Medicine, IU Health Riley Hospital for Children, Department of Neurology, Division of Pediatric Neurology, Indianapolis, IN, USA
| | - Julie Gallois
- Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Donncha Hanrahan
- Department of Paediatric Neurology, Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Member of the ERN EpiCARE, Université Claude Bernard Lyon 1, Lyon, France
| | - Stewart MacLeod
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Dragan Marjanovic
- The Danish Epilepsy Centre, Member of the ERN EpiCARE, Dianalund, Denmark
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, Member of the ERN EpiCARE, London, UK
| | | | - Eduardo Perez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - M Scott Perry
- Jane and John Justin Neurosciences Center, Cook Children’s Medical Center, Ft Worth, TX, USA
| | - Karen Pysden
- Paediatric Neurology Department, Leeds Teaching Hospitals, Leeds General Infirmary, Leeds, UK
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Australia
| | - Krystal Sully
- Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulvi Vaher
- Children’s Clinic of Tartu University Hospital, Faculty of Medicine of Tartu University, Member of the ERN EpiCARE, Tartu, Estonia
| | | | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s Hospital, Birmingham, UK
| | - Shelly Weiss
- Division of Neurology, SickKids, University of Toronto, Toronto, Canada
| | - Elaine Wirrell
- Divisions of Epilepsy and Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sameer M Zuberi
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rikke S Møller
- The Danish Epilepsy Centre, Member of the ERN EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Massimo Mantegazza
- Université Côte d’Azur, 06560 Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), 06560 Valbonne-Sophia Antipolis, France
- Inserm, 06560 Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Côte d’Azur, 06560 Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), 06560 Valbonne-Sophia Antipolis, France
| |
Collapse
|
12
|
Concise Review: Stem Cell Models of SCN1A-Related Encephalopathies—Current Perspective and Future Therapies. Cells 2022; 11:cells11193119. [PMID: 36231081 PMCID: PMC9561991 DOI: 10.3390/cells11193119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient’s unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.
Collapse
|
13
|
Zontek A, Paprocka J. Gastrointestinal and Autonomic Symptoms-How to Improve the Diagnostic Process in Panayiotopoulos Syndrome? CHILDREN (BASEL, SWITZERLAND) 2022; 9:814. [PMID: 35740751 PMCID: PMC9222198 DOI: 10.3390/children9060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
One of the most common epileptic disorders in the pediatric population is Panayiotopoulos syndrome. Clinical manifestations of this idiopathic illness include predominantly autonomic symptoms and dysfunction of the cardiorespiratory system. Another feature constitutes prolonged seizures that usually occur at sleep. It is crucial to differentiate the aforementioned disease from other forms of epilepsy, especially occipital and structural epilepsy and non-epileptic disorders. The diagnostic process is based on medical history, clinical examination, neuroimaging and electroencephalography-though results of the latter may be unspecific. Patients with Panayiotopoulos syndrome (PS) do not usually require treatment, as the course of the disease is, in most cases, mild, and the prognosis is good. The purpose of this review is to underline the role of central autonomic network dysfunction in the development of Panayiotopoulos syndrome, as well as the possibility of using functional imaging techniques, especially functional magnetic resonance imaging (fMRI), in the diagnostic process. These methods could be crucial for understanding the pathogenesis of PS. More data arerequired to create algorithms that will be able to predict the exposure to various complications of PS. It also concerns the importance of electroencephalography (EEG) as a tool to distinguish Panayiotopoulos syndrome from other childhood epileptic syndromes and non-epileptic disorders.
