1
|
Lin M, Xie D, Luo Y, Dong L, Wei Y, Gong Q, Zhu YZ, Gao J. Trilobatin, a Naturally Occurring GPR158 Ligand, Alleviates Depressive-like Behavior by Promoting Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5163-5179. [PMID: 39962827 PMCID: PMC11887424 DOI: 10.1021/acs.jafc.4c05431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 03/06/2025]
Abstract
The G-protein-coupled receptor (GPR158), an orphan receptor, is highly expressed in the medial prefrontal cortex (mPFC) and identified as a novel therapeutic target for depression. Trilobatin is a naturally occurring food additive with potent neuroprotective properties. However, its pharmacological effects and molecular mechanisms against depression remain unknown. Therefore, we explored whether trilobatin alleviates depression by targeting GPR158. Our results indicated that trilobatin alleviated chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Mitophagy contributed to the antidepressant-like effect of trilobatin, as evidenced by the qRT-PCR array. Furthermore, trilobatin up-regulated autophagy-associated protein expression, restored mitochondrial dynamic balance, and inhibited oxidative stress of mPFC in mice after CUMS insult and in corticosterone-induced primary neuron injury. Intriguingly, trilobatin directly bound to GPR158 and decreased its level of protein expression. GPR158 deficiency attenuated depressive-like behavior through promoting mitophagy, while the antidepressant effect of trilobatin was strengthened in GPR158-deficient mice. Our findings highlight that GPR158-mediated mitophagy acts as a crucial pharmacological target for depression and reveal a new-found pharmacological property of trilobatin: serving as a novel naturally occurring ligand of GPR158 to safeguard from depression by oxidative stress by promoting mitophagy.
Collapse
Affiliation(s)
- Mu Lin
- School
of Pharmacy, Faculty of Medicine, Macau
University of Science and Technology, Taipa, Macau SAR 999078, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563006, China
- Guizhou
Aerospace Hospital, Zunyi 563000, China
| | - Dianyou Xie
- School
of Pharmacy, Faculty of Medicine, Macau
University of Science and Technology, Taipa, Macau SAR 999078, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563006, China
| | - Yunmei Luo
- School
of Pharmacy, Faculty of Medicine, Macau
University of Science and Technology, Taipa, Macau SAR 999078, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563006, China
| | - Lan Dong
- School
of Pharmacy, Faculty of Medicine, Macau
University of Science and Technology, Taipa, Macau SAR 999078, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563006, China
| | - Yu Wei
- Department
of Pharmacy the Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Qihai Gong
- School
of Pharmacy, Faculty of Medicine, Macau
University of Science and Technology, Taipa, Macau SAR 999078, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563006, China
| | - Yi Zhun Zhu
- School
of Pharmacy, Faculty of Medicine, Macau
University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jianmei Gao
- School
of Pharmacy, Faculty of Medicine, Macau
University of Science and Technology, Taipa, Macau SAR 999078, China
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
2
|
Wei J, Lan G, Zhang W, Ran W, Wei Y, Liu X, Zhang Y, Gong Q, Li H, Gao J. Targeting FDX1 by trilobatin to inhibit cuproptosis in doxorubicin-induced cardiotoxicity. Br J Pharmacol 2025. [PMID: 39933533 DOI: 10.1111/bph.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin (DOX), an anthracycline chemotherapeutic agent, whose use is limited owing to its dose-dependent cardiotoxicity. Mitochondrial oxidative stress plays a crucial role in the pathogenesis of DOX-induced cardiotoxicity (DIC). Trilobatin (TLB), a naturally occurring food additive, exhibits strong antioxidant properties, but its cardioprotective effects in DIC is unclear. This study investigates the cardioprotective effect of TLB on DIC. EXPERIMENTAL APPROACH DOX was used to generate an in vivo and in vitro model of cardiotoxicity. Echocardiography, enzyme-linked immunosorbent assay (ELISA) and haematoxylin and eosin (H&E) staining were used to evaluate the cardiac function in these models. To identify the targets of TLB, RNA-sequence analysis, molecular dynamics simulations, surface plasmon resonance binding assays and protein immunoblotting techniques were used. Transmission electron microscopy, along with dihydroethidium and Mito-SOX staining, was conducted to examine the impact of trilobatin on mitochondrial oxidative stress. SiRNA transfection was performed to confirm the role of ferredoxin 1 (FDX1) in DIC development. KEY RESULTS In DIC mice, TLB improved cardiac function in a dose-dependent manner and inhibited myocardial fibrosis in DIC mice. TLB also attenuated DOX-induced mitochondrial dysfunction and reduced cardiac mitochondrial oxidative stress. TLB was found to directly bind to FDX1 and suppresses cuproptosis after DOX treatment, causing significant inhibition of cuproptosis-related proteins. CONCLUSIONS AND IMPLICATIONS This is the first study to show that TLB strongly inhibits DIC by reducing mitochondrial oxidative stress and controlling DOX-mediated cuproptosis by targeting FDX1. Therefore, TLB is as a potential phytochemical cardioprotective candidate for ameliorating DIC.
Collapse
Affiliation(s)
- Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Guozhen Lan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wenfang Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wang Ran
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Liu
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Haibo Li
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
He M, Zhang Y, Zhai Y, Li Y, Yang G, Yu S, Xiao H, Song Y. Trilobatin regulates glucose metabolism by ameliorating oxidative stress and insulin resistance in vivo and in vitro. J Pharm Pharmacol 2025; 77:236-248. [PMID: 38642915 DOI: 10.1093/jpp/rgae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES Trilobatin, a glycosylated dihydrochalcone, has been reported to have anti-diabetic properties. However, the underlying mechanism remains unexplained. METHODS In this investigation, the regulation of trilobatin on glucose metabolism of insulin resistance (IR)-HepG2 cells and streptozocin (STZ)-induced mice and its mechanism were evaluated. KEY FINDINGS Different doses of trilobatin (5, 10 and 20 μM) increased glucose consumption, glycogen content, hexokinase (HK), and pyruvate kinase (PK) activity in IR-HepG2 cells. Among them, the HK and PK activity in IR-HepG2 cells treated with 20 μM trilobatin were 1.84 and 2.05 times than those of the IR-group. The overeating, body and tissue weight, insulin levels, liver damage, and lipid accumulation of STZ-induced mice were improved after feeding with different doses of trilobatin (10, 50, and 100 mg/kg/d) for 4 weeks. Compared with STZ-induced mice, fasting blood glucose decreased by 61.11% and fasting insulin (FINS) increased by 48.6% after feeding trilobatin (100 mg/kg/d). Meanwhile, data from quantitative real-time polymerase chain reaction (qRT-PCR) revealed trilobatin ameliorated glycogen synthesis via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) signaling pathway in IR-HepG2 cells and in STZ-induced mice. Furthermore, in vitro and in vivo experiments showed that trilobatin ameliorated oxidative stress by regulating the mRNA expression of nuclear erythroid-2 related factor 2 (Nrf2)/kelch-like ECH associated protein-1 (Keap-1) pathway as well as heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1). CONCLUSIONS Our research reveals a novel pharmacological activity of trilobatin: regulating glucose metabolism through PI3K/Akt/GSK-3β and Nrf2/Keap-1 signaling pathways, improving insulin resistance and reducing oxidative stress. Trilobatin can be used as a reliable drug resource for the treatment of glucose metabolism disorders.
