1
|
Kim JE, Min KS, Go J, Park HY, Choi YK, Lee IB, Shin J, Cho HJ, Kim HS, Hwang DY, Oh WK, Kim KS, Lee CH. Water extract of Humulus japonicus improves age‑related cognitive decline by inhibiting acetylcholinesterase activity and the acetylcholine signaling pathway. Mol Med Rep 2025; 31:131. [PMID: 40116124 PMCID: PMC11938412 DOI: 10.3892/mmr.2025.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
The aging process is associated with a decline in certain cognitive abilities, including learning and memory. This age‑related cognitive decline is associated with a reduction in neurogenesis and alterations in the cholinergic system. Humulus japonicus (HJ), an ornamental plant in the family Cannabaceae, has been reported to exert beneficial effects against neurodegenerative pathophysiologies in mouse models of disorders such as Alzheimer's and Parkinson's disease. Despite the increasingly aging populations of numerous societies, no study has yet investigated the effects of HJ on cognitive decline associated with normal aging. The present study therefore aimed to examine the protective potential of HJ water (HJW) extract against age‑related cognitive decline and scopolamine‑induced cognitive impairment. The analyses revealed that the oral administration of HJW markedly improved novel objective recognition and spatial learning in the novel object recognition and Morris water maze tests, respectively, in aged mice. The administration of 600 mg/kg HJW further increased neurogenesis and CA1 thickness in the hippocampi of aged mice. In scopolamine‑induced cognitive impairment, administration of 400 or 600 mg/kg HJW markedly increased novel object recognition performance in scopolamine‑treated mice. The inhibitory effect of HJW on acetylcholinesterase (AChE) and the activation effects of HJW on the calcium/calmodulin‑dependent kinase (CaMK)IIα‑cAMP response element‑binding protein (CREB) and AKT‑glycogen synthase kinase‑3 β (GSK3β) pathways were further demonstrated. Overall, these results indicate that HJW administration improves cognitive function through the regulation of AChE activity and CaMKIIα‑CREB and AKT‑GSK3β pathways.
Collapse
Affiliation(s)
- Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jaewon Shin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Ju Cho
- NHB Co., Ltd., Seoul 04735, Republic of Korea
| | | | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Zamanian M, Gumpricht E, Salehabadi S, Kesharwani P, Sahebkar A. The effects of selected phytochemicals on schizophrenia symptoms: A review. Tissue Cell 2025; 95:102911. [PMID: 40253798 DOI: 10.1016/j.tice.2025.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
There are suggested treatment options for schizophrenia (SZ), including antipsychotic medications. Unfortunately, these drugs mostly ameliorate only the positive symptoms of SZ, and patients have less tendency for compliance due to the drug's side effects. Hence, there is a need for additional or adjunct therapeutic options. This review considers selected phytochemicals with anti-schizophrenic activity as an alternative therapy. We searched the scientific literature and reviewed the evidence from pre-clinical (animal) and clinical studies using some phytochemicals in SZ. The reviewed phytochemicals provided varying potential beneficial effects on SZ. Of particular interest, berberine may provide additional ameliorative advantages against the disorder. Although still nascent in scientific research, these studies suggest a potential adjunct therapeutic option against the pathophysiological pathways implicated in SZ. We recommend robust, carefully performed randomized controlled trials evaluating the role of these phytochemicals in SZ.
Collapse
Affiliation(s)
- Melika Zamanian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ 85297, USA
| | - Sepideh Salehabadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Yang X, Zhang Y, Zhou Y, Liu M, Zhao H, Yang Y, Su J. CaMK2A/CREB pathway activation is associated with enhanced mitophagy and neuronal apoptosis in diabetic retinopathy. Sci Rep 2025; 15:12516. [PMID: 40216954 PMCID: PMC11992012 DOI: 10.1038/s41598-025-97371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus, characterized by progressive neurodegeneration and vision impairment. The Ca2+/calmodulin-dependent protein kinase II alpha (CaMK2A) and cAMP response element-binding protein (CREB) signaling pathway has been implicated in various neurological disorders. However, its role in DR pathogenesis remains elusive. We established a DR mouse model by streptozotocin administration and performed histological, biochemical, and molecular analyses to investigate the involvement of CaMK2A/CREB signaling and its interplay with mitophagy. Additionally, we employed in vitro high-glucose (HG) treatment in primary mouse retinal ganglion cells to dissect the underlying mechanisms. Pharmacological and genetic modulations were utilized to target CaMK2A/CREB pathway and mitophagy. In the DR model, we observed retinal degeneration, increased apoptosis, and reduced neurotransmitter production, accompanied by enhanced mitophagy and activation of the CaMK2A/CREB pathway. HG induction in retinal ganglion cells recapitulated these findings, and autophagy inhibition partially rescued cell death but failed to suppress CaMK2A/CREB activation, suggesting mitophagy as a downstream consequence. CaMK2A knockdown or CREB phosphorylation inhibition attenuated HG-induced mitophagy, apoptosis, and neurotransmitter depletion, while CREB activation exacerbated these effects. CaMK2A silencing mitigated DR progression, oxidative stress, inflammation, and neuronal loss, akin to dopamine/carbidopa administration in DR mouse model. Our findings reveal the involvement of CaMK2A/CREB signaling activation and enhanced mitophagy in DR, suggesting these pathways may be therapeutically relevant targets for DR management.
Collapse
Affiliation(s)
- Xiaochun Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Yuxin Zhang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yikun Zhou
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Mingzhi Liu
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Haiyan Zhao
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yang Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Jianyun Su
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| |
Collapse
|
4
|
Wang W, Sun Y, Cao R, Luo W, Beng S, Zhang J, Wang X, Peng C. Illustrate the metabolic regulatory effects of Ganoderma Lucidum polysaccharides on cognitive dysfunction in formaldehyde-exposed mouse brain by mass spectrometry imaging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118060. [PMID: 40120485 DOI: 10.1016/j.ecoenv.2025.118060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Long-term formaldehyde (FA) exposure causes cognitive dysfunction, often associated with metabolic disorders. While some studies suggest Ganoderma lucidum polysaccharides (GLP) can improve cognitive function, such as Alzheimer's disease. However, the effects of GLP on FA-exposed cognitive dysfunction and the regulation of GLP on brain metabolic disturbances caused by FA remain unclear. In our study, we revealed that GLP significantly reversed FA-exposed spatial cognitive deficits in mice by using Morris Water Maze and Histological analysis. Furthermore, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) found that exposure of FA can caused dysregulated expression of 35 metabolites. Following GLP treatment, there was a significant restoration of the imbalance of choline and acetylcholine, carnitine and acetylcarnitine, and spermidine and spermine, which were all involved in choline metabolism, carnitine metabolism, and polyamine metabolism. Our results suggested that GLP alleviated FA-exposed cognitive dysfunction, likely through modulation of metabolic pathways, providing a potential therapeutic approach for FA-related cognitive dysfunction.
Collapse
Affiliation(s)
- Wen Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yuanyuan Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Renting Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Wenhui Luo
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shujuan Beng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jing Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Can Peng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Generic Technology Research center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
5
|
Wang J, Zhou J, Xie Z, Zhang Y, He M, Wei T, Wu S, Du C. Multifunctional 4D printed shape memory composite scaffolds with photothermal and magnetothermal effects for multimodal tumor therapy and bone repair. Biofabrication 2025; 17:025032. [PMID: 40106897 DOI: 10.1088/1758-5090/adc29e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Tumor recurrence and bone defects are two key challenges in the surgical treatment of osteosarcoma (OS). Therefore, it is highly necessary to develop a multifunctional scaffold that can simultaneously eradicate tumor cells and promote bone regeneration. Herein, a hierarchically porous shape memory scaffold consisting of hydroxyapatite, silica, poly(D,L-lactide-co-trimethylene carbonate) and Fe3O4(HSP-Fe3O4) is constructed by Pickering emulsion and 4D printing technique. The HSP-Fe3O4scaffold demonstrates the advantages of multimodal anti-tumor therapy, including chemotherapy through the Fenton reaction, effective photothermal conversion for photothermal therapy under near-infrared laser irradiation, and magnetothermal therapy provided by an alternating magnetic field. Furthermore, photothermal hyperthermia also serve as triggers for the shape memory effect of the HSP-Fe3O4scaffold, enabling the scaffold to precise adaptation of complex bone defects after minimally invasive surgical implantation. Additionally, the HSP-Fe3O4scaffold with interconnected multiscale pore exhibits good biocompatibility and excellent bone repair capabilities. This study proved that the HSP-Fe3O4scaffold provides positive insights for preventing tumor recurrence and facilitating bone regeneration after OS surgery.