Collapse
Affiliation(s)
- Aneta Zontek
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
14
|
Sparber P, Mikhaylova S, Galkina V, Itkis Y, Skoblov M. Case Report: Functional Investigation of an Undescribed Missense Variant Affecting Splicing in a Patient With Dravet Syndrome. Front Neurol 2021; 12:761892. [PMID: 34938262 PMCID: PMC8686832 DOI: 10.3389/fneur.2021.761892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Pathogenic variants in the SCN1A gene are associated with a spectrum of epileptic disorders ranging in severity from familial febrile seizures to Dravet syndrome. Large proportions of reported pathogenic variants in SCN1A are annotated as missense variants and are often classified as variants of uncertain significance when no functional data are available. Although loss-of-function variants are associated with a more severe phenotype in SCN1A, the molecular mechanism of single nucleotide variants is often not clear, and genotype-phenotype correlations in SCN1A-related epilepsy remain uncertain. Coding variants can affect splicing by creating novel cryptic splicing sites in exons or by disrupting exonic cis-regulation elements crucial for proper pre-mRNA splicing. Here, we report a novel case of Dravet syndrome caused by an undescribed missense variant, c.4852G>A (p.(Gly1618Ser)). By midigene splicing assay, we demonstrated that the identified variant is in fact splice-affecting. To our knowledge, this is the first report on the functional investigation of a missense variant affecting splicing in Dravet syndrome.
Collapse
Affiliation(s)
- Peter Sparber
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Mikhaylova
- Medical Genetics Department, Russian Children's Clinical Hospital, Moscow, Russia
| | - Varvara Galkina
- Clinical Department, Research Centre for Medical Genetics, Moscow, Russia
| | - Yulia Itkis
- Laboratory of Inherited Metabolic Disorders, Research Centre for Medical Genetics, Moscow, Russia
| | - Mikhail Skoblov
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
15
|
Chever O, Zerimech S, Scalmani P, Lemaire L, Pizzamiglio L, Loucif A, Ayrault M, Krupa M, Desroches M, Duprat F, Léna I, Cestèle S, Mantegazza M. Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV1.1 channels. J Clin Invest 2021; 131:e142203. [PMID: 34491914 PMCID: PMC8553565 DOI: 10.1172/jci142203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/02/2021] [Indexed: 01/24/2023] Open
Abstract
Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and subarachnoid hemorrhage. However, the cellular origin and specific differential mechanisms are not clear. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading depression (CSD), a pathological mechanism of migraine. Here, we show that acute pharmacological activation of NaV1.1 (the main Na+ channel of interneurons) or optogenetic-induced hyperactivity of GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K+ build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation. CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of CSD initiation. Gain-of-function mutations of NaV1.1 (SCN1A) cause familial hemiplegic migraine type-3 (FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results provide the mechanism linking NaV1.1 gain of function to CSD generation in FHM3. Thus, we reveal the key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant as a pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine and diseases in which SDs are involved.
Collapse
Affiliation(s)
- Oana Chever
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Sarah Zerimech
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Paolo Scalmani
- Unità Operativa VII Clinical and Experimental Epileptology, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Louisiane Lemaire
- Inria Sophia Antipolis Méditerranée, MathNeuro Project Team, Valbonne-Sophia Antipolis, France
| | - Lara Pizzamiglio
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Alexandre Loucif
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Marion Ayrault
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Martin Krupa
- Université Côte d'Azur, Laboratoire Jean-Alexandre Dieudonné, Nice, France
| | - Mathieu Desroches
- Inria Sophia Antipolis Méditerranée, MathNeuro Project Team, Valbonne-Sophia Antipolis, France
| | - Fabrice Duprat
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Isabelle Léna
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur and.,CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| |
Collapse
|
16
|
Myers KA, Scheffer IE. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu Rev Pharmacol Toxicol 2021; 62:641-662. [PMID: 34579535 DOI: 10.1146/annurev-pharmtox-052120-084449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Division of Child Neurology, Department of Pediatrics, and Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec H4A 3J1, Canada;
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; .,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia.,The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Transfer of SCN1A to the brain of adolescent mouse model of Dravet syndrome improves epileptic, motor, and behavioral manifestations. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:585-602. [PMID: 34589280 PMCID: PMC8463324 DOI: 10.1016/j.omtn.2021.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022]
Abstract
Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient’s neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement.