Collapse
Affiliation(s)
- Ming He
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuqing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuhan Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yaping Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Guorui Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Shaoxuan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Haifang Xiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
4
|
Zhao X, Zhang J, Li C, Kuang W, Deng J, Tan X, Li C, Li S. Mitochondrial mechanisms in Treg cell regulation: Implications for immunotherapy and disease treatment. Mitochondrion 2025; 80:101975. [PMID: 39491776 DOI: 10.1016/j.mito.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis and preventing autoimmune diseases. Recent advances in immunometabolism have revealed the pivotal role of mitochondrial dynamics and metabolism in shaping Treg functionality. Tregs depend on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to support their suppressive functions and long-term survival. Mitochondrial processes such as fusion and fission significantly influence Treg activity, with mitochondrial fusion enhancing bioenergetic efficiency and reducing reactive oxygen species (ROS) production, thereby promoting Treg stability. In contrast, excessive mitochondrial fission disrupts ATP synthesis and elevates ROS levels, impairing Treg suppressive capacity. Furthermore, mitochondrial ROS act as critical signaling molecules in Treg regulation, where controlled levels stabilize FoxP3 expression, but excessive ROS leads to mitochondrial dysfunction and immune dysregulation. Mitophagy, as part of mitochondrial quality control, also plays an essential role in preserving Treg function. Understanding the intricate interplay between mitochondrial dynamics and Treg metabolism provides valuable insights for developing novel therapeutic strategies to treat autoimmune disorders and enhance immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junmei Zhang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Caifeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weiying Kuang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianghong Deng
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Tan
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shipeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Yi Y, Yan Y, Zhan G, Deng W, Wei Y, Zhang Y, Gao J, Gong Q. Trilobatin, a Novel Naturally Occurring Food Additive, Ameliorates Alcoholic Liver Disease in Mice: Involvement of Microbiota-Gut-Liver Axis and Yap/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23819-23831. [PMID: 39169659 DOI: 10.1021/acs.jafc.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Trilobatin, a novel natural food additive, exerts a protective effect on acute liver injury. However, whether Trilobatin can protect against alcoholic liver disease (ALD) has not been elucidated. This research is intended to ascertain the impact of Trilobatin on ALD in mice and decipher the potential underlying mechanisms. Lieber-DeCarli liquid alcohol diet was used to induce ALD in mice, followed by administration of Trilobatin (10, 20, 40 mg·kg-1·d-1) for 15 days. The results suggested that Trilobatin significantly alleviated ethanol-induced hepatic injury in mice. Furthermore, RNA-Seq analysis revealed that yes-associated protein (YAP) downregulation occurred in the liver after Trilobatin treatment. Mechanistically, Trilobatin directly bound to YAP and hindered its nuclear translocation, which activated the Nrf2 pathway to reduce pro-inflammatory cytokines and oxidative stress. Intriguingly, 16S rDNA analysis results revealed that Trilobatin reshaped the gut microbiota, reducing harmful bacteria and increasing beneficial bacteria. It also enhanced tight junction proteins, defending against damage to the intestinal barrier. These findings not only highlight the microbiota-gut-liver axis and YAP/Nrf2 pathway as crucial potential targets to treat ALD but also reveal that Trilobatin effectively protects against ALD, at least partly, through modulating the microbiota-gut-liver axis and YAP/Nrf2 pathway.
Collapse
Affiliation(s)
- Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - You Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Guiyu Zhan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Weikun Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
6
|
Dong YX, Li TH, Wang SS, Hu YH, Liu Y, Zhang F, Sun TS, Zhang CJ, Du QH, Li WH. Bu zhong Yiqi Decoction ameliorates mild cognitive impairment by improving mitochondrial oxidative stress damage via the SIRT3/MnSOD/OGG1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118237. [PMID: 38688355 DOI: 10.1016/j.jep.2024.118237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Zhong-Yi-Qi Decoction(BZYQD) is a traditional formula commonly used in China, known for its effects in tonifying Qi and raising Yang. It can relieve symptoms of cognitive impairment such as forgetfulness and lack of concentration caused by qi deficiency, which is common in aging and debilitating. However, much of the current research on BZYQD has been focused on its impact on the digestive system, leaving its molecular mechanisms in improving cognitive function largely unexplored. AIM OF THE STUDY Cognitive decline in the aging central nervous system is intrinsically linked to oxidative damage. This study aims to investigate the therapeutic mechanism of BZYQD in treating mild cognitive impairment caused by qi deficiency, particularly through repair of mitochondrial oxidative damage. MATERIALS AND METHODS A rat model of mild cognitive impairment (MCI) was established by administering reserpine subcutaneously for two weeks, followed by a two-week treatment with BZYQD/GBE. In vitro experiments were conducted to assess the effects of BZYQD on neuronal cells using a H2O2-induced oxidative damage model in PC12 cells. The open field test and the Morris water maze test evaluated the cognitive and learning memory abilities of the rats. HE staining and TEM were employed to observe morphological changes in the hippocampus and its mitochondria. Mitochondrial activity, ATP levels, and cellular viability were measured using assay kits. Protein expression in the SIRT3/MnSOD/OGG1 pathway was analyzed in tissues and cells through western blotting. Levels of 8-OH-dG in mitochondria extracted from tissues and cells were quantified using ELISA. Mitochondrial morphology in PC12 cells was visualized using Mito Red, and mitochondrial membrane potential was assessed using the JC-1 kit. RESULTS BZYQD treatment significantly improved cognitive decline caused by reserpine in rats, as well as enhanced mitochondrial morphology and function in the hippocampus. Our findings indicate that BZYQD mitigates mtDNA oxidative damage in rats by modulating the SIRT3/MnSOD/OGG1 pathway. In PC12 cells, BZYQD reduced oxidative damage to mitochondria and mtDNA in H2O2-induced conditions and was associated with changes in the SIRT3/MnSOD/OGG1 pathway. CONCLUSION BZYQD effectively counteracts reserpine-induced mild cognitive impairment and ameliorates mitochondrial oxidative stress damage through the SIRT3/MnSOD/OGG1 pathway.
Collapse
Affiliation(s)
- Yi-Xin Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Teng-Hui Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yan-Hong Hu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Liu
- Beijing jingmei Group General Hospital, Beijing, China
| | - Fan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Shi Sun
- Sanya Traditional Chinese Medicine Hospital, Sanya, China
| | | | - Qing-Hong Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Institute of Tibetan Medicine, University of Tibetan Medicine, Lhasa, 850000, Tibet Autonomous Region, China
| | - Wei-Hong Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Huang B, Nie G, Dai X, Cui T, Pu W, Zhang C. Environmentally relevant levels of Cd and Mo coexposure induces ferroptosis and excess ferritinophagy through AMPK/mTOR axis in duck myocardium. ENVIRONMENTAL TOXICOLOGY 2024; 39:4196-4206. [PMID: 38717027 DOI: 10.1002/tox.24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 07/14/2024]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) are multiorgan toxic, but the detrimental impacts of Cd and/or Mo on poultry have not been fully clarified. Thence, a 16-week sub-chronic toxic experiment was executed with ducks to assess the toxicity of Cd and/or Mo. Our data substantiated that Cd and Mo coexposure evidently reduced GSH-Px, GSH, T-SOD, and CAT activities and elevated H2O2 and MDA concentrations in myocardium. What is more, the study suggested that Cd and Mo united exposure synergistically elevated Fe2+ content in myocardium and activated AMPK/mTOR axis, then induced ferroptosis by obviously upregulating ACSL4, PTGS2, and TFRC expression levels and downregulating SLC7A11, GPX4, FPN1, FTL1, and FTH1 expression levels. Additionally, Cd and Mo coexposure further caused excessive ferritinophagy by observably increasing autophagosomes, the colocalization of endogenous FTH1 and LC3, ATG5, ATG7, LC3II/LC3I, NCOA4, and FTH1 expression levels. In brief, this study for the first time substantiated that Cd and Mo united exposure synergistically induced ferroptosis and excess ferritinophagy by AMPK/mTOR axis, finally augmenting myocardium injure in ducks, which will offer an additional view on united toxicity between two heavy metals on poultry.
Collapse
Affiliation(s)
- Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Ministry of Public Education, Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Feng L, Li Y, Lin M, Xie D, Luo Y, Zhang Y, He Z, Gong Q, Zhun ZY, Gao J. Trilobatin attenuates cerebral ischaemia/reperfusion-induced blood-brain barrier dysfunction by targeting matrix metalloproteinase 9: The legend of a food additive. Br J Pharmacol 2024; 181:1005-1027. [PMID: 37723895 DOI: 10.1111/bph.16239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Blood-brain barrier (BBB) breakdown is one of the crucial pathological changes of cerebral ischaemia-reperfusion (I/R) injury. Trilobatin (TLB), a naturally occurring food additive, exerts neuroprotective effects against cerebral I/R injury as demonstrated in our previous study. This study was designed to investigate the effect of TLB on BBB disruption after cerebral I/R injury. EXPERIMENTAL APPROACH Rats with focal cerebral ischaemia caused by transient middle cerebral artery occlusion were studied along with brain microvascular endothelial cells and human astrocytes to mimic BBB injury caused by oxygen and glucose deprivation/reoxygenation (OGD/R). KEY RESULTS The results showed that TLB effectively maintained BBB integrity and inhibited neuronal loss following cerebral I/R challenge. Furthermore, TLB increased tight junction proteins including ZO-1, Occludin and Claudin 5, and decreased the levels of apolipoprotein E (APOE) 4, cyclophilin A (CypA) and phosphorylated nuclear factor kappa B (NF-κB), thereby reducing proinflammatory cytokines. TLB also decreased the Bax/Bcl-2 ratio and cleaved-caspase 3 levels along with a reduced number of apoptotic neurons. Molecular docking and transcriptomics predicted MMP9 as a prominent gene evoked by TLB treatment. The protective effects of TLB on cerebral I/R-induced BBB breakdown was largely abolished by overexpression of MMP9, and the beneficial effects of TLB on OGD/R-induced loss of BBB integrity in human brain microvascular endothelial cells and astrocyte co-cultures was markedly reinforced by knockdown of MMP9. CONCLUSIONS AND IMPLICATIONS Our findings reveal a novel property of TLB: preventing BBB disruption following cerebral I/R via targeting MMP9 and inhibiting APOE4/CypA/NF-κB axis.