Collapse
Affiliation(s)
- Jingguang Wang
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Jielong Zhou
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhenze Xie
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yunhui Zhang
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Muye He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Tianyu Wei
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Shibin Wu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Chang Du
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne) 2025; 16:1448750. [PMID: 40182637 PMCID: PMC11965140 DOI: 10.3389/fendo.2025.1448750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The body instinctively responds to external stimuli by increasing energy metabolism and initiating immune responses upon receiving stress signals. Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and humoral regulation. Due to the widespread expression of glucocorticoid receptors (GR), the effects of CORT are almost ubiquitous in various tissue cells. Therefore, on the one hand, CORT is a molecular signal that activates the body's immune system during stress and on the other hand, due to the chemical properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to control the body's response to stress. Inflammation is a manifestation of immune activation. CORT plays dual roles in this process by both promoting inflammation and exerting anti-inflammatory effects in immune regulation. As a stress hormone, CORT levels fluctuate with the degree and duration of stress, determining its effects and the immune changes it induces. The immune system is essential for the body to resist diseases and maintain homeostasis, with immune imbalance being a key factor in the development of various diseases. Therefore, understanding the role of CORT and its mechanisms of action on immunity is crucial. This review addresses this important issue and summarizes the interactions between CORT and the immune system.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojuan Wang
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haiqing Ao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Jiang K, Yu H, Kong L, Liu S, Du S, Li Q. DOPA Decarboxylase (DDC) in Pacific Oysters: Characterization and Role in Tyrosine Metabolism and Melanogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:59. [PMID: 40035897 DOI: 10.1007/s10126-025-10439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
DOPA decarboxylase (DDC) plays a crucial role in the physiological functions of animals by participating in the dopaminergic system. However, the functions of DDC in shellfish remain poorly understood. The Pacific oyster (Crassostrea gigas) is an extensively cultivated shellfish. In this study, we characterized a DDC gene, designated CgDDC, from C. gigas. The CgDDC gene encodes a protein that contains a Pyridoxal_deC domain, which features specific binding sites for pyridoxal-5'-phosphate (PLP) and L-DOPA. CgDDC exhibits a significantly higher expression level in the black shell oyster strain than the white strain. In vitro enzymatic reaction assays demonstrated that CgDDC catalyzes the conversion of L-DOPA to dopamine. In vivo experiments revealed that inhibiting CgDDC activity reduced the expression of genes associated with tyrosine metabolism. Furthermore, the knockdown of CgDDC caused a decline in cAMP level and reduced transcription of genes involved in the cAMP-mediated melanogenesis. Additionally, treatment with L-α-DOPA inhibited CgDDC enzyme activity and cAMP-mediated melanogenesis; however, dopamine supplementation countered this inhibition, maintaining gene expression and melanin content at baseline levels. Collectively, our findings suggest that CgDDC is intricately involved in regulating tyrosine metabolism and melanogenesis in C. gigas.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
8
|
Rajan RK. Piceatannol-Can It Be Used to Treat Hyperpigmentation of the Skin? Pigment Cell Melanoma Res 2025; 38:e70008. [PMID: 40091271 DOI: 10.1111/pcmr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Over the years, the cosmetic industry has shifted its focus from synthtic to natural compounds. This change is driven not only by the safety profile of natural ingredients but also by increased consumer awareness about the products they use. As a result, many natural skincare products have been launched in recent years. Hyperpigmentation disorders, such as melasma, age spots (solar lentigines), post-inflammatory hyperpigmentation, freckles, and acanthosis nigricans, are significant concerns. These conditions not only pose pathological issues but also affect individuals' self-esteem. Consequently, treating hyperpigmentation by reducing melanogenesis has become a key area of interest in cosmetology. Among various natural compounds, piceatannol (PCT) shows great potential in treating hyperpigmentation. The primary mechanism previously explored is the inhibition of the tyrosinase enzyme, which is one of the most researched strategies for combating melanogenesis. Additionally, PCT has been shown to downregulate MITF expression, a key gene responsible for the transcription of various melanogenic proteins and enzymes. However, beyond these two mechanisms, little is known about how PCT may inhibit melanogenesis. In this review, we aim to bridge that gap. We will explore and speculate on the possible upstream signaling pathways to MITF, such as Nrf, FOXO3a, CREB, MAPK signaling, etc., where PCT could potentially act to inhibit melanogenesis. This review will not only pave the way for future research related to PCT and hyperpigmentation but also highlight pathways that could be targeted for developing cosmetics and treatments for hyperpigmentation disorders.
Collapse
|
9
|
Kambali M, Li Y, Unichenko P, Feria Pliego JA, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Hodgson NW, Hensch TK, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. An increased copy number of glycine decarboxylase (GLDC) associated with psychosis reduces extracellular glycine and impairs NMDA receptor function. Mol Psychiatry 2025; 30:927-942. [PMID: 39210012 PMCID: PMC11835546 DOI: 10.1038/s41380-024-02711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Glycine is an obligatory co-agonist at excitatory NMDA receptors in the brain, especially in the dentate gyrus, which has been postulated to be crucial for the development of psychotic associations and memories with psychotic content. Drugs modulating glycine levels are in clinical development for improving cognition in schizophrenia. However, the functional relevance of the regulation of glycine metabolism by endogenous enzymes is unclear. Using a chromosome-engineered allelic series in mice, we report that a triplication of the gene encoding the glycine-catabolizing enzyme glycine decarboxylase (GLDC) - as found on a small supernumerary marker chromosome in patients with psychosis - reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) and suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in schizophrenia-like behaviors which are in part known to be dependent on the activity of the dentate gyrus, e.g., prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results demonstrate that Gldc negatively regulates long-term synaptic plasticity in the dentate gyrus in mice, suggesting that an increase in GLDC copy number possibly contributes to the development of psychosis in humans.
Collapse
Affiliation(s)
- Maltesh Kambali
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yan Li
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Patrick McGuinness
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Johanna G Cobb
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Muxiao Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajasekar Nagarajan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jinrui Lyu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Elif Engin
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Joseph T Coyle
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vadim Y Bolshakov
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
10
|
Barbagallo F, Assenza MR, Messina A. In the Brain of Phosphodiesterases: Potential Therapeutic Targets for Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:15-31. [PMID: 39820109 PMCID: PMC11747726 DOI: 10.9758/cpn.24.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 01/19/2025]
Abstract
Intracellular cyclic nucleotides (cyclic adenosine monophosphate and cyclic guanosine monophosphate) and downstream cellular signal transduction are regulated by phosphodiesterases (PDEs). The neuroplasticity, neurotransmitter pathways, and neuroinflammation-controlling functions of PDEs were demonstrated in numerous in vitro and animal model studies. We comprehensively reviewed the literature regarding the expression of PDEs in various brain regions. Subsequently, articles regarding schizophrenia and PDEs were examined. The pathophysiological mechanisms of schizophrenia and PDEs in preclinical and clinical investigations are briefly reviewed. Particularly for those who do not respond to conventional antipsychotics, specific PDE inhibitors may offer innovative therapeutic alternatives. Although the connection between schizophrenia and PDEs is intriguing, additional research is required. Comprehending the brain's PDE isoforms, their therapeutic potential, and any adverse effects of inhibiting them is essential for progress in this field.
Collapse
Affiliation(s)
| | - Maria Rita Assenza
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Antonino Messina
- Department of Mental Health of Enna, Psychiatry Unity, Enna Hospital, Enna, Italy
| |
Collapse
|
11
|
Li F, Ren X, Liu JX, Wang TD, Wang B, Wei XB. Integrative transcriptomic and proteomic analysis reveals that SERPING1 inhibits neuronal proliferation via the CaMKII-CREB-BDNF pathway in schizophrenia. World J Psychiatry 2025; 15:100214. [PMID: 39974493 PMCID: PMC11758061 DOI: 10.5498/wjp.v15.i2.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Schizophrenia (SZ), a chronic and widespread brain disorder, presents with complex etiology and pathogenesis that remain inadequately understood. Despite the absence of a universally recognized endophenotype, peripheral blood mononuclear cells (PBMCs) serve as a robust model for investigating intracellular alterations linked to SZ. AIM To preliminarily investigate potential pathogenic mechanisms and identify novel biomarkers for SZ. METHODS PBMCs from SZ patients were subjected to integrative transcriptomic and proteomic analyses to uncover differentially expressed genes (DEGs) and differentially expressed proteins while mapping putative disease-associated signaling pathways. Key findings were validated using western blot (WB) and real-time fluorescence quantitative PCR (RT-qPCR). RNAi-lentivirus was employed to transfect rat hippocampal CA1 neurons in vitro, with subsequent verification of target gene expression via RT-qPCR. The levels of neuronal conduction proteins, including calmodulin-dependent protein kinase II (caMKII), CREB, and BDNF, were assessed through WB. Apoptosis was quantified by flow cytometry, while cell proliferation and viability were evaluated using the Cell Counting Kit-8 assay. RESULTS The integration of transcriptomic and proteomic analyses identified 6079 co-expressed genes, among which 25 DEGs were significantly altered between the SZ group and healthy controls. Notably, haptoglobin (HP), lactotransferrin (LTF), and SERPING1 exhibited marked upregulation. KEGG pathway enrichment analysis implicated neuroactive ligand-receptor interaction pathways in disease pathogenesis. Clinical sample validation demonstrated elevated protein and mRNA levels of HP, LTF, and SERPING1 in the SZ group compared to controls. WB analysis of all clinical samples further corroborated the significant upregulation of SERPING1. In hippocampal CA1 neurons transfected with lentivirus, reduced SERPING1 expression was accompanied by increased levels of CaMKII, CREB, and BDNF, enhanced cell viability, and reduced apoptosis. CONCLUSION SERPING1 may suppress neural cell proliferation in SZ patients via modulation of the CaMKII-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, China
- Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan Province, China
| | - Xing Ren
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, China
- Blood Testing Center, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Jia-Xiu Liu
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, China
| | - Tian-Dao Wang
- Department of Clinical Laboratory, Hainan Provincial Anning Hospital, Haikou 570206, Hainan Province, China
| | - Bi Wang
- Department of Clinical Laboratory, Hainan Fifth People's Hospital (Hainan Skin Disease and Plastic Surgery Hospital), Haikou 570206, Hainan Province, China
| | - Xiao-Bin Wei
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, China
| |
Collapse
|
12
|
Ferreira BK, Paz-Simões T, Melo TN, Gonçalves PFR, Kubrusly RCC, de Melo Reis RA, Neves GA, Ferreira GC, Schuck PF. Galactose Impairs Motor Performance and Cerebellar Signaling in Young Male Wistar Rats. Mol Neurobiol 2025:10.1007/s12035-024-04684-6. [PMID: 39913017 DOI: 10.1007/s12035-024-04684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]
Abstract
Galactosemias are a group of inborn errors of galactose metabolism that causes different motor symptoms such as ataxia, tremor, and fine motor dysfunction. The objective was to investigate the cerebellar damage caused by an acute galactose administration. Thirty-day-old male and female Wistar rats were used. Animals were randomized into the following groups: I) galactose group, receiving a single subcutaneous administration of galactose; II) control group, receiving the vehicle solution under the same conditions. One, 3 or 24 h after administration, the animals were evaluated in the Rotarod test. A lower motor performance was observed in male rats 3 h after a galactose administration. This effect was not seen in females or with galactose exposure for 1 or 24 h. The activities of acetylcholinesterase and choline acetyltransferase were found unaltered in the cerebellum of males 3 h after galactose injection. We also found lower TH levels in cerebellar hemispheres and higher TH levels in cerebellar vermis 3 h after galactose administration in male rats, without differences in MAO-A or MAO-B activities. Galactose administration resulted in lower p-CREB(Ser133) and GAD67 levels in cerebellar hemispheres, without altering these parameters in cerebellar vermis of male rats. Finally, a decrease in TrkB-FL immunocontent (but not of TrkB-T levels) was observed in male cerebellar hemispheres. The absence of neurochemical alterations 1 h or 24 h after galactose administration indicates a transient effect for this hexose. The signs and symptoms of galactosemic patients underscore the need to study galactose effects in males and females and in various brain areas. Our findings enhance the understanding of therapeutic mechanisms of catecholaminergic drugs, which are proposed as a potential therapy for galactosemia.