Collapse
|
18
|
Lemaire L, Desroches M, Krupa M, Pizzamiglio L, Scalmani P, Mantegazza M. Modeling NaV1.1/SCN1A sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential GABAergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine. PLoS Comput Biol 2021; 17:e1009239. [PMID: 34314446 PMCID: PMC8345895 DOI: 10.1371/journal.pcbi.1009239] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/06/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
Loss of function mutations of SCN1A, the gene coding for the voltage-gated sodium channel NaV1.1, cause different types of epilepsy, whereas gain of function mutations cause sporadic and familial hemiplegic migraine type 3 (FHM-3). However, it is not clear yet how these opposite effects can induce paroxysmal pathological activities involving neuronal networks’ hyperexcitability that are specific of epilepsy (seizures) or migraine (cortical spreading depolarization, CSD). To better understand differential mechanisms leading to the initiation of these pathological activities, we used a two-neuron conductance-based model of interconnected GABAergic and pyramidal glutamatergic neurons, in which we incorporated ionic concentration dynamics in both neurons. We modeled FHM-3 mutations by increasing the persistent sodium current in the interneuron and epileptogenic mutations by decreasing the sodium conductance in the interneuron. Therefore, we studied both FHM-3 and epileptogenic mutations within the same framework, modifying only two parameters. In our model, the key effect of gain of function FHM-3 mutations is ion fluxes modification at each action potential (in particular the larger activation of voltage-gated potassium channels induced by the NaV1.1 gain of function), and the resulting CSD-triggering extracellular potassium accumulation, which is not caused only by modifications of firing frequency. Loss of function epileptogenic mutations, on the other hand, increase GABAergic neurons’ susceptibility to depolarization block, without major modifications of firing frequency before it. Our modeling results connect qualitatively to experimental data: potassium accumulation in the case of FHM-3 mutations and facilitated depolarization block of the GABAergic neuron in the case of epileptogenic mutations. Both these effects can lead to pyramidal neuron hyperexcitability, inducing in the migraine condition depolarization block of both the GABAergic and the pyramidal neuron. Overall, our findings suggest different mechanisms of network hyperexcitability for migraine and epileptogenic NaV1.1 mutations, implying that the modifications of firing frequency may not be the only relevant pathological mechanism. The voltage-gated sodium channel NaV1.1 is a major target of human mutations implicated in different pathologies. In particular, mutations identified in certain types of epilepsy cause loss of function of the channel, whereas mutations identified in certain types of migraine (in which spreading depolarizations of the cortical circuits of the brain are involved) cause instead gain of function. Here, we study dysfunctions induced by these differential effects in a two-neuron (GABAergic and pyramidal) conductance-based model with dynamic ion concentrations. We obtain results that can be related to experimental findings in both situations. Namely, extracellular potassium accumulation induced by the activity of the GABAergic neuron in the case of CSD, and higher propensity of the GABAergic neuron to depolarization block in the epileptogenic scenario, without significant modifications of its firing frequency prior to it. Both scenarios can induce hyperexcitability of the pyramidal neuron, leading in the migraine condition to depolarization block of both the GABAergic and the pyramidal neuron. Our results are successfully confronted to experimental data and suggest that modification of firing frequency is not the only key mechanism in these pathologies of neuronal excitability.
Collapse
Affiliation(s)
- Louisiane Lemaire
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis, France
- Université Côte d’Azur, Nice, France
- * E-mail: (LL); (MM)
| | - Mathieu Desroches
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis, France
- Université Côte d’Azur, Nice, France
| | - Martin Krupa
- Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis, France
- Université Côte d’Azur, Laboratoire Jean-Alexandre Dieudonné, Nice, France
| | - Lara Pizzamiglio
- Université Côte d’Azur, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Paolo Scalmani
- U.O. VII Clinical and Experimental Epileptology, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Massimo Mantegazza
- Université Côte d’Azur, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
- * E-mail: (LL); (MM)
| |
Collapse
|
19
|
Suleimanova A, Talanov M, van den Maagdenberg AMJM, Giniatullin R. Deciphering in silico the Role of Mutated Na V 1.1 Sodium Channels in Enhancing Trigeminal Nociception in Familial Hemiplegic Migraine Type 3. Front Cell Neurosci 2021; 15:644047. [PMID: 34135733 PMCID: PMC8200561 DOI: 10.3389/fncel.2021.644047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.