Collapse
Affiliation(s)
- Linying Feng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yeli Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Mu Lin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dianyou Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yunmei Luo
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhu Yi Zhun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianmei Gao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Li M, Wang Y, Liu R, Shi M, Zhao Y, Zeng K, Fu R, Liu P. Fluoride exposure confers NRF2 activation in hepatocyte through both canonical and non-canonical signaling pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:252-263. [PMID: 37694959 DOI: 10.1002/tox.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Due to the high abundance in the Earth's crust and industrial application, fluoride is widely present in our living environment. However, excessive fluoride exposure causes toxicity in different organs. As the most important detoxification and excretion organ, liver is more easily involved in fluoride toxicity than other organs, and oxidative stress is considered as the key mechanism related with fluoride hepatotoxicity. In this study, we mainly investigated the role of nuclear factor erythroid-derived 2-like 2 (NRF2, a core transcription factor in oxidative stress) in fluoride exposure-induced hepatotoxicity as well as the related mechanism. Herein, liver cells (BNL CL.2) were treated with fluoride in different concentrations. The hepatotoxicity and NRF2 signaling pathway were analyzed respectively. Our results indicated that excessive fluoride (over 1 mM) resulted in obvious toxicity in hepatocyte and activated NRF2 and NRF2 target genes. The increased ROS generation after fluoride exposure suppressed KEAP1-induced NRF2 ubiquitylation and degradation. Meanwhile, fluoride exposure also led to blockage of autophagic flux and upregulation of p62, which contributed to activation of NRF2 via competitive binding with KEAP1. Both pharmaceutical activation and genetic activation of NRF2 accelerated fluoride exposure-induced hepatotoxicity. Thus, the upregulation of NRF2 in hepatocyte after fluoride exposure can be regarded as a cellular self-defense, and NRF2-KEAP1 system could be a novel molecular target against fluoride exposure-induced hepatotoxicity.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yishu Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kaixuan Zeng
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| |
Collapse
|
10
|
Wu AYT, Sekar P, Huang DY, Hsu SH, Chan CM, Lin WW. Spatiotemporal roles of AMPK in PARP-1- and autophagy-dependent retinal pigment epithelial cell death caused by UVA. J Biomed Sci 2023; 30:91. [PMID: 37936170 PMCID: PMC10629085 DOI: 10.1186/s12929-023-00978-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Although stimulating autophagy caused by UV has been widely demonstrated in skin cells to exert cell protection, it remains unknown the cellular events in UVA-treated retinal pigment epithelial (RPE) cells. METHODS Human ARPE-19 cells were used to measure cell viability, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial mass and lysosomal mass by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics, LC3 level, and AMPK translocation after UVA irradiation. RESULTS We confirmed mitochondrial ROS production and DNA damage are two major features caused by UVA. We found the cell death is prevented by autophagy inhibitor 3-methyladenine and gene silencing of ATG5, and UVA induces ROS-dependent LC3II expression, LC3 punctate and TFEB expression, suggesting the autophagic death in the UVA-stressed RPE cells. Although PARP-1 inhibitor olaparib increases DNA damage, ROS production, and cell death, it also blocks AMPK activation caused by UVA. Interestingly we found a dramatic nuclear export of AMPK upon UVA irradiation which is blocked by N-acetylcysteine and olaparib. In addition, UVA exposure gradually decreases lysosomal mass and inhibits cathepsin B activity at late phase due to lysosomal dysfunction. Nevertheless, cathepsin B inhibitor, CA-074Me, reverses the death extent, suggesting the contribution of cathepsin B in the death pathway. When examining the role of EGFR in cellular events caused by UVA, we found that UVA can rapidly transactivate EGFR, and treatment with EGFR TKIs (gefitinib and afatinib) enhances the cell death accompanied by the increased LC3II formation, ROS production, loss of MMP and mass of mitochondria and lysosomes. Although AMPK activation by ROS-PARP-1 mediates autophagic cell death, we surprisingly found that pretreatment of cells with AMPK activators (A769662 and metformin) reverses cell death. Concomitantly, both agents block UVA-induced mitochondrial ROS production, autophagic flux, and mitochondrial fission without changing the inhibition of cathepsin B. CONCLUSION UVA exposure rapidly induces ROS-PARP-1-AMPK-autophagic flux and late lysosomal dysfunction. Pre-inducing AMPK activation can prevent cellular events caused by UVA and provide a new protective strategy in photo-oxidative stress and photo-retinopathy.
Collapse
Affiliation(s)
- Anthony Yan-Tang Wu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Han S, Zhuang D, Wang J, Ju C. Inhibition of neuronal Kv7 channels ameliorates MK-801-induced cognitive dysfunction in mice via up-regulating NAMPT expression. Neurosci Lett 2023; 814:137471. [PMID: 37673371 DOI: 10.1016/j.neulet.2023.137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Abnormal energy metabolism affects cognitive function in schizophrenia. Nicotinamide phosphoribosyltransferase (NAMPT), as the rate-limiting enzyme of nicotinamide adenine dinucleotide (NAD+), is involved in energy metabolism by regulating the synthesis of NAD+. This study aims to clarify whether inhibition of Kv7 channels improves cognitive impairment by up-regulating NAMPT expression to increase the level of NAD+. METHODS The dominant negative pore mutation of KCNQ2 in transgenic mice was achieved by mutating residual 279-Gly to Ser (rQ2-G279S). A cognitive deficit model was established by injecting MK-801 into C57BL/6J mice. Y-maze and prepulse inhibition (PPI) tests were performed to evaluate cognitive ability. Gene and protein expression of NAMPT in the mouse hippocampus, cortex, and PC-12 cells were measured by qRT-PCR and Western blot. The level of NAD+ was measured by a WST-8 assay. RESULTS The Y-maze and PPI results showed that genetic or pharmacological inhibition of Kv7 channels by XE991 enhanced cognitive function in mice. Furthermore, inhibition of Kv7 channels increased the gene and protein expression of NAMPT and the level of NAD+ in the hippocampus and cortex of the above animal model. Similarly, XE991 treatment increased NAMPT expression and NAD+ levels in PC-12 cells. NAMPT inhibitor FK866 and Kv7 channel opener retigabine reversed the effects of XE991 in vivo and in vitro. In addition, XE991 increased pAMPK protein expression in PC-12 cells, while AMPK inhibitor Compound C counteracted the effect of XE991 on increasing NAMPT expression and NAD+ levels. CONCLUSIONS Suppression of Kv7 channel function improved spatial working memory and PPI impairment. This result may be achieved by activating AMPK to up-regulate NAMPT expression and thus increase NAD+ levels.
Collapse
Affiliation(s)
- Shuo Han
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China
| | - Dongpei Zhuang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China; Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining 272000, China
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China.
| |
Collapse
|
12
|
Mei X, Wang W, Li Q, Wu M, Bu L, Chen Z. A novel electrochemical sensor based on gold nanobipyramids and poly-L-cysteine for the sensitive determination of trilobatin. Analyst 2023; 148:2335-2342. [PMID: 37186001 DOI: 10.1039/d3an00368j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Trilobatin is a flavonoid that has wide application prospects due to its various pharmacological effects, such as anti-inflammation and anti-oxidation. In this work, a novel electrochemical sensor based on gold nanobipyramids (AuNBs) and L-cysteine (L-cys) was constructed for the sensitive and selective determination of trilobatin. The AuNBs, which were prepared by a seed-mediated growth method, had large specific surface areas and excellent electrical conductivity. A layer of L-cys film, which provided more active sites through the amino and hydroxyl groups, was modified on the surface of the AuNBs by electropolymerization. Significantly, the Au-S bond between the L-cys film and AuNBs could improve the stability of the sensor and it exhibited satisfactory electrocatalytic oxidation activity for trilobatin. Under optimized conditions, the sensor based on poly-L-cys/AuNBs/GCE was used to determine trilobatin by differential pulse voltammetry (DPV). Two wide linear ranges between the current peak and the concentration of trilobatin were obtained in the range from 5 to 100 μM and 100 to 1000 μM, and the low detection limit (LOD) was up to 2.55 μM (S/N = 3). The sensor demonstrated desirable reproducibility, stability, and selectivity and was applied to detect real trilobatin samples extracted from Lithocarpus polystachyus Rehd.'s leaves, showing recoveries of 98.36%-104.96%, with satisfactory results.