Collapse
Affiliation(s)
- Bruna Klippel Ferreira
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Thiago Paz-Simões
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Thairine Neves Melo
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Patricia Felix Rolo Gonçalves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Regina Celia Cussa Kubrusly
- Laboratório de Neurofarmacologia, Departamento de Fisiologia E Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilda Angela Neves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil.
| |
Collapse
|
13
|
Singh A, Singh L. Acyclic sesquiterpenes nerolidol and farnesol: mechanistic insights into their neuroprotective potential. Pharmacol Rep 2025; 77:31-42. [PMID: 39436564 DOI: 10.1007/s43440-024-00672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Sesquiterpenes are a class of organic compounds found in plants, fungi, and some insects. They are characterized by the presence of three isoprene units, resulting in a molecular formula that typically contains 15 carbon atoms (C₁₅H₂₄). Nerolidol and farnesol are both sesquiterpene alcohols present in the essential oils of numerous plants. They have drawn attention due to their potential neuroprotective properties. Nerolidol and farnesol are structural isomers, specifically geometric isomers, haring the same molecular formula (C₁₅H₂₄O) but differing in the spatial arrangement of their atoms. This variation in structure may contribute to their distinct biological activities. Scientific evidence suggests that nerolidol and farnesol exhibit antioxidant and anti-inflammatory characteristics which are crucial for neuroprotection. Nerolidol has been specifically noted for its ability to alleviate conditions such as Alzheimer's disease, Parkinson's disease, encephalomyelitis, depression, and anxiety by modulating inflammatory and oxidative stress pathways. Moreover, research indicates that both nerolidol and farnesol may modulate the Nrf-2/HO-1 antioxidant signaling pathway to mitigate oxidative stress-induced neurological damage. Activation of Nrf-2/HO-1 signaling cascade promotes cell survival and enhances the brain's ability to resist various insults. Nerolidol has also been reported to alleviate neuroinflammation by inhibiting the TLR-4/NF-κB and COX-2/NF-κB inflammatory signaling pathway. Besides, this nerolidol also modulates BDNF/TrkB/CREB signaling pathway to improve neuronal health. To date, limited research has delved into the anti-inflammatory properties of farnesol concerning neurodegenerative diseases. Further investigation is warranted to comprehensively elucidate the mechanisms underlying its action and potential therapeutic uses in neuroprotection. Initial observations indicate that farnesol exhibits promising prospects as a natural agent for safeguarding brain functions. Henceforth, drawing upon existing literature elucidating the neuroprotective attributes of nerolidol and farnesol, the current review endeavors to provide a detailed analysis of their mechanistic underpinnings in neuroprotection.
Collapse
Affiliation(s)
- Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
14
|
Chmykhalo VK, Deev RV, Tokarev AT, Polunina YA, Xue L, Shidlovskii YV. SWI/SNF Complex Connects Signaling and Epigenetic State in Cells of Nervous System. Mol Neurobiol 2025; 62:1536-1557. [PMID: 39002058 DOI: 10.1007/s12035-024-04355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome. On the other hand, the complexes mediate the action of multiple signaling pathways that control most aspects of neural tissue development and function. The issues are discussed to provide insight into the molecular basis of the multifaceted role of SWI/SNFs in cell cycle regulation, DNA repair, activation of immediate-early genes, neurogenesis, and brain and connectome formation. An overview is additionally provided for the molecular basis of nervous system pathologies associated with the SWI/SNF complexes and their contribution to neuroinflammation and neurodegeneration. Finally, we discuss the idea that SWI/SNFs act as an integration platform to connect multiple signaling and genetic programs.
Collapse
Affiliation(s)
- Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia.
| | - Roman V Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Artemiy T Tokarev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Lei Xue
- School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
- Department of Biology and General Genetics, Sechenov University, Moscow, Russia
| |
Collapse
|
15
|
Zhao R, Wang J, Chung SK, Xu B. New insights into anti-depression effects of bioactive phytochemicals. Pharmacol Res 2025; 212:107566. [PMID: 39746497 DOI: 10.1016/j.phrs.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Depression is one of the most common psychological disorders, and due to its high prevalence and mortality rates, it imposes a significant disease burden. Contemporary treatments for depression involve various synthetic drugs, which have limitations such as side effects, single targets, and slow onset of action. Unlike synthetic medications, phytochemicals offer the benefits of a multi-target and multi-pathway mode of treatment for depression. In this literature review, we describe the pharmacological actions, experimental models, and clinical trials of the antidepressant effects of various phytochemicals. Additionally, we summarize the potential mechanisms by which these phytochemicals prevent depression, including regulating neurotransmitters and their receptors, the HPA axis, inflammatory responses, managing oxidative stress, neuroplasticity, and the gut microbiome. Phytochemicals exert therapeutic effects through multiple pathways and targets, making traditional Chinese medicine (TCM) a promising adjunctive antidepressant for the prevention, alleviation, and treatment of depression. Therefore, this review aims to provide robust evidence for subsequent research into developing phytochemical resources as effective antidepressant agents.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
16
|
Bhattacharya A, Turkalj L, Manzini MC. The promise of cyclic AMP modulation to restore cognitive function in neurodevelopmental disorders. Curr Opin Neurobiol 2025; 90:102966. [PMID: 39740265 DOI: 10.1016/j.conb.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Cyclic AMP (cAMP) is a key regulator of synaptic function and is dysregulated in both neurodevelopmental (NDD) and neurodegenerative disorders. Due to the ease of diffusion and promiscuity of downstream effectors, cAMP signaling is restricted within spatiotemporal domains to localize activation. Among the best-studied mechanisms is the feedback inhibition of cAMP-dependent protein kinase (PKA) activity by phosphodiesterases 4 (PDE4s) at synapses controlling neuronal plasticity, which is largely regulated by PDE4D. In fact, genetic variants in genes for multiple PKA subunits and PDE4D lead to NDDs. Here, we discuss the rationale for choosing PDE4D as a candidate for the design of selective allosteric inhibitors and the recent advances in clinical trials. These new compounds improve cognitive function in preclinical animal models due to improved selectivity and more physiological inhibition of the active enzyme. We also discuss opportunities for better understanding of PDE4D function in general, and for the development of next-generation inhibitors.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA
| | - Luka Turkalj
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901, USA.