Collapse
Affiliation(s)
- Alina Suleimanova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Hasırcı Bayır BR, Tutkavul K, Eser M, Baykan B. Epilepsy in patients with familial hemiplegic migraine. Seizure 2021; 88:87-94. [PMID: 33839563 DOI: 10.1016/j.seizure.2021.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The coexistence of epilepsy in familial hemiplegic migraine (FHM) has not been reviewed systematically. We investigated the associations of epilepsy in patients with FHM with CACNA1A, ATP1A2, SCN1A or PRRT2 mutations along with clinical and genetic data. MATERIALS AND METHODS We performed a search in the PubMed bibliographic database and the Cochrane Library was screened for eligible studies, from April 1997 to December 2020. Additionally, Online Mendelian Inheritance in Man (OMIM) was searched for mutations in the CACNA1A, ATP1A2, SCN1A and PRRT2 genes. Brief reports, letters, and original articles about FHM and epilepsy were included in the review if their mutations and clinical course of diseases were identified. RESULTS Of the included patients with FHM whose information could be accessed, there were 28 families and 195 individuals, 78 of whom had epilepsy; 30 patients had focal epilepsy and 30 patients had generalized epilepsy. All mutations except ATP1A2, which could not be evaluated due to insufficient data, revealed first epilepsy then HM. In 60 patients for whom the epilepsy prognosis was evaluated, only 3.5% of patients were drug-resistant, and the remainder had a self-limited course or responded to anti-epileptic drug treatment. CONCLUSION Mutations in all three and possibly four FHM genes can cause epilepsy. Contrary to our expectations, the well-known epilepsy gene SCN1A mutations are not the leading cause; the highest number of cases associated with epilepsy belongs to the ATP1A2 mutation. Drug-resistant forms of epilepsy are rare in all FHM mutations, and this information is important for counseling patients.
Collapse
Affiliation(s)
- Buse Rahime Hasırcı Bayır
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neurology, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey.
| | - Kemal Tutkavul
- Department of Neurology, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey.
| | - Metin Eser
- Department of Medical Genetics, Ümraniye Research and Training Hospital, Istanbul, Turkey.
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
21
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
22
|
Abstract
The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.
Collapse
|
23
|
Ahn H, Ko TS. The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy. ANNALS OF CHILD NEUROLOGY 2020. [DOI: 10.26815/acn.2020.00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol Dis 2020; 141:104954. [DOI: 10.1016/j.nbd.2020.104954] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
|
25
|
Kluckova D, Kolnikova M, Lacinova L, Jurkovicova-Tarabova B, Foltan T, Demko V, Kadasi L, Ficek A, Soltysova A. A Study among the Genotype, Functional Alternations, and Phenotype of 9 SCN1A Mutations in Epilepsy Patients. Sci Rep 2020; 10:10288. [PMID: 32581296 PMCID: PMC7314844 DOI: 10.1038/s41598-020-67215-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the voltage-gated sodium channel Nav1.1 (SCN1A) are linked to various epileptic phenotypes with different severities, however, the consequences of newly identified SCN1A variants on patient phenotype is uncertain so far. The functional impact of nine SCN1A variants, including five novel variants identified in this study, was studied using whole-cell patch-clamp recordings measurement of mutant Nav1.1 channels expressed in HEK293T mammalian cells. E78X, W384X, E1587K, and R1596C channels failed to produce measurable sodium currents, indicating complete loss of channel function. E788K and M909K variants resulted in partial loss of function by exhibiting reduced current density, depolarizing shifts of the activation and hyperpolarizing shifts of the inactivation curves, and slower recovery from inactivation. Hyperpolarizing shifts of the activation and inactivation curves were observed in D249E channels along with slower recovery from inactivation. Slower recovery from inactivation was observed in E78D and T1934I with reduced current density in T1934I channels. Various functional effects were observed with the lack of sodium current being mainly associated with severe phenotypes and milder symptoms with less damaging channel alteration. In vitro functional analysis is thus fundamental for elucidation of the molecular mechanisms of epilepsy, to guide patients' treatment, and finally indicate misdiagnosis of SCN1A related epilepsies.