Collapse
Affiliation(s)
- Xue Mei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, China
| | - Qingyi Li
- Changzhou SIMM DRUG R&D Co., Ltd, Changzhou 213164, China
| | - Minxian Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Liyin Bu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
13
|
Su IC, Su YK, Setiawan SA, Yadav VK, Fong IH, Yeh CT, Lin CM, Liu HW. NADPH Oxidase Subunit CYBB Confers Chemotherapy and Ferroptosis Resistance in Mesenchymal Glioblastoma via Nrf2/SOD2 Modulation. Int J Mol Sci 2023; 24:ijms24097706. [PMID: 37175412 PMCID: PMC10178261 DOI: 10.3390/ijms24097706] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous disease with a mesenchymal subtype tending to exhibit more aggressive and multitherapy-resistant features. Glioblastoma stem-cells derived from mesenchymal cells are reliant on iron supply, accumulated with high reactive oxygen species (ROS), and susceptible to ferroptosis. Temozolomide (TMZ) treatment is the mainstay drug for GBM despite the rapid development of resistance in mesenchymal GBM. The main interconnection between mesenchymal features, TMZ resistance, and ferroptosis are poorly understood. Herein, we demonstrated that a subunit of NADPH oxidase, CYBB, orchestrated mesenchymal shift and promoted TMZ resistance by modulating the anti-ferroptosis circuitry Nrf2/SOD2 axis. Public transcriptomic data re-analysis found that CYBB and SOD2 were highly upregulated in the mesenchymal subtype of GBM. Accordingly, our GBM cohort confirmed a high expression of CYBB in the GBM tumor and was associated with mesenchymal features and poor clinical outcome. An in vitro study demonstrated that TMZ-resistant GBM cells displayed mesenchymal and stemness features while remaining resilient to erastin-mediated ferroptosis by activating the CYBB/Nrf2/SOD2 axis. The CYBB maintained a high ROS state to sustain the mesenchymal phenotype, TMZ resistance, and reduced erastin sensitivity. Mechanistically, CYBB interacted with Nrf2 and consequently regulated SOD2 transcription. Compensatory antioxidant SOD2 essentially protected against the deleterious effect of high ROS while attenuating ferroptosis in TMZ-resistant cells. An animal study highlighted the protective role of SOD2 to mitigate erastin-triggered ferroptosis and tolerate oxidative stress burden in mice harboring TMZ-resistant GBM cell xenografts. Therefore, CYBB captured ferroptosis resilience in mesenchymal GBM. The downstream compensatory activity of CYBB via the Nrf2/SOD2 axis is exploitable through erastin-induced ferroptosis to overcome TMZ resistance.
Collapse
Affiliation(s)
- I-Chang Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yu-Kai Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Iat-Hang Fong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Chien-Min Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Heng-Wei Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
14
|
Yang H, Zhou Z, Liu Z, Chen J, Wang Y. Sirtuin-3: A potential target for treating several types of brain injury. Front Cell Dev Biol 2023; 11:1154831. [PMID: 37009480 PMCID: PMC10060547 DOI: 10.3389/fcell.2023.1154831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Sirtuin-3 (SIRT3) is responsible for maintaining mitochondrial homeostasis by deacetylating substrates in an NAD+-dependent manner. SIRT3, the primary deacetylase located in the mitochondria, controls cellular energy metabolism and the synthesis of essential biomolecules for cell survival. In recent years, increasing evidence has shown that SIRT3 is involved in several types of acute brain injury. In ischaemic stroke, subarachnoid haemorrhage, traumatic brain injury, and intracerebral haemorrhage, SIRT3 is closely related to mitochondrial homeostasis and with the mechanisms of pathophysiological processes such as neuroinflammation, oxidative stress, autophagy, and programmed cell death. As SIRT3 is the driver and regulator of a variety of pathophysiological processes, its molecular regulation is significant. In this paper, we review the role of SIRT3 in various types of brain injury and summarise SIRT3 molecular regulation. Numerous studies have demonstrated that SIRT3 plays a protective role in various types of brain injury. Here, we present the current research available on SIRT3 as a target for treating ischaemic stroke, subarachnoid haemorrhage, traumatic brain injury, thus highlighting the therapeutic potential of SIRT3 as a potent mediator of catastrophic brain injury. In addition, we have summarised the therapeutic drugs, compounds, natural extracts, peptides, physical stimuli, and other small molecules that may regulate SIRT3 to uncover additional brain-protective mechanisms of SIRT3, conduct further research, and provide more evidence for clinical transformation and drug development.
Collapse
Affiliation(s)
| | | | | | | | - Yuhai Wang
- *Correspondence: Junhui Chen, ; Yuhai Wang,
| |
Collapse
|
15
|
Gao J, Ma C, Xia D, Chen N, Zhang J, Xu F, Li F, He Y, Gong Q. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway. Br J Pharmacol 2023; 180:308-329. [PMID: 36166825 DOI: 10.1111/bph.15961] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Astrocytic nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a potential therapeutic target of ischaemic preconditioning (IPC). Icariside II (ICS II) is a naturally occurring flavonoid derived from Herba Epimedii with Nrf2 induction potency. This study was designed to clarify if exposure to ICS II mimicks IPC neuroprotection and if Nrf2 from astrocytes contributes to ICS II preconditioning against ischaemic stroke. EXPERIMENTAL APPROACH Mice with transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischaemia and primary astrocytes challenged with oxygen-glucose deprivation (OGD) were used to explore the neuroprotective effect of ICS II preconditioning. Additionally, Nrf2-deficient mice were pretreated with ICS II to determine whether ICS II exerts its neuroprotection by activating Nrf2. KEY RESULTS ICS II pretreatment mitigated cerebral injury in the mouse model of ischaemic stroke along with improving long-term recovery. Furthermore, proteomics screening identified Nrf2 as a crucial gene evoked by ICS II treatment and required for the anti-oxidative effect and anti-inflammatory effect of ICS II. Also, ICS II directly bound to Nrf2 and reinforced the transcriptional activity of Nrf2 after MCAO. Moreover, ICS II pretreatment exerted cytoprotective effects on astrocyte cultures following lethal OGD exposure, by promoting Nrf2 nuclear translocation and activating the OXPHOS/NF-κB/ferroptosis axis, while neuroprotection was decreased in Nrf2-deficient mice and Nrf2 siRNA blocked effects of ICS II. CONCLUSION AND IMPLICATIONS ICS II preconditioning provides robust neuroprotection against ischaemic stroke via the astrocytic Nrf2-mediated OXPHOS/NF-κB/ferroptosis axis. Thus, ICS II could be a promising Nrf2 activator to treat ischaemic stroke.
Collapse
Affiliation(s)
- Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Congjian Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dianya Xia
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Nana Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fei Li
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
17
|
Li Y, Li J, Wu G, Yang H, Yang X, Wang D, He Y. Role of SIRT3 in neurological diseases and rehabilitation training. Metab Brain Dis 2023; 38:69-89. [PMID: 36374406 PMCID: PMC9834132 DOI: 10.1007/s11011-022-01111-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Sirtuin3 (SIRT3) is a deacetylase that plays an important role in normal physiological activities by regulating a variety of substrates. Considerable evidence has shown that the content and activity of SIRT3 are altered in neurological diseases. Furthermore, SIRT3 affects the occurrence and development of neurological diseases. In most cases, SIRT3 can inhibit clinical manifestations of neurological diseases by promoting autophagy, energy production, and stabilization of mitochondrial dynamics, and by inhibiting neuroinflammation, apoptosis, and oxidative stress (OS). However, SIRT3 may sometimes have the opposite effect. SIRT3 can promote the transfer of microglia. Microglia in some cases promote ischemic brain injury, and in some cases inhibit ischemic brain injury. Moreover, SIRT3 can promote the accumulation of ceramide, which can worsen the damage caused by cerebral ischemia-reperfusion (I/R). This review comprehensively summarizes the different roles and related mechanisms of SIRT3 in neurological diseases. Moreover, to provide more ideas for the prognosis of neurological diseases, we summarize several SIRT3-mediated rehabilitation training methods.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Jing Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Guangbin Wu
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Hua Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Xiaosong Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Dongyu Wang
- Department of Neurology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Yanhui He
- Department of Radiology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| |
Collapse
|
18
|
Dihydrochalcones in Sweet Tea: Biosynthesis, Distribution and Neuroprotection Function. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248794. [PMID: 36557927 PMCID: PMC9782792 DOI: 10.3390/molecules27248794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Sweet tea is a popular herbal drink in southwest China, and it is usually made from the shoots and tender leaves of Lithocarpus litseifolius. The sweet taste is mainly attributed to its high concentration of dihydrochalcones. The distribution and biosynthesis of dihydrochaldones in sweet tea, as well as neuroprotective effects in vitro and in vivo tests, are reviewed in this paper. Dihydrochalones are mainly composed of phloretin and its glycosides, namely, trilobatin and phloridzin, and enriched in tender leaves with significant geographical specificity. Biosynthesis of the dihydrochalones follows part of the phenylpropanoid and a branch of flavonoid metabolic pathways and is regulated by expression of the genes, including phenylalanine ammonia-lyase, 4-coumarate: coenzyme A ligase, trans-cinnamic acid-4-hydroxylase and hydroxycinnamoyl-CoA double bond reductase. The dihydrochalones have been proven to exert a significant neuroprotective effect through their regulation against Aβ deposition, tau protein hyperphosphorylation, oxidative stress, inflammation and apoptosis.