| |
Collapse
|
17
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
18
|
Zamanian MY, Kamran Z, Tavakoli MR, Oghenemaro EF, Abohassan M, Kubaev A, Nathiya D, Kaur P, Zwamel AH, Abdulamer RS. The Role of ΔFosB in the Pathogenesis of Levodopa-Induced Dyskinesia: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2025:10.1007/s12035-025-04720-z. [PMID: 39890697 DOI: 10.1007/s12035-025-04720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Levodopa-induced dyskinesia (LID) represents a significant complication associated with the long-term administration of levodopa (L-DOPA) for the treatment of Parkinson's disease (PD). This review examines the critical role of ΔFosB, a transcription factor, in the pathogenesis of LID and explores potential therapeutic interventions. ΔFosB accumulates within the striatum in response to chronic dopaminergic stimulation, thereby driving maladaptive changes that culminate in dyskinesia. Its persistent expression modifies gene transcription, influencing neuronal plasticity and contributing to the sustained presence of dyskinetic movements. This study explains how ΔFosB functions at the molecular level, focusing on its connections with dopamine D1 receptors, the cAMP/PKA signaling pathway, and its regulatory effects on downstream targets such as DARPP-32 and GluA1 AMPA receptor subunits. Additionally, it examines how neuronal nitric oxide synthase (nNOS) affects ΔFosB levels and the development of LID. This review also considers the interactions between ΔFosB and other signaling pathways, such as ERK and mTOR, in the context of LID and striatal plasticity. Emerging therapeutic strategies targeting ΔFosB and its associated pathways include pharmacological interventions like ranitidine, 5-hydroxytryptophan, and carnosic acid. Furthermore, this study addresses the role of JunD, another component of the AP-1 transcription factor complex, in the pathogenesis of LID. Understanding the molecular mechanisms by which ΔFosB contributes to LID offers promising avenues for developing novel treatments that could mitigate dyskinesia and improve the quality of life for PD patients undergoing long-term L-DOPA therapy.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Zahra Kamran
- Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Resan Shakir Abdulamer
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
19
|
Dahleh MMM, Muller SG, Klann IP, Marques LS, da Rosa JL, Fontoura MB, Burger ME, Nogueira CW, Prigol M, Boeira SP, Segat HJ. Chemistry to cognition: Therapeutic potential of (m-CF 3-PhSe) 2 targeting rats' striatum dopamine proteins in amphetamine dependence. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111238. [PMID: 39732316 DOI: 10.1016/j.pnpbp.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF3-PhSe)2] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF3-PhSe)2 is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research. Initially, in silico studies examined the affinity of AMPH and (m-CF3-PhSe)2 for dopamine 1, 2, and 3 receptors (D1R, D2R, D3R), and dopamine transporter (DAT). In our experimental design, male Wistar rats were divided into four groups: I) Control; II) (m-CF3-PhSe)2; III) AMPH; IV) (m-CF3-PhSe)2 + AMPH. Animals were administered (m-CF3-PhSe)2 (0.1 mg/kg, by gavage) or canola oil (vehicle) 30 min before AMPH (4.0 mg/kg, i.p.) administration. Drug administration occurred for 8 days in the conditioned place preference (CPP) paradigm. Twenty-four hours after the last CPP conditioning section, preference for the drug-compartment was assessed, with anxiety-related effects and working memory were evaluated using the Y-maze test. Finally, animals were euthanized for striatal dissection to quantify D1R, D2R, D3R, and DAT levels in western blot. In silico findings suggest that (m-CF3-PhSe)2 may prevent AMPH activation in DAT, interacting with Asp46 and Phe319, preventing possible addictive effects of AMPH in DAT. In vivo results showed that (m-CF3-PhSe)2 attenuated AMPH effects, reducing preference for the drug-compartment in CPP test. Furthermore, (m-CF3-PhSe)2 prevented AMPH-induced anxiogenic effects in the elevated plus maze (EPM) test, similarly to light/dark test. No differences in locomotion or working memory were observed among the experimental groups in the Y-maze test. Ex vivo western blot analyses of the entire striatum indicates that (m-CF3-PhSe)2 prevented the AMPH-induced increase in D1R levels and decrease in D2R and DAT levels, with no changes in D3R levels. Overall, our study suggests that (m-CF3-PhSe)2 may interact with DAT sites similarly to AMPH, reducing drug-compartment preference and anxiogenic behaviors while maintaining dopaminergic metabolism proteins in the striatum, a key region involved in the onset and perpetuation of addiction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Sabrina Grendene Muller
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | - Luiza Souza Marques
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | | | | | - Cristina Wayne Nogueira
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Hecson Jesser Segat
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil.
| |
Collapse
|
20
|
Abdelaziz HA, Hamed MF, Ghoniem HA, Nader MA, Suddek GM. Empagliflozin Mitigates PTZ-Induced Seizures in Rats: Modulating Npas4 and CREB-BDNF Signaling Pathway. J Neuroimmune Pharmacol 2025; 20:5. [PMID: 39776284 PMCID: PMC11706855 DOI: 10.1007/s11481-024-10162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Empagliflozin (EMPA) is one of the sodium/glucose cotransporter 2 (SGLT2) inhibitors that has been recently approved for the treatment of diabetes mellitus type II. Recently, EMPA has shown protective effects in different neurological disorders, besides its antidiabetic activity. Kindling is a relevant model to study epilepsy and neuroplasticity. This study aimed to investigate the potential protective effects of EMPA (1 and 3 mg/kg orally) against convulsant effects induced by pentylenetetrazole (PTZ) using a modified window- (win-) PTZ kindling protocol. The biochemical dysfunction and hippocampal damage induced by PTZ were profoundly reversed by EMPA treatment in a dose-dependent manner, as evidenced by the significant increase in reduced glutathione (GSH) and decrease in malondialdehyde (MDA) hippocampal contents. Furthermore, EMPA counteracted PTZ-induced neuronal damage in the hippocampal region, as confirmed by histopathological examination of the hippocampal tissues. EMPA impaired astrocytosis and showed an antiapoptotic effect through a significant reduction of glial fibrillary acidic protein (GFAP) and BCL2-Associated X Protein (BAX) expressions, respectively. Interestingly, EMPA exhibited an antiepileptic effect against PTZ-induced seizures through significantly reducing neuronal PAS domain Protein 4 (Npas4), cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) hippocampal expressions, and enhancing the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) pathway, which are found to be involved in epileptogenesis, eventually leading to significant improvement of behavioral impairments induced by PTZ. Hence, these results showed further prospective insights for EMPA as a neuroprotective agent.
Collapse
Affiliation(s)
- Heba A Abdelaziz
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed F Hamed
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hamdy A Ghoniem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| | - Ghada M Suddek
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
21
|
Apryatin SA. The Neurometabolic Function of the Dopamine-Aminotransferase System. Metabolites 2025; 15:21. [PMID: 39852364 PMCID: PMC11767981 DOI: 10.3390/metabo15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES The neurometabolic function is controlled by a complex multi-level physiological system that includes neurochemical, hormonal, immunological, sensory, and metabolic components. Functional disorders of monoamine systems are often detected in clinical practice together with metabolic dysfunctions. An important part of the mentioned pathological conditions are associated with disturbances in protein metabolism, some of the most important biomarkers which are aminotransferases and transcription factors that regulate and direct the most important metabolic reactions. Another important part of energy metabolism is the dopamine-mediated regulation of protein metabolism. METHODS The review describes research results into the dopamine-mediated mechanism of metabolic regulation in humans and animals. Particular attention is paid to the neurometabolic mechanisms of protein metabolism. RESULTS The dopamine-aminotransferase system of the energy metabolism regulation is a separate, independent, regulatory and diagnostically significant biochemical pathway controlled by the hormonal system, the key hormone is cortisol, the key neurotransmitter is dopamine, the key transcription factor is CREB, and the key regulatory enzymes are alanine aminotransferase, aspartate aminotransferase, and tyrosine aminotransferase. CONCLUSIONS This review presents an original study describing the discovery of a new regulatory mechanism for neurometabolic physiological function in humans and animals. A key part of this mechanism is the dopamine-aminotransferase system.
Collapse
Affiliation(s)
- Sergey A Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
22
|
Zhang X, Li J, Zhao J, Liu R, Wang S, Liu Z, Sun X, Li M, Ren Y, Sun M, Li Z. S32, a Novel 3-Acetylaminocoumarin Compound, Exerts Neuroprotective Effects through the Inhibition of Neuroinflammation and Oxidative Stress In Vitro and In Vivo. ACS Chem Neurosci 2025; 16:85-94. [PMID: 39663944 DOI: 10.1021/acschemneuro.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Neuroinflammation and oxidative stress are key factors leading to neuronal injury. In this study, we investigated the role of S32, a novel 3-acetylaminocoumarin compound, in ameliorating neuronal injury induced by neuroinflammation and oxidative stress in vitro and in vivo. First, we found that S32 reduced the expression levels of p-P65 and p-P38, inhibited the nuclear translocation of P65, and lowered the levels of pro-inflammatory factors in LPS-induced BV2 cells, which indicated that S32 had an antineuroinflammatory effect. Second, BV2 cell culture medium was used as the conditioned medium to establish a model of oxidative damage in PC12 cells. It was found that S32 reduced the level of ROS and increased mitochondrial membrane potential of PC12 cells, which indicated that S32 can protect PC12 cells against conditioned medium-induced injury. Next, we found that S32 inhibited the decrease of cell viability of PC12 cells caused by H2O2, inhibited nuclear damage, decreased the level of ROS, increased MMP, activated the AKT and ERK pathways, increased Bcl-2 levels, and decreased Bax and Cleaved-Caspase3 expression levels, indicating that S32 ameliorated the damaging effects of H2O2-induced PC12 cells. Finally, we found that S32 exerted the antineuroinflammatory and apoptosis-inhibiting effects in LPS-induced mice. In conclusion, this study first demonstrated that S32, a novel 3-acetylaminocoumarin compound, can reduce neuroinflammation and neuroinflammation-induced neuronal injury, exerting an indirect protective effect on neurons, and also exert a direct protective effect on neurons by reducing oxidative stress.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Jiaqi Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Jie Zhao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Ruting Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Sa Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Zhuang Liu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Xuehua Sun
- Pain Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| | - Minghui Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yan Ren
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Mingna Sun
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 511000, Guangdong, China
| | - Zhipeng Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| |
Collapse
|
23
|
Sun Y, Zou Q, Yu H, Yi X, Dou X, Yang Y, Liu Z, Yang H, Jia J, Chen Y, Sun SK, Zhang L. Melanin-like nanoparticles slow cyst growth in ADPKD by dual inhibition of oxidative stress and CREB. EMBO Mol Med 2025; 17:169-192. [PMID: 39567834 PMCID: PMC11730739 DOI: 10.1038/s44321-024-00167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Melanin-like nanoparticles (MNPs) have recently emerged as valuable agents in antioxidant therapy due to their excellent biocompatibility and potent capacity to scavenge various reactive oxygen species (ROS). However, previous studies have mainly focused on acute ROS-related diseases, leaving a knowledge gap regarding their potential in chronic conditions. Furthermore, apart from their well-established antioxidant effects, it remains unclear whether MNPs target other intracellular molecular pathways. In this study, we synthesized ultra-small polyethylene glycol-incorporated Mn2+-chelated MNP (MMPP). We found that MMPP traversed the glomerular filtration barrier and specifically accumulated in renal tubules. Autosomal dominant polycystic kidney disease (ADPKD) is a chronic genetic disorder closely associated with increased oxidative stress and featured by the progressive enlargement of cysts originating from various segments of the renal tubules. Treatment with MMPP markedly attenuated oxidative stress levels, inhibited cyst growth, thereby improving renal function. Interestingly, we found that MMPP effectively inhibits a cyst-promoting gene program downstream of the cAMP-CREB pathway, a crucial signaling pathway implicated in ADPKD progression. Mechanistically, we observed that MMPP directly binds to the bZIP DNA-binding domain of CREB, leading to competitive inhibition of CREB's DNA binding ability and subsequent reduction in CREB target gene expression. In summary, our findings identify an intracellular target of MMPP and demonstrate its potential for treating ADPKD by simultaneously targeting oxidative stress and CREB transcriptional activity.