Collapse
Affiliation(s)
- Daniela Kluckova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Miriam Kolnikova
- Department of Pediatric Neurology, Comenius University Medical School and National Institute of Children's Diseases, Limbova 1, Bratislava, 833 40, Slovakia
| | - Lubica Lacinova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravská cesta 9, Bratislava, 840 05, Slovakia
| | - Bohumila Jurkovicova-Tarabova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravská cesta 9, Bratislava, 840 05, Slovakia
| | - Tomas Foltan
- Department of Pediatric Neurology, Comenius University Medical School and National Institute of Children's Diseases, Limbova 1, Bratislava, 833 40, Slovakia
| | - Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Ludevit Kadasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia.
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
26
|
Noebels JL. Predicting the impact of sodium channel mutations in human brain disease. Epilepsia 2020; 60 Suppl 3:S8-S16. [PMID: 31904123 PMCID: PMC6953257 DOI: 10.1111/epi.14724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
Genetic alteration of the sodium channel provides a remarkable opportunity to understand how epilepsy and its comorbidities arise from a molecular disease of excitable membranes, and a chance to create a better future for children with epileptic encephalopathy. In a single cell, the channel reliably acts as a voltage-sensitive switch, enabling axon impulse firing, whereas at a network level, it becomes a variable rheostat for regulating dynamic patterns of neuronal oscillations, including those underlying cognitive development, seizures, and even premature lethality. Despite steady progress linking genetic variation of the channels with distinctive clinical syndromes, our understanding of the intervening biologic complexity underlying each of them is only just beginning. More research on the functional contribution of individual channel subunits to specific brain networks and cellular plasticity in the developing brain is needed before we can reliably advance from precision diagnosis to precision treatment of inherited sodium channel disorders.
Collapse
Affiliation(s)
- Jeffrey L Noebels
- Blue Bird Circle Developmental Neurogenetics Laboratory, Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
27
|
Mantegazza M, Broccoli V. SCN1A/Na V 1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models. Epilepsia 2020; 60 Suppl 3:S25-S38. [PMID: 31904127 DOI: 10.1111/epi.14700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
Pathogenic SCN1A/NaV 1.1 mutations cause well-defined epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome. In addition, they cause a severe form of migraine with aura, familial hemiplegic migraine. Moreover, SCN1A/NaV 1.1 variants have been inferred as risk factors in other types of epilepsy. We review here the advancements obtained studying pathologic mechanisms of SCN1A/NaV 1.1 mutations with experimental systems. We present results gained with in vitro expression systems, gene-targeted animal models, and the induced pluripotent stem cell (iPSC) technology, highlighting advantages, limits, and pitfalls for each of these systems. Overall, the results obtained in the last two decades confirm that the initial pathologic mechanism of epileptogenic SCN1A/NaV 1.1 mutations is loss-of-function of NaV 1.1 leading to hypoexcitability of at least some types of γ-aminobutyric acid (GABA)ergic neurons (including cortical and hippocampal parvalbumin-positive and somatostatin-positive ones). Conversely, more limited results point to NaV 1.1 gain-of-function for familial hemiplegic migraine (FHM) mutations. Behind these relatively simple pathologic mechanisms, an unexpected complexity has been observed, in part generated by technical issues in experimental studies and in part related to intrinsically complex pathophysiologic responses and remodeling, which yet remain to be fully disentangled.