Collapse
|
19
|
Duan YY, Mi XJ, Su WY, Tang S, Jiang S, Wang Z, Zhao LC, Li W. Trilobatin, an Active Dihydrochalcone from Lithocarpus polystachyus, Prevents Cisplatin-Induced Nephrotoxicity via Mitogen-Activated Protein Kinase Pathway-Mediated Apoptosis in Mice. ACS OMEGA 2022; 7:37401-37409. [PMID: 36312396 PMCID: PMC9607670 DOI: 10.1021/acsomega.2c04142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Although naturally occurring flavonoids have shown beneficial effects on the side effects caused by cisplatin, there are few reports on the protective effect of dihydrochalcone on the cisplatin-induced toxicity. Trilobatin (TLB), as the major sweetener and active ingredient in Lithocarpus polystachyus Rehd, is a dihydrochalcone-like compound that can be present in concentrations of up to 10% or more in tender leaves. Herein, a cisplatin-induced acute kidney injury (AKI) model was established to investigate the protective effect and mechanism of TLB against the cisplatin-induced nephrotoxicity in mice. The results showed that TLB significantly reversed the inhibition of CRE, BUN, and MDA levels compared with the cisplatin group. Furthermore, TLB treatment (50 and 100 mg/kg) for 10 days significantly alleviated cisplatin-induced renal pathological changes. TUNEL staining showed that TLB administration can effectively improve the occurrence of apoptosis of renal tissue cells caused by cisplatin exposure. Importantly, western blot analysis verified that TLB alleviated cisplatin-induced nephrotoxicity by regulating the AKT/MAPK signaling pathway and apoptosis. In summary, our findings showed clearly that TLB has a significant preventive effect on cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yue-yang Duan
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
and Local Joint Engineering Research Center for Ginseng Breeding and
Development, Changchun 130118, China
| | - Xiao-jie Mi
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Wen-ya Su
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shan Tang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Zi Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Li-Chun Zhao
- College
of Pharmacy, Guangxi University of Chinese
Medicine, Nanning 530001, China
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
and Local Joint Engineering Research Center for Ginseng Breeding and
Development, Changchun 130118, China
| |
Collapse
|
20
|
Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3319056. [PMID: 36262283 PMCID: PMC9576424 DOI: 10.1155/2022/3319056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Advanced glycation end products (AGEs) accumulate in the bone tissue of patients with diabetes mellitus, resulting in oxidative stress, poor bone healing, or regeneration. Irisin, a novel exercise-induced myokine, is involved in the regulation of bone metabolism. However, the effects of irisin on adipose-derived stem cell (ASC) osteogenic differentiation and bone healing under diabetic conditions remain poorly understood. ASCs were obtained from inguinal fat of Sprague-Dawley rats and treated with different concentrations of AGEs and irisin. Cell proliferation, apoptosis, and osteogenic differentiation abilities of ASCs were detected. To explore the regulatory role of sirtuin 3 (SIRT3), ASCs were transfected with lentivirus-mediated SIRT3 overexpression or knockdown vectors. Next, we investigated mitochondrial functions, mitophagy, and mitochondrial biogenesis in different groups. Moreover, SOD2 acetylation and potential signaling pathways were assessed. Additionally, a diabetic rat model was used to evaluate the effect of irisin on bone healing in calvarial critical-sized defects (CSDs) in vivo. Our results showed that irisin incubation mitigated the inhibitory effects of AGEs on ASCs by increasing cell viability and promoting osteogenesis. Moreover, irisin modulated mitochondrial membrane potential, intracellular ROS levels, mitochondrial O2·− status, ATP generation, complex I and IV activities, mitophagy, and mitochondrial biogenesis via a SIRT3-mediated pathway under AGEs exposure. Furthermore, in calvarial CSDs of diabetic rats, transplantation of gels encapsulating irisin-pretreated ASCs along with irisin largely enhanced bone healing. These findings suggest that irisin attenuates AGE-induced ASC dysfunction through SIRT3-mediated maintenance of oxidative stress homeostasis and regulation of mitophagy and mitochondrial biogenesis. Thus, our studies shed new light on the role of irisin in promoting the ASC osteogenesis and targeting SIRT3 as a novel therapeutic intervention strategy for bone regeneration under diabetic conditions.
Collapse
|
21
|
DHPA Protects SH-SY5Y Cells from Oxidative Stress-Induced Apoptosis via Mitochondria Apoptosis and the Keap1/Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11091794. [PMID: 36139869 PMCID: PMC9495558 DOI: 10.3390/antiox11091794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress in the brain is highly related to the pathogenesis of Alzheimer’s disease (AD). It could be induced by the overproduction of reactive oxygen species (ROS), produced by the amyloid beta (Aβ) peptide and excess copper (Cu) in senile plaques and cellular species, such as ascorbic acid (AA) and O2. In this study, the protective effect of 5-hydroxy-7-(4′-hydroxy-3′-methoxyphenyl)-1-phenyl-3-heptanone (DHPA) on Aβ(1–42)/Cu2+/AA mixture-treated SH-SY5Y cells was investigated via in vitro and in silico studies. The results showed that DHPA could inhibit Aβ/Cu2+/AA-induced SH-SY5Y apoptosis, OH· production, intracellular ROS accumulation, and malondialdehyde (MDA) production. Further research demonstrated that DHPA could decrease the ratio of Bax/Bcl-2 and repress the increase of mitochondrial membrane potential (MMP) of SH-SY5Y cells, to further suppress the activation of caspase-3, and inhibit cell apoptosis. Meanwhile, DHPA could inhibit the Aβ/Cu2+/AA-induced phosphorylation of Erk1/2 and P38 in SH-SY5Y cells, and increase the expression of P-AKT. Furthermore, DHPA could bind to Keap1 to promote the separation of Nrf2 to Keap1 and activate the Keap1/Nrf2/HO-1 signaling pathway to increase the expression of heme oxygenase-1 (HO-1), quinone oxidoreductase-1 (NQO1), glutathione (GSH), and superoxide dismutase (SOD). Thus, our results demonstrated that DHPA could inhibit Aβ/Cu2+/AA-induced SH-SY5Y apoptosis via scavenging OH·, inhibit mitochondria apoptosis, and activate the Keap1/Nrf2/HO-1 signaling pathway.
Collapse
|
22
|
Chen S, Li Y, Fu S, Li Y, Wang C, Sun P, Li H, Tian J, Du GQ. Melatonin alleviates arginine vasopressin-induced cardiomyocyte apoptosis via increasing Mst1-Nrf2 pathway activity to reduce oxidative stress. Biochem Pharmacol 2022; 206:115265. [DOI: 10.1016/j.bcp.2022.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
|
23
|
Natural Astaxanthin Improves Testosterone Synthesis and Sperm Mitochondrial Function in Aging Roosters. Antioxidants (Basel) 2022; 11:antiox11091684. [PMID: 36139758 PMCID: PMC9495865 DOI: 10.3390/antiox11091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogenesis, sperm motility, and apoptosis are dependent on the regulation of glandular hormones and mitochondria. Natural astaxanthin (ASTA) has antioxidant, anti-inflammatory, and anti-apoptotic properties. The present study evaluates the effects of ASTA on testosterone synthesis and mitochondrial function in aging roosters. Jinghong No. 1 layer breeder roosters (n = 96, 53-week old) were fed a corn−soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. The levels of plasma reproductive hormones and the mRNA and protein levels of molecules related to testosterone synthesis were significantly improved (p < 0.05) in the testes of the ASTA group roosters. In addition, antioxidant activities and free radical scavenging abilities in roosters of the ASTA groups were higher than those of the control group (p < 0.05). Mitochondrial electron transport chain complexes activities and mitochondrial membrane potential in sperm increased linearly with dietary ASTA supplementation (p < 0.05). The levels of reactive oxygen species and apoptosis factors decreased in roosters of the ASTA groups (p < 0.05). Collectively, these results suggest that dietary ASTA may improve testosterone levels and reduce sperm apoptosis, which may be related to the upregulation of the testosterone synthesis pathway and the enhancement of mitochondrial function in aging roosters.