Collapse
Affiliation(s)
- Yongzhan Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huizheng Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudan Dou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hong Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| | - Lirong Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
24
|
Sen P, Ortiz O, Brivio E, Menegaz D, Sotillos Elliott L, Du Y, Ries C, Chen A, Wurst W, Lopez JP, Eder M, Deussing JM. A bipolar disorder-associated missense variant alters adenylyl cyclase 2 activity and promotes mania-like behavior. Mol Psychiatry 2025; 30:97-110. [PMID: 39003412 PMCID: PMC11649569 DOI: 10.1038/s41380-024-02663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
The single nucleotide polymorphism rs13166360, causing a substitution of valine (Val) 147 to leucine (Leu) in the adenylyl cyclase 2 (ADCY2), has previously been associated with bipolar disorder (BD). Here we show that the disease-associated ADCY2 missense mutation diminishes the enzyme´s capacity to generate the second messenger 3',5'-cylic adenosine monophosphate (cAMP) by altering its subcellular localization. We established mice specifically carrying the Val to Leu substitution using CRISPR/Cas9-based gene editing. Mice homozygous for the Leu variant display symptoms of a mania-like state accompanied by cognitive impairments. Mutant animals show additional characteristic signs of rodent mania models, i.e., they are hypersensitive to amphetamine, the observed mania-like behaviors are responsive to lithium treatment and the Val to Leu substitution results in a shifted excitatory/inhibitory synaptic balance towards more excitation. Exposure to chronic social defeat stress switches homozygous Leu variant carriers from a mania- to a depressive-like state, a transition which is reminiscent of the alternations characterizing the symptomatology in BD patients. Single-cell RNA-seq (scRNA-seq) revealed widespread Adcy2 mRNA expression in numerous hippocampal cell types. Differentially expressed genes particularly identified from glutamatergic CA1 neurons point towards ADCY2 variant-dependent alterations in multiple biological processes including cAMP-related signaling pathways. These results validate ADCY2 as a BD risk gene, provide insights into underlying disease mechanisms, and potentially open novel avenues for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Paromita Sen
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Oskar Ortiz
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Elena Brivio
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | | | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, 81377, Munich, Germany
| | - Juan Pablo Lopez
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
25
|
Drake TN, Sheppard JD. Impact of Neurostimulation, Immunomodulation, Topical Medication Application, and Surgical Reconstruction on Corneal Nerve Function and Regeneration. Eye Contact Lens 2025; 51:3-13. [PMID: 39392164 DOI: 10.1097/icl.0000000000001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
ABSTRACT The corneal epithelium, supplied by thousands of nerve endings, plays a substantial role in absorbing and distributing nutrients along the ocular surface. Many studies have explored the influence of various modalities in regulating tear production to manage corneal disorders and dry eye disease. These findings have highlighted the advantages of enhancing corneal nerve function and regeneration through neurostimulation, neural signaling, immunomodulation, topical medication application, and surgical reconstruction. The purpose of this narrative review article was to provide an overview of the current state of knowledge on this topic based on a PubMed database literature search for relevant animal and human studies investigating the modification of the trigeminal pathway to restore corneal nerve function and improve overall ocular health. Further investigation into this area of research is important to help guide new therapeutic targets for the prevention and development of treatments of corneal degeneration.
Collapse
Affiliation(s)
- Taylor N Drake
- Eastern Virginia Medical School (T.N.D., J.D.S.), Department of Ophthalmology, Norfolk, VA; and Virginia Eye Consultants/EyeCare Partners (J.D.S.), Norfolk, VA
| | | |
Collapse
|
26
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024; 359:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
27
|
Kim SK, Kwon YJ, Seo EB, Lee HS, Sohn JO, Shin HM, Kim SJ, Ye SK. Neuroprotective Effects of STAT3 Inhibitor on Hydrogen Peroxide-Induced Neuronal Cell Death via the ERK/CREB Signaling Pathway. Neurochem Res 2024; 50:52. [PMID: 39648181 PMCID: PMC11625690 DOI: 10.1007/s11064-024-04252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/23/2024] [Indexed: 12/10/2024]
Abstract
This study investigates the neuroprotective potential of STAT3 inhibition in reducing oxidative stress-induced neuronal damage and apoptosis, a major factor contributing to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). Our findings demonstrate that STAT3 inhibitors significantly enhance cell survival and reduce apoptosis in SH-SY5Y cells exposed to hydrogen peroxide. These protective effects are mediated through the ERK/CREB signaling pathway rather than direct suppression of STAT3 phosphorylation. Further analysis revealed that the ERK pathway is a critical mediator of CREB activation following STAT3 inhibition. The protective effects of STAT3 inhibitors were significantly reduced in the presence of the ERK inhibitor PD98059, underscoring the importance of the ERK/CREB axis in neuroprotection. We observed that STAT3 inhibitors promote CREB phosphorylation, leading to the upregulation of immediate early genes such as c-Fos, c-Jun, Arc, Egr-1, NR4A1, and Homer1a, as well as BDNF. These genes are crucial for synaptic plasticity and long-term memory formation, suggesting that STAT3 inhibition may ameliorate cognitive impairments in neurodegenerative conditions. Our results highlight the potential of STAT3 inhibitors to counteract oxidative stress and enhance cognitive functions by modulating the ERK/CREB signaling pathway. These findings provide valuable insights into the molecular mechanisms of STAT3 inhibition and support its therapeutic potential for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun-Seung Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jie Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Sung Joon Kim
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
28
|
Hui H, Song Y, Liu H, Fan J, Sha Z, Li H, Lu J, Zhang Q, Fei X, Zhu M. Integrating molecular-caged nano-hydroxyapatite into post-crosslinked PVA nanofibers for artificial periosteum. BIOMATERIALS ADVANCES 2024; 165:214001. [PMID: 39216317 DOI: 10.1016/j.bioadv.2024.214001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Artificial periosteum is deemed a novel strategy for inducing endogenous bone regeneration, but ideal periosteum substitutes achieved by orchestrating a biomimetic microenvironment for bone regeneration remain a significant challenge. Here, we design and fabricate a hybridized nanofiber-based artificial periosteum with boosted osteoinduction properties. Via a "molecular cage" biomineralization strategy, nano-hydroxyapatite (nano-HAp) with a controllable size (∼22 nm) and excellent dispersion serves as unique nano-additives for water-soluble polyvinyl-alcohol (PVA)-based artificial periosteum. The PVA/HAp composite is electrospun into nanofibers to replicate the extracellular-matrix-inspired nanostructure for inducing cell adhesion, proliferation, and fate manipulation. A simple post-crosslinking treatment is subsequently applied to further booster its mechanical strength (6.6 MPa) and swelling stability. The optimized sample of C-PVA/HAp (10 wt% nano-HAp) artificial periosteum features excellent biocompatibility and remarkable in vitro mineralization. Cell experiments demonstrate that its effectively boasted cell modulation for enhanced osteogenesis without the aid of growth factors, showing a possible activation of the ERK/MAPK signaling pathway. This work provides an effective strategy for designing novel HAp nano-additives and expands the possibility of biomimetic fabrication for more advanced nanofiber-based artificial periosteum.