Collapse
Affiliation(s)
- Massimo Mantegazza
- University Cote d'Azur (UCA), CNRS UMR7275, INSERM, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,Institute of Neuroscience, National Research Council (CNR), Milan, Italy
| |
Collapse
|
28
|
Symonds JD, McTague A. Epilepsy and developmental disorders: Next generation sequencing in the clinic. Eur J Paediatr Neurol 2020; 24:15-23. [PMID: 31882278 DOI: 10.1016/j.ejpn.2019.12.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The advent of Next Generation Sequencing (NGS) has led to a redefining of the genetic landscape of the epilepsies. Hundreds of single gene epilepsies have been described. Genes associated with epilepsy involve diverse processes. Now a substantial proportion of individuals with epilepsy can receive a high definition molecular genetic diagnosis. METHODS In this review we update the current genetic landscape of the epilepsies and categorise the major functional groupings of epilepsy-associated genes. We describe currently available genetic testing approaches. We perform a literature review of NGS studies and review the factors which determine yield in cohorts undergoing testing. We identify factors associated with positive genetic diagnosis and consider the utility of genetic testing in terms of treatment selection as well as more qualitative aspects of care. FINDINGS Epilepsy-associated genes can be grouped into five broad functional categories: ion transport; cell growth and differentiation; regulation of synaptic processes; transport and metabolism of small molecules within and between cells; and regulation of gene transcription and translation. Early onset of seizures, drug-resistance, and developmental comorbidity are associated with higher diagnostic yield. The most commonly implicated genes in NGS studies to date, in order, are SCN1A, KCNQ2, CDKL5, SCN2A, and STXBP1. In unselected infantile cohorts PRRT2, a gene associated with self-limited epilepsy, is frequently implicated. Genetic diagnosis provides utility in terms of treatment choice closing the diagnostic odyssey, avoiding unnecessary further testing, and informing future reproductive decisions. CONCLUSIONS Genetic testing has become a first line test in epilepsy. As techniques improve and understanding advances, its utility is set to increase. Genetic diagnosis, particularly in early onset developmental and epileptic encephalopathies, influences treatment choice in a significant proportion of patients. The realistic prospect of gene therapy is a cause for optimism.
Collapse
Affiliation(s)
- Joseph D Symonds
- Paediatric Neuroscience Research Group, Royal Hospital for Children, Glasgow, G51 4TF, UK; Medical Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK.
| | - Amy McTague
- Institute of Child Health, University Collge London, 30 Guilford St, Holborn, London WC1N 1EH, UK
| |
Collapse
|
29
|
Jansen NA, Dehghani A, Linssen MML, Breukel C, Tolner EA, van den Maagdenberg AMJM. First FHM3 mouse model shows spontaneous cortical spreading depolarizations. Ann Clin Transl Neurol 2019; 7:132-138. [PMID: 31880072 PMCID: PMC6952313 DOI: 10.1002/acn3.50971] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 01/19/2023] Open
Abstract
Here we show, for the first time, spontaneous cortical spreading depolarization (CSD) events - the electrophysiological correlate of the migraine aura - in animals by using the first generated familial hemiplegic migraine type 3 (FHM3) transgenic mouse model. The mutant mice express L263V-mutated α1 subunits in voltage-gated NaV 1.1 sodium channels (Scn1aL263V ). CSDs consistently propagated from visual to motor cortex, recapitulating what has been shown in patients with migraine with aura. This model may be valuable for the preclinical study of migraine with aura and other diseases in which spreading depolarization is a prominent feature.