Collapse
|
24
|
Yapryntseva MA, Maximchik PV, Zhivotovsky B, Gogvadze V. Mitochondrial sirtuin 3 and various cell death modalities. Front Cell Dev Biol 2022; 10:947357. [PMID: 35938164 PMCID: PMC9354933 DOI: 10.3389/fcell.2022.947357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in the regulation of multiple processes in cells. It is a major mitochondrial NAD+-dependent deacetylase with a broad range of functions, such as regulation of oxidative stress, reprogramming of tumor cell energy pathways, and metabolic homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of mitochondrial outer membrane permeabilization, a key step in apoptosis initiation/progression. Moreover, sirtuin 3 is involved in the execution of various cell death modalities, which makes sirtuin 3 a possible regulator of crosstalk between them. This review is focused on the role of sirtuin 3 as a target for tumor cell elimination and how mitochondria and reactive oxygen species (ROS) are implicated in this process.
Collapse
Affiliation(s)
| | - Polina V. Maximchik
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Vladimir Gogvadze
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- *Correspondence: Vladimir Gogvadze,
| |
Collapse
|
25
|
Zhang Q, Wang L, Zhao Y. An Overview of Lithocarpus polystachyus, with Dihydrochalcones as Natural-Derived Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Qili Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zi bo, China
| | - Li Wang
- Adverse Drug Reaction Monitoring Deparment, Jinan Center for Food and Drug Control, Jinan, China
| | - Yanfang Zhao
- School of Life Science and Medicine, Shandong University of Technology, Zi bo, China
| |
Collapse
|
26
|
Ma X, Zhang H, Wang S, Deng R, Luo D, Luo M, Huang Q, Yu S, Pu C, Liu Y, Tong Y, Li R. Recent Advances in the Discovery and Development of Anti-HIV Natural Products. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1173-1196. [PMID: 35786172 DOI: 10.1142/s0192415x22500483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV) infection is a serious public problem threatening global health. At present, although "cocktail therapy" has achieved significant clinical effects, HIV still cannot be completely eradicated. Furthermore, long-term antiviral treatment has caused problems such as toxic side effects, the emergence of drug-resistant viruses, and poor patient compliance. Therefore, it is highly necessary to continue to search for high-efficient, low-toxic anti-HIV drugs with new mechanisms. Natural products have the merits of diverse scaffolds, biological activities, and low toxicity that are deemed the important sources of drug discovery. Thus, finding lead compounds from natural products followed by structure optimization has become one of the important ways of modern drug discovery. Nowadays, many natural products have been found, such as berberine, gnidimacrin, betulone, and kuwanon-L, which exert effective anti-HIV activity through immune regulation, inhibition of related functional enzymes in HIV replication, and anti-oxidation. This paper reviewed these natural products, their related chemical structure optimization, and their anti-HIV mechanisms.
Collapse
Affiliation(s)
- Xinyu Ma
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Hongjia Zhang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Shirui Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Rui Deng
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Dan Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Meng Luo
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Dermatology, University Duisburg-Essen, Essen, Germany
| | - Qing Huang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Su Yu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Yu Tong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P. R. China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| |
Collapse
|
27
|
Xiao R, Wei Y, Zhang Y, Xu F, Ma C, Gong Q, Gao J, Xu Y. Trilobatin, a Naturally Occurring Food Additive, Ameliorates Exhaustive Exercise-Induced Fatigue in Mice: Involvement of Nrf2/ARE/Ferroptosis Signaling Pathway. Front Pharmacol 2022; 13:913367. [PMID: 35814232 PMCID: PMC9263197 DOI: 10.3389/fphar.2022.913367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Nrf2-mediated oxidative stress is a promising target of exhaustive exercise-induced fatigue (EEIF). Trilobatin (TLB) is a naturally occurring food additive with antioxidant effect and Nrf2 activation potency. The present study aimed to investigate the effect of TLB on EEIF and elucidate its underlying mechanism. Our results showed that TLB exerted potent anti-EEIF effect, as reflected by the rope climbing test and exhaustive swimming test. Moreover, TLB also effectively reduced the levels of lactate, creatine kinase, and blood urea nitrogen, and increased liver glycogen and skeletal muscle glycogen in mice after EEIF insult. Additionally, TLB also balanced the redox status as evidenced by decreasing the generation of reactive oxygen species and improving the antioxidant enzyme activities including superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of glutathione both in the tissue of muscle and myocardium. Furthermore, TLB promoted nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, and upregulated its downstream antioxidant response element (ARE) including quinone oxidoreductase-1 and heme oxygenase-1. Intriguingly, TLB also upregulated the GPx4 protein expression and reduced iron overload in mice after EEIF insult. Encouragingly, the beneficial effect of TLB on EEIF-induced oxidative stress and ferroptosis were substantially abolished in Nrf2-deficient mice. In conclusion, our findings demonstrate, for the first time, that TLB alleviates EEIF-induced oxidative stress through mediating Nrf2/ARE/ferroptosis axis.
Collapse
Affiliation(s)
- Ran Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yueping Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Congjian Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yingshu Xu,
| |
Collapse
|
28
|
Lithocarpus polystachyus (Sweet Tea) water extract promotes human hepatocytes HL7702 proliferation through activation of HGF/AKT/ERK signaling pathway. CHINESE HERBAL MEDICINES 2022; 14:576-582. [DOI: 10.1016/j.chmed.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
|
29
|
Huang F, Luo L, Wu Y, Xia D, Xu F, Gao J, Shi J, Gong Q. Trilobatin promotes angiogenesis after cerebral ischemia-reperfusion injury via SIRT7/VEGFA signaling pathway in rats. Phytother Res 2022; 36:2940-2951. [PMID: 35537702 DOI: 10.1002/ptr.7487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
Angiogenesis plays a pivotal role in the recovery of neurological function after ischemia stroke. Herein, we investigated the effect of trilobatin (TLB) on angiogenesis after cerebral ischemia-reperfusion injury (CIRI). The effect of TLB on angiogenesis after CIRI were investigated in mouse brain microvascular endothelium bEnd.3 cells and middle cerebral artery occlusion (MCAO)-induced CIRI rat model. The cell proliferation and angiogenesis were observed using immunofluorescence staining. The cell cycle, expressions of cell cycle-related proteins and SIRT 1-7 were determined by flow cytometry and western blot, respectively. The binding affinity of TLB with SIRT7 was predicted by molecular docking. The results showed that TLB concentration-dependently promoted bEnd.3 cell proportion in the S-phase. TLB significantly increased the protein expressions of SIRT6, SIRT7, and VEGFA, but not affected SIRT1-SIRT5 protein expressions. Moreover, TLB not only dramatically alleviated neurological impairment after CIRI, but also enhanced post-stroke neovascularization and newly formed functional vessels in cerebral ischemic penumbra. Furthermore, TLB up-regulated the protein expressions of CDK4, cyclin D1, VEGFA and its receptor VEGFR-2. Intriguingly, TLB not only directly bound to SIRT7, but also increased SIRT7 expression at day 28. Our findings reveal that TLB promotes cerebral microvascular endothelial cells proliferation, and facilitates angiogenesis after CIRI via mediating SIRT7/VEGFA signaling pathway in rats. Therefore, TLB might be a novel restorative agent to rescue ischemia stroke.