Collapse
Affiliation(s)
- Hu Hui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiahui Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongchuang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jian Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
Basova LV, Riley T, Franklin D, Delorme-Walker V, Lim WL, Grant I, Letendre SL, Iudicello JE, Cherner M, Ellis RJ, Marcondes MCG. Identifying methamphetamine use predictors in HIV infection: Immune-dopaminergic signatures in peripheral leukocytes and the role of COMT genotype. Brain Behav Immun Health 2024; 42:100873. [PMID: 39430881 PMCID: PMC11490913 DOI: 10.1016/j.bbih.2024.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
The pursuit of translational biomarkers is complex due to the heterogeneous human pathophysiology, but critical for disease diagnosis, prognosis, monitoring therapeutic efficacy, and for patient stratification. In HIV-associated neurocognitive impairment (NCI), biomarkers that delineate the trajectory of neuropathogenesis and neurocognitive sequelae are critical, particularly considering confounders such as substance use, including Methamphetamine (METH). METH use is a significant health concern among persons living with HIV (PWH), aggravating cognitive deficits and neuroinflammation despite of antiretrovirals, introducing elements in the microenvironment that are fundamentally differerent in relation to non-METH users, such as high levels of dopamine (DA) affecting HIV-innate immune targets. Yet, current biomarkers do not detect these differences. We hypothesized that predefined DA-induced signatures detectable in peripheral blood leukocytes, can distinguish HIV+ METH users compared to HIV-negative or PWH that are non METH users. The elevated expression of CD8A, CREBBP, CCL5, and combinations of dopaminergic pathway transcripts clustered METH users with detectable CSF viral load and major depressive disorder (MDD), indicating neuroimmune-mechanistic links. Cathecol-o-methyltransferase (COMT) gene polymorphisms affecting DA metabolism improved the identification of PWH using METH with biomarkers. The results indicate that underlying immunedopaminergic mechanisms provide signatures and genotypes that can identify PWH that are METH users and their attributes.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Tera Riley
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
- National Institute for Drug Abuse, Summer Internship, 2023, USA
| | - Donald Franklin
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | | - Wei Ling Lim
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Igor Grant
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Scott L. Letendre
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Jennifer E. Iudicello
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Mariana Cherner
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Ronald J. Ellis
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | |
Collapse
|
30
|
Pérez-de-Oliveira ME, Wagner VP, Bingle CD, Vargas PA, Bingle L. Disruption of oncogenic pathways in mucoepidermoid carcinoma: CREB inhibitor 666.15 as a potential therapeutic agent. Oral Oncol 2024; 159:107029. [PMID: 39332274 DOI: 10.1016/j.oraloncology.2024.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/07/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVES Mucoepidermoid carcinoma (MEC) is the most common malignant salivary gland tumour with around 50 % of cases carrying the CRTC1-MAML2 translocation. The CREB pathway has been associated with the transforming activity of this translocation. The aim of this study was to determine the effects of CREB inhibition on MEC cell behaviour in vitro. MATERIAL AND METHODS Two translocation-positive (UM-HMC-2 and H292) and one translocation-negative (H253) MEC cell lines were treated with 666.15, a CREB inhibitor. Drug IC50 doses were determined for each cell line. Clonogenic and spheroid assays were used to assess survival, including percentage of cancer stem cells, and transwell and scratch assays evaluated invasive and migratory capacities, respectively. Immunofluorescence staining was used to determine E-cadherin expression. RESULTS CREB inhibition significantly reduced the number of surviving colonies and spheroids and delayed cell invasion in all cell lines, but this was more significant in the fusion positive, UM-HMC-2 cells. The expression of E-cadherin was significantly higher in treated UM-HMC-2 and H292 cells. CONCLUSION CREB inhibition with 666.15 impaired key MEC oncogenic behaviours associated with metastasis and drug resistance, including cell invasion and survival.
Collapse
Affiliation(s)
- Maria Eduarda Pérez-de-Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil; School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Vivian Petersen Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil; School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; Department of Oral Medicine, School of Dentistry, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Colin D Bingle
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Lynne Bingle
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
31
|
Li X, Zhu K, Zhen Y. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning. Brief Bioinform 2024; 26:bbae614. [PMID: 39581870 PMCID: PMC11586126 DOI: 10.1093/bib/bbae614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Molecular convergence in convergently evolved lineages provides valuable insights into the shared genetic basis of converged phenotypes. However, most methods are limited to coding regions, overlooking the potential contribution of regulatory regions. We focused on the independently evolved vocal learning ability in multiple avian lineages, and developed a whole-genome-alignment-free approach to identify genome-wide Convergently Lost Ancestral Conserved fragments (CLACs) in these lineages, encompassing noncoding regions. We discovered 2711 CLACs that are overrepresented in noncoding regions. Proximal genes of these CLACs exhibit significant enrichment in neurological pathways, including glutamate receptor signaling pathway and axon guidance pathway. Moreover, their expression is highly enriched in brain tissues associated with speech formation. Notably, several have known functions in speech and language learning, including ROBO family, SLIT2, GRIN1, and GRIN2B. Additionally, we found significantly enriched motifs in noncoding CLACs, which match binding motifs of transcriptional factors involved in neurogenesis and gene expression regulation in brain. Furthermore, we discovered 19 candidate genes that harbor CLACs in both human and multiple avian vocal learning lineages, suggesting their potential contribution to the independent evolution of vocal learning in both birds and humans.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
32
|
Shafiek MS, Mekky RY, Nassar NN, El-Yamany MF, Rabie MA. Vortioxetine ameliorates experimental autoimmune encephalomyelitis model of multiple sclerosis in mice via activation of PI3K/Akt/CREB/BDNF cascade and modulation of serotonergic pathway signaling. Eur J Pharmacol 2024; 982:176929. [PMID: 39181226 DOI: 10.1016/j.ejphar.2024.176929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition characterized by immune cell infiltration and cytokine overproduction that led to myelin sheath inflammatory assaults, thus causing axonal destruction. The former consequently provokes motor impairment and psychological disorders. Markedly, depression is one of the most prevalent lifelong comorbidities that negatively impacts the quality of life in MS patients. Vortioxetine (VTX), a multi-modal molecule prescribed to manage depression and anxiety disorder, additionally, it displays a promising neuroprotective properties against neurodegenerative diseases such as Alzheimer's and Parkinson's. To this end, the present study investigated the potential therapeutic efficacy of VTX against experimental autoimmune encephalomyelitis (EAE) model of MS in mice. Notably, treatment with VTX significantly ameliorated EAE-induced motor disability, as evident by enhanced performance in open field, rotarod and grip strength tests, alongside a reduction in immobility time during the forced swimming test, indicating a mitigation of the depressive-like behavior; outcomes that were corroborated with histological examinations and biochemical analyses. Mechanistically, VTX enhanced serotonin levels by inhibiting both serotonin transporter (SERT) and indoleamine 2,3-dioxygenase (IDO) enzyme, thereby promoting the activation of serotonin 1A (5-HT1A) receptor. The latter triggered the stimulation of phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) cascade that entailed activation/phosphorylation of cAMP response element-binding protein (CREB). This activation increased brain derived neurotrophic factor (BDNF) and myelin basic protein (MBP) contents that mitigated demyelination in the corpus callosum. Furthermore, VTX suppressed phospho serine 536 nuclear factor kappa B (pS536 NF-κB p65) activity and reduced tumor necrosis factor-alpha (TNF-α) production. The results underscore VTX's beneficial effects on disease severity in EAE model of MS in mice by amending both inflammatory and neurodegenerative components of MS progression.
Collapse
Affiliation(s)
- Marwa S Shafiek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa Y Mekky
- Department of Pharmacology and Toxicology, October University for Modern Science and Arts (MSA), Giza, 12622, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, October University for Modern Science and Arts (MSA), Giza, 12622, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| |
Collapse
|
33
|
Agni MB, Hegde PS, Rai P, Sadananda M, K M DG. Astaxanthin and DHA Supplementation Modulates the Maternal Undernutrition-induced Impairment of Cognitive Behavior and Synaptic Plasticity in Adult Life of Offspring's -Exploring the Molecular Mechanism. Mol Neurobiol 2024; 61:8975-8995. [PMID: 38578356 DOI: 10.1007/s12035-024-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Maternal nutrition was recognized as a significant part of brain growth and maturation in most mammalian species. Timely intervention with suitable nutraceuticals would provide long-term health benefits. We aim to unravel the molecular mechanisms of perinatal undernutrition-induced impairments in cognition and synaptic plasticity, employing animal model based on dietary nutraceutical supplementation. We treated undernourished dams at their gestational, lactational, and at both the time point with Astaxanthin (AsX) and Docosahexaenoic acid (DHA), and their pups were used as experimental animals. We evaluated the cognitive function by subjecting the pups to behavioral tests in their adult life. In addition, we assessed the expression of genes in the hippocampus related to cognitive function and synaptic plasticity. Our results showed downregulation of Brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT-3), cAMP response-element-binding protein (CREB), and uncoupling protein-2 (UCP2) gene expression in pups born to undernourished dams in their adult life, which AsX and DHA modulated. Maternal AsX and DHA supplementation ameliorated the undernutrition-induced learning impairment in novel object recognition (NOR) tests and partially baited radial arm maze (RAM) tasks in offspring's. The expressions of Synapsin-1 and PSD-95 decreased in perinatally undernourished groups compared to control and AsX-DHA treated groups at CA1, CA2, CA3, and DG. AsX and DHA supplementation upregulated BDNF, NT-3, CREB, and UCP2 gene expressions in perinatally undernourished rats, which are involved in intracellular signaling cascades like Ras, PI3K, and PLC. The results of our study give new insights into neuronal differentiation, survival, and plasticity, indicating that the perinatal period is the critical time for reversing maternal undernutrition-induced cognitive impairment in offspring's.
Collapse
Affiliation(s)
- Megha Bhat Agni
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Pramukh Subrahmanya Hegde
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Praveen Rai
- Nitte (Deemed to be University), Department of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Mangalore, Karnataka, 575018, India
| | - Monika Sadananda
- Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Damodara Gowda K M
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
34
|
Kim S, Chaudhary PK, Kim S. Molecular and Genetics Perspectives on Primary Adrenocortical Hyperfunction Disorders. Int J Mol Sci 2024; 25:11341. [PMID: 39518893 PMCID: PMC11545009 DOI: 10.3390/ijms252111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Adrenocortical disorders encompass a broad spectrum of conditions ranging from benign hyperplasia to malignant tumors, significantly disrupting hormone balance and causing a variety of clinical manifestations. By leveraging next-generation sequencing and in silico analyses, recent studies have uncovered the genetic and molecular pathways implicated in these transitions. In this review, we explored the molecular and genetic alterations in adrenocortical disorders, with a particular focus on the transitions from normal adrenal function to hyperfunction. The insights gained are intended to enhance diagnostic and therapeutic strategies, offering up-to-date knowledge for managing these complex conditions effectively.