Collapse
Affiliation(s)
- Nico A Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anisa Dehghani
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot M L Linssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Scheffer IE, Nabbout R. SCN1A‐related phenotypes: Epilepsy and beyond. Epilepsia 2019; 60 Suppl 3:S17-S24. [DOI: 10.1111/epi.16386] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ingrid E. Scheffer
- Departments of Medicine and Paediatrics Austin Health and Royal Children’s Hospital Florey and Murdoch Children’s Research Institute The University of Melbourne Melbourne VIC Australia
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies Department of Paediatric Neurology Necker Enfants Malades Hospital Imagine Institute U1163 Paris Descartes University Paris France
| |
Collapse
|
31
|
Brunklaus A, Schorge S, Smith AD, Ghanty I, Stewart K, Gardiner S, Du J, Pérez‐Palma E, Symonds JD, Collier AC, Lal D, Zuberi SM. SCN1A
variants from bench to bedside—improved clinical prediction from functional characterization. Hum Mutat 2019; 41:363-374. [PMID: 31782251 DOI: 10.1002/humu.23943] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Brunklaus
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of NeurologyUniversity College LondonLondon UK
- School of PharmacyUniversity College LondonLondon UK
| | - Alexander D. Smith
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Ismael Ghanty
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Kirsty Stewart
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Sarah Gardiner
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Eduardo Pérez‐Palma
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Joseph D. Symonds
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Dennis Lal
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridge Massachusetts
- Analytic and Translational Genetics UnitMassachusetts General HospitalBoston Massachusetts
- Epilepsy Center, Neurological InstituteCleveland ClinicCleveland Ohio
- Genomic Medicine InstituteLerner Research Institute Cleveland ClinicCleveland Ohio
| | - Sameer M. Zuberi
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| |
Collapse
|
32
|
Barbieri R, Bertelli S, Pusch M, Gavazzo P. Late sodium current blocker GS967 inhibits persistent currents induced by familial hemiplegic migraine type 3 mutations of the SCN1A gene. J Headache Pain 2019; 20:107. [PMID: 31730442 PMCID: PMC6858687 DOI: 10.1186/s10194-019-1056-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/29/2019] [Indexed: 01/31/2023] Open
Abstract
Background Familial hemiplegic migraine (FHM) is a group of genetic migraine, associated with hemiparesis and aura. Three causative different genes have been identified, all of which are involved in membrane ion transport. Among these, SCN1A encodes the voltage-gated Na+ channel Nav1.1, and FHM caused by mutations of SCN1A is named FHM3. For 7 of the 12 known FHM3-causing SCNA1 mutations functional consequences have been investigated, and even if gain of function effect seems to be a predominant phenotype, for several mutations conflicting results have been obtained and the available data do not reveal a univocal FHM3 pathomechanism. Methods To obtain a more complete picture, here, we characterized by patch clamp approach the remaining 5 mutations (Q1489H, I1498M, F1499 L, M1500 V, F1661 L) in heterologous expression systems. Results With the exception of I1498M, all mutants exhibited the same current density as WT and exhibited a shift of the steady state inactivation to more positive voltages, an accelerated recovery from inactivation, and an increase of the persistent current, revealing that most FHM3 mutations induce a gain of function. We also determined the effect of GS967, a late Na+ current blocker, on the above mentioned mutants as well as on previously characterized ones (L1649Q, L1670 W, F1774S). GS967 inhibited persistent currents of all SCNA1 FMH3-related mutants and dramatically slowed the recovery from fast inactivation of WT and mutants, consistent with the hypothesis that GS967 specifically binds to and thereby stabilizes the fast inactivated state. Simulation of neuronal firing showed that enhanced persistent currents cause an increase of ionic fluxes during action potential repolarization and consequent accumulation of K+ and/or exhaustion of neuronal energy resources. In silico application of GS967 largely reduced net ionic currents in neurons without impairing excitability. Conclusion In conclusion, late Na+ current blockers appear a promising specific pharmacological treatment of FHM3.
Collapse
Affiliation(s)
- R Barbieri
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy
| | - S Bertelli
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy.,International School of Advanced Studies (SISSA), Via Bonomea, 265, Trieste, Italy
| | - M Pusch
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy
| | - P Gavazzo
- Biophysics Institute, National Research Council, Via De Marini 6, Genoa, Italy.
| |
Collapse
|
33
|
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20:72. [PMID: 31226929 PMCID: PMC6734342 DOI: 10.1186/s10194-019-1017-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Findings Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. Conclusions The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|