Collapse
Affiliation(s)
- Fengying Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lingyu Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yujia Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dianya Xia
- Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
30
|
Lu CY, Day CH, Kuo CH, Wang TF, Ho TJ, Lai PF, Chen RJ, Yao CH, Viswanadha VP, Kuo WW, Huang CY. Calycosin alleviates H 2 O 2 -induced astrocyte injury by restricting oxidative stress through the Akt/Nrf2/HO-1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:858-867. [PMID: 34990515 DOI: 10.1002/tox.23449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Oxidative stress-induced brain cell damage is a crucial factor in the pathogenesis of reactive oxygen species (ROS)-associated neurological diseases. Further, studies show that astrocytes are an important immunocompetent cell in the brain and play a potentially significant role in various neurological diseases. Therefore, elimination of ROS overproduction might be a potential strategy for preventing and treating neurological diseases. Accumulating evidence indicates that calycosin, a main active ingredient in the Chinese herbal medicine Huangqi (Radix Astragali Mongolici), is a potential therapeutic candidate with anti-inflammation and/or anticancer effects. Here, we investigated the protective effect of calycosin in brain astrocytes by mimicking in vitro oxidative stress using H2 O2 . The results revealed that H2 O2 significantly induced ROS and inflammatory factor (tumor necrosis factor [TNF]-α and interleukin [IL]-1β) production, whereas post-treatment with calycosin dramatically and concentration-dependently suppressed H2 O2 -induced damage by enhancing cell viability, repressing ROS and inflammatory factor production, and increasing superoxide dismutase (SOD) expression. Additionally, we found that calycosin facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of antioxidant molecules (heme oxygenase [HO]-1 and SOD) following H2 O2 treatment. Moreover, calycosin did not attenuated H2 O2 -induced astrocyte damage and ROS production in the presence of the ML385 (a Nrf2-specific inhibitor) and following Nrf2 silencing. Furthermore, calycosin failed to increase Akt phosphorylation and mitigate H2 O2 -induced astrocyte damage in the presence of the LY294002 (a selective phosphatidylinositol 3-kinase inhibitor), indicating that calycosin-mediated regulation of oxidative-stress homeostasis involved Akt/Nrf2/HO-1 signaling. These findings demonstrated that calycosin protects against oxidative injury in brain astrocytes by regulating oxidative stress through the AKT/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- School of Post Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Fang Lai
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Department of Emergency Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
31
|
Wang X, Yang Y, Xiao A, Zhang N, Miao M, Wang Z, Han J, Wen M. A comparative study of the effect of a gentle ketogenic diet containing medium-chain or long-chain triglycerides on chronic sleep deprivation-induced cognitive deficiency. Food Funct 2022; 13:2283-2294. [PMID: 35141738 DOI: 10.1039/d1fo04087a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ketogenic diet (KD) is well known for its neuroprotective effect, but little is known about its prophylactic efficacy against chronic sleep deprivation (SD) induced cognitive deficiency. An emerging study indicated that ferroptosis plays an important role in neurologic diseases but has been rarely reported in chronic SD. Here, we investigated the prophylactic effects of a medium-chain triglyceride-enriched KD (MKD) and a long-chain triglyceride-enriched KD (LKD) on cognitive deficiency and revealed the underlying mechanism focused on ferroptosis in chronic SD model mice. The results showed that the MKD exhibited stronger effects than the LKD on improving cognitive deficiency via suppressing ferroptosis and improving synaptic plasticity. Further mechanism results indicated that MKD produced higher Sirt3 protein levels than LKD, which probably contributed to the synergistic effect of beta hydroxybutyric acid and decanoic acid. Our finds provide novel evidence for the KD as a safe and feasible dietary intervention to prevent chronic SD-induced cognitive deficiency, and suggest a better choice of medium-chain fatty acid-enriched KD.
Collapse
Affiliation(s)
- Xueyan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Aiai Xiao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Mingyong Miao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China. .,Department of Biochemistry and Molecular Biology, The College of Basic Medical Sciences, The Second Military Medical University, Shanghai 200433, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China. .,Liaocheng High-Tech Biotechnology Co. Ltd, Liaocheng, 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China. .,Liaocheng High-Tech Biotechnology Co. Ltd, Liaocheng, 252059, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
32
|
Anshen-Buxin-Liuwei pill, a Mongolian medicinal formula could alleviate cardiomyocyte hypoxia/reoxygenation injury via mitochondrion pathway. Mol Biol Rep 2022; 49:885-894. [PMID: 35001248 DOI: 10.1007/s11033-021-06867-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Anshen Buxin Liuwei pill (ABLP) is a Mongolian medicinal formula that is composed of six medicinal materials: the Mongolian medicine Bos taurus domesticus Gmelin, Choerospondias axillaris (Roxb.) Burtt et Hill, Myristica fragrans Houtt., Eugenia caryophμllata Thunb., Aucklandia lappa Decne., and Liqui dambar formosana Hance. ABLP is considered to have a therapeutic effect on symptoms such as coronary heart disease, angina pectoris, arrhythmia, depression and irritability, palpitation, and shortness of breath. METHODS H9c2 cardiomyocytes were used to construct a hypoxia/reoxygenation (HR) injury model. CCK-8 assay and Annexin V-FITC cell apoptosis assays were used for cell viability and cell apoptosis determination. The LDH, SOD, MDA, CAT, CK, GSH-Px, Na+-K+-ATPase, and Ca2+-ATPase activities in cells were determined to assess the protective effects of ABLP. The mRNA levels of Sirtuin3 (Sirt3) and Cytochrome C (Cytc) in H9c2 cells were determined by quantitative real-time PCR. RESULTS The results indicate that HR-treated cells began to shrink from the spindle in an irregular shape with some floated in the medium. By increasing the therapeutic dose of ABLP (5, 25, and 50 μg/mL), the cells gradually reconverted in a concentration-dependent manner. The release of CK in HR-treated cells was significantly increased, indicating that ABLP exerts a protective effect in H9c2 cells against HR injury and can improve mitochondrial energy metabolism and mitochondrial function integrity. The present study scrutinized the cardioprotective effects of ABLP against HR-induced H9c2 cell injury through antioxidant and mitochondrial pathways. CONCLUSIONS ABLP could be a promising therapeutic drug for the treatment of myocardial ischemic cardiovascular disease. The results will provide reasonable information for the clinical use of ABLP.
Collapse
|
33
|
Hyperbaric Oxygen Treatment: Effects on Mitochondrial Function and Oxidative Stress. Biomolecules 2021; 11:biom11121827. [PMID: 34944468 PMCID: PMC8699286 DOI: 10.3390/biom11121827] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperbaric oxygen treatment (HBOT)—the administration of 100% oxygen at atmospheric pressure (ATA) greater than 1 ATA—increases the proportion of dissolved oxygen in the blood five- to twenty-fold. This increase in accessible oxygen places the mitochondrion—the organelle that consumes most of the oxygen that we breathe—at the epicenter of HBOT’s effects. As the mitochondrion is also a major site for the production of reactive oxygen species (ROS), it is possible that HBOT will increase also oxidative stress. Depending on the conditions of the HBO treatment (duration, pressure, umber of treatments), short-term treatments have been shown to have deleterious effects on both mitochondrial activity and production of ROS. Long-term treatment, on the other hand, improves mitochondrial activity and leads to a decrease in ROS levels, partially due to the effects of HBOT, which increases antioxidant defense mechanisms. Many diseases and conditions are characterized by mitochondrial dysfunction and imbalance between ROS and antioxidant scavengers, suggesting potential therapeutic intervention for HBOT. In the present review, we will present current views on the effects of HBOT on mitochondrial function and oxidative stress, the interplay between them and the implications for several diseases.
Collapse
|
34
|
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116:102012. [PMID: 34400291 DOI: 10.1016/j.jchemneu.2021.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and others, are characterized by progressive loss of neuronal cells, which causes memory impairment and cognitive decline. Mounting evidence demonstrated the possible implications of diverse biological processes, namely oxidative stress, mitochondrial dysfunction, aberrant cell cycle re-entry, post-translational modifications, protein aggregation, impaired proteasome dysfunction, autophagy, and many others that cause neuronal cell death. The condition worsens as there is no effective treatment for such diseases due to their complex pathogenesis and mechanism. Mounting evidence demonstrated the role of regulatory transcription factors, such as NFκβ, FoxO, Myc, CREB, and others that regulate the biological processes and diminish the disease progression and pathogenesis. Studies demonstrated that forkhead box O (FoxO) transcription factors had been implicated in the regulation of aging and longevity. Further, the functions of FoxO proteins are regulated by different post-translational modifications (PTMs), namely acetylation, and ubiquitination. Various studies concluded that FoxO proteins exert both neuroprotective and neurotoxic properties depending on their regulation mechanism and activity in the brain. Thus, understanding the nature of FoxO expression and activity in the brain will help develop effective therapeutic strategies. Herein, firstly, we discuss the role of FoxO protein in cell cycle regulation and cell proliferation, followed by the regulation of FoxO proteins through acetylation and ubiquitination. We also briefly explain the activity and expression pattern of FoxO proteins in the neuronal cells and explain the mechanism through which FoxO proteins are rescued from oxidative stress-induced neurotoxicity. Later on, we present a detailed view of the implication of FoxO proteins in neurodegenerative disease and FoxO proteins as an effective therapeutic target.