Collapse
Affiliation(s)
| | | | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (P.K.C.)
| |
Collapse
|
35
|
Legaki E, Dovrolis N, Moscholiou N, Koutromanos I, Vassilopoulos E, Dakanalis A, Gazouli M, Tzavellas E. Altered Expression of Neuroplasticity-Related Genes in Alcohol Addiction and Treatment. Int J Mol Sci 2024; 25:11349. [PMID: 39518903 PMCID: PMC11546795 DOI: 10.3390/ijms252111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Alcohol use disorder's complexity arises from genetic and environmental factors, with alcohol metabolism genes and neurotransmitter pathways being critical. This study aims to analyze synaptic plasticity gene expression changes in individuals with AUD in order to study their contribution to AUD development and to identify potential biomarkers of treatment response. RNA was extracted from whole peripheral blood (20 patients, 10 healthy controls), before and after treatment (Qiagen AllPrep RNA/DNA Mini Kit), and the gene expression of 84 genes related to neuroplasticity was studied using the RT2 Profiler for Human Synaptic Plasticity RT-PCR Array (PAHS-126ZA, Qiagen), comparing AUD patients to control and responders to non-responders. The potential prognostic/predictive biomarkers were searched using machine learning models. A total of 35 dysregulated genes were found in AUD patients. EPHB2, EGR, and AKT1 were increased, while TIMP1, NCAM1, and GRM2 were decreased. Responders showed distinct gene expression profiles at baseline. After treatment, the expression of 57 genes was normalized, while NCAM1, GRM2, and BDNF showed the most significant recovery. EGR4, INHBA, and NCAM1 emerged as potential biomarkers to predict treatment success. These results indicate that gene profiles in peripheral blood can serve as prognostic markers for the prognosis and treatment of AUD, although further validation is required.
Collapse
Affiliation(s)
- Evangelia Legaki
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Nikoletta Moscholiou
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Ilias Koutromanos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (E.V.)
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargou AG, 5210 Brugg-Windisch, Switzerland
| | - Efthimios Vassilopoulos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (E.V.)
| | - Antonios Dakanalis
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Elias Tzavellas
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (E.V.)
| |
Collapse
|
36
|
Ye M, Jang D, Lee SY, Kim KR, Rhie SJ, Oh JK, Shim I. Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats. Curr Issues Mol Biol 2024; 46:11772-11782. [PMID: 39590293 PMCID: PMC11593191 DOI: 10.3390/cimb46110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a representative neurodegenerative disease characterized by the structural and functional degeneration of neurons. The present study investigated the neuroprotective effect of Ixeris dentata (ID) extract on trimethyltin (TMT)-induced memory deficit in the rat. Cognitive improving effect and neuronal activity of ID were assessed by using Morris water maze (MWM) test and choline acetyltransferase (ChAT), cAMP-response element-binding protein (CREB) immunohistochemistry. Seven days after TMT injection (8.0 mg/kg, i.p.), each group of rats was administered saline, water extract of ID (WID, 400 or 800 mg/kg, p.o.), ethanol extract of ID (EID, 400 or 800 mg/kg, p.o.), or caffeic acid (CAF, 30 mg/kg, i.p.) daily for fourteen days. Results: Treatment with EID and CAF produced a significant improvement in escape latency time of the acquisition, and retention time in the target area of the MWM task. Additionally, administration of EID or CAF markedly alleviated TMT-induced loss of ChAT- and CREB-immunoreactive cells in the hippocampus. The results demonstrated that EID has a protective effect against TMT-induced memory deficit, partly through increasing the CREB and cholinergic signaling pathway in the hippocampus. These results suggest that ethanol extracts of ID might be useful for improving cognitive functions in neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Minsook Ye
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02435, Republic of Korea; (M.Y.); (D.J.); (S.-y.L.); (K.-R.K.)
| | - Daehyuk Jang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02435, Republic of Korea; (M.Y.); (D.J.); (S.-y.L.); (K.-R.K.)
| | - Sun-young Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02435, Republic of Korea; (M.Y.); (D.J.); (S.-y.L.); (K.-R.K.)
| | - Kyu-Ri Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02435, Republic of Korea; (M.Y.); (D.J.); (S.-y.L.); (K.-R.K.)
| | - Sung Ja Rhie
- Department of Beauty and Health, Halla University, Wonju-si 26404, Republic of Korea;
| | - Jin Kyung Oh
- APK Science, 16-6, Pyeongchang 12-gil, Jongno-gu, Seoul 03009, Republic of Korea;
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02435, Republic of Korea; (M.Y.); (D.J.); (S.-y.L.); (K.-R.K.)
| |
Collapse
|
37
|
Sullivan KA, Lane M, Cashman M, Miller JI, Pavicic M, Walker AM, Cliff A, Romero J, Qin X, Mullins N, Docherty A, Coon H, Ruderfer DM, Garvin MR, Pestian JP, Ashley-Koch AE, Beckham JC, McMahon B, Oslin DW, Kimbrel NA, Jacobson DA, Kainer D. Analyses of GWAS signal using GRIN identify additional genes contributing to suicidal behavior. Commun Biol 2024; 7:1360. [PMID: 39433874 PMCID: PMC11494055 DOI: 10.1038/s42003-024-06943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Genome-wide association studies (GWAS) identify genetic variants underlying complex traits but are limited by stringent genome-wide significance thresholds. We present GRIN (Gene set Refinement through Interacting Networks), which increases confidence in the expanded gene set by retaining genes strongly connected by biological networks when GWAS thresholds are relaxed. GRIN was validated on both simulated interrelated gene sets as well as multiple GWAS traits. From multiple GWAS summary statistics of suicide attempt, a complex phenotype, GRIN identified additional genes that replicated across independent cohorts and retained biologically interrelated genes despite a relaxed significance threshold. We present a conceptual model of how these retained genes interact through neurobiological pathways that may influence suicidal behavior, and identify existing drugs associated with these pathways that would not have been identified under traditional GWAS thresholds. We demonstrate GRIN's utility in boosting GWAS results by increasing the number of true positive genes identified from GWAS results.
Collapse
Affiliation(s)
- Kyle A Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matthew Lane
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Mikaela Cashman
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory Berkeley, California, CA, USA
| | - J Izaak Miller
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mirko Pavicic
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Angelica M Walker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Ashley Cliff
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Jonathon Romero
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Xuejun Qin
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Anna Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Douglas M Ruderfer
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael R Garvin
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John P Pestian
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Allison E Ashley-Koch
- Duke University School of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Jean C Beckham
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- VISN 6 Mid-Atlantic Mental Illness Research, Durham Veterans Affairs Health Care System, Durham, NC, USA
| | - Benjamin McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David W Oslin
- VISN 4 Mental Illness Research, Education, and Clinical Center, Center of Excellence, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan A Kimbrel
- Durham Veterans Affairs Health Care System, Durham, NC, USA.
- Duke University School of Medicine, Duke University, Durham, NC, USA.
- VISN 6 Mid-Atlantic Mental Illness Research, Durham Veterans Affairs Health Care System, Durham, NC, USA.
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, USA.
| | - Daniel A Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - David Kainer
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
38
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
39
|
Alva S, Parithathvi A, Harshitha P, Dsouza HS. Influence of lead on cAMP-response element binding protein (CREB) and its implications in neurodegenerative disorders. Toxicol Lett 2024; 400:35-41. [PMID: 39117292 DOI: 10.1016/j.toxlet.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Lead (Pb2+) is one of the most common toxic metals present in the environment, and lead exposure causes serious health issues in humans. Lead is widely used because of its physio-chemical characteristics, which include softness, corrosion resistance, ductility, and low conductivity. Lead affects almost all human organs, specifically the central nervous system. Lead neurotoxicity is connected to various neural pathways, including brain-derived neurotrophic factor (BDNF) protein level alterations, cyclic adenosine 3',5'-monophosphate (cAMP) response element binding protein (CREB) pathway changes, and N-methyl-D-aspartate receptors (NMDARs) changes. Lead primarily affects protein kinase C (PKC) through the replacement of calcium (Ca2+) ions in the CREB pathway. In this review, we have discussed the effect of lead on the CREB pathway and its implications on the nervous system, highlighting its effects on learning, synaptic plasticity, memory, and cognitive deficits. This review provides an understanding of the lead-induced alterations in the CREB pathway, which can lead to the future prospect of its use as a diagnostic marker as well as a therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sharal Alva
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Aluru Parithathvi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - P Harshitha
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
40
|
Kemény KK, Seres-Bokor A, Barna T, Mirdamadi M, Gáspár R, Surányi A, Ducza E. Cooperation of aquaporin 5 and the adrenergic system in the initiation of birth in rat model. Heliyon 2024; 10:e37329. [PMID: 39296125 PMCID: PMC11408032 DOI: 10.1016/j.heliyon.2024.e37329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Aquaporins (AQPs) are involved in the process of implantation, regulate myometrial contractions and cervical ripening, and maintain appropriate placental functioning. The molecular mechanism of these functions is not fully understood. Our study aimed to investigate the physiological significance of AQP5 during pregnancy and to determine the cooperation between the adrenergic system and the AQP5 in uterine contraction in the late-pregnant rat uterus. After administering AQP5 siRNA intraperitoneally to Sprague-Dawley rats, the length of the gestational period was determined and the changes in uterine contractions were measured in an isolated organ bath system. Pharmacological influence on AQP5 expression and uterine contraction was investigated by treatment with terbutaline (10 mg/kg, subcutaneously) and doxazosin (5 mg/kg, orally) in vivo; and mercuric chloride (HgCl2), in vitro. Moreover, the levels of cAMP response element binding protein (CREB) were measured in the uterus by an ELISA kit. The gestational period became shorter, AQP5 expression significantly decreased and rat uterus contraction increased after AQP5 siRNA treatment compared to the control. Treatment with terbutaline significantly increased AQP5 mRNA and protein expression after 30 min and continuously reduced it until 90 min, whereas doxazosin treatment did not significantly alter AQP5 expression. Treatment with the AQP5 antagonist HgCl2 increased spontaneous uterus contraction and decreased norepinephrine-induced uterus contraction with decreasing AQP5 expression in pregnant rat uterus. Moreover, the tocolytic effect through the adrenergic system was amplified in the presence of an AQP5 antagonist, presumably via the changes in cAMP level. In conclusion, our findings elucidate the collaborative role of aquaporin 5 (AQP5) and adrenergic systems in the regulation of uterine contractions in late-pregnant rats. Our findings suggest this may be a good starting point for developing a new tocolytic therapy.
Collapse
Affiliation(s)
- Kata Kira Kemény
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Hungary
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Hungary
| | - Tamara Barna
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Mohsen Mirdamadi
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Andrea Surányi
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Hungary
| |
Collapse
|
41
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
42
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
43
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
44
|
Hsu S, Huang H, Liao C, Huang H, Shih Y, Chen J, Wu H, Kuo T, Fu R, Tsai C. Induction of Phosphorylated Tau Accumulation and Memory Impairment by Bisphenol A and the Protective Effects of Carnosic Acid in In Vitro and In Vivo. Mol Neurobiol 2024; 61:6148-6160. [PMID: 38280110 DOI: 10.1007/s12035-024-03952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
Bisphenol A (BPA) is a component of polycarbonate plastics that has been implicated in memory impairment. The present study investigated the effect of carnosic acid (CA) on memory deficit induced by BPA and the role of Akt in this mechanism. First, SH-SY5Y cells were treated with 20 nM BPA and 1 μM CA for 12 h. The results showed that treatment of CA with BPA improved the alternation of IRS-1/Akt/GSK-3β as well as the induction of ApoE and Ser396p-tau. Moreover, treatment of CA with BPA restored the signaling involved in long-term potentiation (LTP) effect, leading to induction of synaptic-related proteins, such as PSD-95, synapsin1a, and pro-BDNF. Wortmannin treatment alleviated the reversal by CA. Then, C57BL/6 J male mice were orally administered with CA to test the memory function in BPA treatment. The results showed that CA and RE can improve BPA-induced impairment of motor, recognition, and spatial memory by using open-field test (OFT), novel objective recognition test (NOR), and Y-maze test, respectively. Moreover, CA and RE improved the phosphorylation of tau and the reduction of PSD-95, synapsin1a, and pro-BDNF proteins induced by BPA. Therefore, the results indicated that CA decreased the phosphorylated tau and memory impairment induced by BPA through Akt pathway.
Collapse
Affiliation(s)
- Shaoi Hsu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Huichi Huang
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chunhuei Liao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hsiyun Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yachen Shih
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Jingwei Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hanting Wu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Tzuyu Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ruhuei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chiawen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
45
|
Ivanovski F, Meško M, Lebar T, Rupnik M, Lainšček D, Gradišek M, Jerala R, Benčina M. Ultrasound-mediated spatial and temporal control of engineered cells in vivo. Nat Commun 2024; 15:7369. [PMID: 39191796 DOI: 10.1038/s41467-024-51620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Remote regulation of cells in deep tissue remains a significant challenge. Low-intensity pulsed ultrasound offers promise for in vivo therapies due to its non-invasive nature and precise control. This study uses pulsed ultrasound to control calcium influx in mammalian cells and engineers a therapeutic cellular device responsive to acoustic stimulation in deep tissue without overexpressing calcium channels or gas vesicles. Pulsed ultrasound parameters are established to induce calcium influx in HEK293 cells. Additionally, cells are engineered to express a designed calcium-responsive transcription factor controlling the expression of a selected therapeutic gene, constituting a therapeutic cellular device. The engineered sonogenetic system's functionality is demonstrated in vivo in mice, where an implanted anti-inflammatory cytokine-producing cellular device effectively alleviates acute colitis, as shown by improved colonic morphology and histopathology. This approach provides a powerful tool for precise, localized control of engineered cells in deep tissue, showcasing its potential for targeted therapeutic delivery.
Collapse
Affiliation(s)
- Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Maja Meško
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marko Rupnik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Miha Gradišek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
- CTGCT, Centre of Technology of Gene and Cell Therapy, Hajdrihova 19, Ljubljana, Slovenia.
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
- CTGCT, Centre of Technology of Gene and Cell Therapy, Hajdrihova 19, Ljubljana, Slovenia.
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| |
Collapse
|
46
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, Zhao M, He C. PTPN2 copper-sensing relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. Nat Commun 2024; 15:6947. [PMID: 39138174 PMCID: PMC11322707 DOI: 10.1038/s41467-024-50524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.
Collapse
Affiliation(s)
- Matthew O Ross
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ryan C Owyang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olivia N P Zbihley
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ruitu Lyu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olga Karginova
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
47
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
48
|
Garbossa L, Joaquim L, Danielski LG, Goldim MPDS, Machado RS, Metzker K, Bernades G, Lanzzarin E, Bagio E, Farias AD, Rosa ND, Medeiros FDD, Carli RJD, Oliveira BH, Ferreira NC, Palandi J, Bobinski F, Martins DF, Fortunato JJ, Barichello T, Petronilho F. The effect of modafinil on passive avoidance memory, brain level of BDNF and oxidative stress markers in sepsis survivor rats. Int J Neurosci 2024; 134:849-857. [PMID: 36448768 DOI: 10.1080/00207454.2022.2154076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022]
Abstract
Material and method: Male Wistar rats (250-350g) were submitted to CLP, or sham as control, and divided into the sham + water, sham + MD (300 mg/kg), CLP + water, and CLP + MD (300 mg/kg) groups. Ten days after the administration of MD and CLP, the rats were submitted to a memory test by passive avoidance apparatus being sacrificed. The nitrite and nitrate (N/N) concentration, myeloperoxidase (MPO) and catalase (CAT) activity, lipid and protein oxidative damage, and brain-derived neurotrophic factor (BDNF) levels were measured in the prefrontal cortex and hippocampus. Results: The passive avoidance test verified an increase in the latency time compared training and test section in the groups sham + water and CLP + MD. Decreased N/N concentration and MPO activity were verified in the prefrontal cortex of rats submitted to CLP and MD treatment, as well as reduced protein and lipid oxidative damage in the hippocampus, which was accompanied by increased CAT activity and BDNF levels.Conclusion: Our data indicate the role of MD in attenuating oxidative stress parameters, the alteration of BDNF, and an improvement in memory impairment in rats ten days after induction of sepsis.
Collapse
Affiliation(s)
- Leandro Garbossa
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Larissa Joaquim
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | | | - Richard Simon Machado
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Kiuanne Metzker
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Gabriela Bernades
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Everton Lanzzarin
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Erick Bagio
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Adriele de Farias
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Naiana da Rosa
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana Durante de Medeiros
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Raquel Jaconi de Carli
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Bruna Hoffman Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, Brazil
| | - Nivaldo Correia Ferreira
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, Brazil
| | - Juliete Palandi
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, Brazil
| | - Jucelia Jeremias Fortunato
- Programa de Pos graduação em Ciências da Saúde, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
49
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
50
|
Pei W, Yin W, Yu T, Zhang X, Zhang Q, Yang X, Shi C, Shen W, Liu G. Dual-Specificity Phosphatase 4 Promotes Malignant Features in Colorectal Cancer Through Cyclic-AMP Response Element Binding Protein/Protein Kinase CAMP-Activated Catalytic Subunit Beta Activation. Dig Dis Sci 2024; 69:2856-2874. [PMID: 38824257 DOI: 10.1007/s10620-024-08481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Previous studies have demonstrated that Dual-specificity phosphatase 4 (DUSP4) plays an important role in the progression of different tumor types. However, the role and mechanism of DUSP4 in colorectal cancer (CRC) remain unclear. AIMS We investigate the role and mechanisms of DUSP4 in CRC. METHODS Immunohistochemistry was used to investigate DUSP4 expression in CRC tissues. Cell proliferation, apoptosis and migration assays were used to validate DUSP4 function in vitro and in vivo. RNA-sequence assay was used to identify the target genes of DUSP4. Human phosphokinase array and inhibitor assays were used to explore the downstream signaling of DUSP4. RESULTS DUSP4 expression was upregulated in CRC tissues relative to normal colorectal tissues, and DUSP4 expression showed a significant positive correlation with CRC stage. Consistently, we found that DUSP4 was highly expressed in colorectal cancer cells compared to normal cells. DUSP4 knockdown inhibits CRC cell proliferation, migration and promotes apoptosis. Furthermore, the ectopic expression of DUSP4 enhanced CRC cell proliferation, migration and diminished apoptosis in vitro and in vivo. Human phosphokinase array data showed that ectopic expression of DUSP4 promotes CREB activation. RNA-sequencing data showed that PRKACB acts as a downstream target gene of DUSP4/CREB and enhances CREB activation through PKA/cAMP signaling. In addition, xenograft model results demonstrated that DUSP4 promotes colorectal tumor progression via PRKACB/CREB activation in vivo. CONCLUSION These findings suggest that DUSP4 promotes CRC progression. Therefore, it may be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Wenju Pei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wanbin Yin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China
| | - Tao Yu
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Qi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Chunlei Shi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|