Collapse
Affiliation(s)
- Vaibhav Oli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
35
|
Lebiedzinska-Arciszewska M, Wojtczak L, Wieckowski MR. An Update on Isolation of Functional Mitochondria from Cells for Bioenergetics Studies. Methods Mol Biol 2021; 2310:79-89. [PMID: 34096000 DOI: 10.1007/978-1-0716-1433-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Mitochondria are the organelles where the most fundamental processes of energy transformation within the cell are located. They are also involved in several processes like apoptosis and autophagy, reactive oxygen species formation, and calcium signaling, which are crucial for proper cell functioning. In addition, mitochondrial genome hosts genes encoding important proteins incorporated in respiratory chain complexes and indispensable for the oxidative phosphorylation. Studying isolated mitochondria is, therefore, crucial for better understanding of cell physiology. The presented protocol describes a relatively simple and handy method for crude mitochondrial fraction isolation from different mammalian cell lines. It includes mechanical cells disruption (homogenization) and differential centrifugation. In addition, this chapter presents two basic ways to assess mitochondrial functionality: by measuring mitochondrial inner membrane potential and coupled respiration.
Collapse
Affiliation(s)
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
36
|
Kwan KKL, Yun H, Dong TTX, Tsim KWK. Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide. J Ginseng Res 2021; 45:473-481. [PMID: 34295207 PMCID: PMC8282498 DOI: 10.1016/j.jgr.2020.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. METHODS The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. RESULTS Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. CONCLUSION In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.
Collapse
Affiliation(s)
- Kenneth Kin Leung Kwan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huang Yun
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Ting Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl Wah Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
37
|
Feng K, Liu Y, Sun J, Zhao C, Duan Y, Wang W, Yan K, Yan X, Sun H, Hu Y, Han J. Compound Danshen Dripping Pill inhibits doxorubicin or isoproterenol-induced cardiotoxicity. Biomed Pharmacother 2021; 138:111531. [PMID: 34311530 DOI: 10.1016/j.biopha.2021.111531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the advanced heart disease with high morbidity and mortality. Compound DanShen Dripping Pill (CDDP) is a widely used Traditional Chinese Medicine for cardiovascular disease treatment. Herein, we investigated if CDDP can protect mice against doxorubicin (DOX) or isoprenaline (ISO)-induced HF. After 3 days feeding of normal chow containing CDDP, mice were started DOX or ISO treatment for 4 weeks or 18 days. At the end of treatment, mice were conducted electrocardiogram and echocardiographic test. Blood and heart samples were determined biochemical parameters, myocardial structure and expression of the related molecules. CDDP normalized DOX/ISO-induced heart weight changes, HF parameters and fibrogenesis. The DOX/ISO-impaired left ventricular ejection fraction and fractional shortening were restored by CDDP. Mechanistically, CDDP blocked DOX/ISO-inhibited expression of antioxidant enzymes and DOX/ISO-induced expression of pro-fibrotic molecules, inflammation and cell apoptosis. Additional DOX/ISO-impaired targets in cardiac function but protected by CDDP were identified by RNAseq, qRT-PCR and Western blot. In addition, CDDP protected cardiomyocytes against oxygen-glucose deprivation-induced injuries. Taken together, our study shows that CDDP can protect against myocardial injuries in different models, suggesting its potential application for HF treatment.
Collapse
Affiliation(s)
- Ke Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yuxin Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jia Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Xijun Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China.
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| |
Collapse
|
38
|
Nigdelioglu Dolanbay S, Kocanci FG, Aslim B. Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomed Pharmacother 2021; 140:111690. [PMID: 34004513 DOI: 10.1016/j.biopha.2021.111690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Oxidative stress is a significant feature in the pathomechanism of neurodegenerative diseases. Thus, the search for an effective and safe novel antioxidant agent with neuroprotective properties has increased the interest in medicinal plant products as a bioactive phytochemical source. However, little is known about the potential effects of the medically important Glaucium corniculatum as a natural antioxidant. OBJECTIVE In the present study, it was aimed to investigate the anti-oxidative, anti-apoptotic, and cell cycle regulatory mechanisms underlying the neuroprotective effects of alkaloid extracts (chloroform, methanol, and water) from G. corniculatum, which was profiled for major alkaloid/alkaloids, against H2O2-induced neuronal damage in differentiated PC12 cells. MATERIALS AND METHODS The profiles of the alkaloid extracts were analyzed by GC-MS. The effects of the alkaloid extracts on intracellular ROS production, level of apoptotic cells, and cell cycle dysregulation were analyzed by flow cytometry; the effects on mRNA expression of apoptosis-related genes were also analyzed by qRT-PCR. RESULTS The same alkaloid components, allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide were obtained in all three solvents, but the ratios of the components differed according to the solvents. Allocryptopine was determined to be the major alkaloid ingredient in the alkaloid extracts, with the highest amount of allocryptopine (497 μg/mg) being found in the chloroform alkaloid extract (CAE) (*p < 0.05). The best results were obtained from CAE, which has the highest amount of allocryptopine among alkaloid extracts in all studies. CAE suppressed intracellular ROS production (5.7-fold), percentage of apoptotic cells (3.0-fold), and cells in the sub G1 phase (6.8-fold); additionally, it increased cells in the G1 phase (1.5-fold) (**p < 0.01). CAE remarkably reduced the expressions of Bax, Caspase-9/-3 mRNA (2.4-3.5-fold) while increasing the expression of Bcl-2 mRNA (3.0-fold) (*p < 0.05). CONCLUSIONS Our results demonstrated that alkaloid extracts from G. corniculatum, which contain allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide suppressed oxidative stress-induced neuronal apoptosis, possibly by suppressing the mitochondrial apoptotic pathway and regulating the cell cycle. These results are the first report that related alkaloids have played a neuroprotective role by regulating multiple mechanisms. Thus, our study indicated that these alkaloids especially allocryptopine could offer an efficient and novel strategy to explore novel drugs for neuroprotection and cognitive improvement.
Collapse
Affiliation(s)
| | - Fatma Gonca Kocanci
- Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya 07425, Antalya, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, 06500 Ankara, Turkey
| |
Collapse
|
39
|
Li N, Li X, Shi YL, Gao JM, He YQ, Li F, Shi JS, Gong QH. Trilobatin, a Component from Lithocarpus polystachyrus Rehd., Increases Longevity in C. elegans Through Activating SKN1/SIRT3/DAF16 Signaling Pathway. Front Pharmacol 2021; 12:655045. [PMID: 33935768 PMCID: PMC8082181 DOI: 10.3389/fphar.2021.655045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Trilobatin (TLB) is an effective component from Lithocarpus polystachyrus Rehd. Our previous study revealed that TLB protected against oxidative injury in neuronal cells by AMPK/Nrf2/SIRT3 signaling pathway. However, whether TLB can delay aging remains still a mystery. Therefore, the present study was designed to investigate the possible longevity-enhancing effect of TLB, and further to explore its underlying mechanism in Caenorhabditis elegans (C. elegans). The results showed that TLB exerted beneficial effects on C. elegans, as evidenced by survival rate, body movement assay and pharynx-pumping assay. Furthermore, TLB not only significantly decreased ROS and MDA levels, but also increased anti-oxidant enzyme activities including CAT and SOD, as well as its subtypes SOD2 andSOD3, but not affect SOD1 activity, as evidenced by heat and oxidative stress resistance assays. Whereas, the anti-oxidative effects of TLB were almost abolished in SKN1, Sir2.3, and DAF16 mutant C. elegans. Moreover, TLB augmented the fluorescence intensity of DAF16: GFP, SKN1:GFP, GST4:GFP mutants, indicating that TLB increased the contents of SKN1, SIRT3 and DAF16 due to fluorescence intensity of these mutants, which were indicative of these proteins. In addition, TLB markedly increased the protein expressions of SKN1, SIRT3 and DAF16 as evidenced by ELISA assay. However, its longevity-enhancing effect were abolished in DAF16, Sir2.3, SKN1, SOD2, SOD3, and GST4 mutant C. elegans than those of non-TLB treated controls. In conclusion, TLB effectively prolongs lifespan of C. elegans, through regulating redox homeostasis, which is, at least partially, mediated by SKN1/SIRT3/DAF16 signaling pathway.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Ling Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu-Qi He
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
40
|
Kim SC, Kim HJ, Park GE, Pandey RP, Lee J, Sohng JK, Park YI. Trilobatin ameliorates bone loss via suppression of osteoclast cell differentiation and bone resorptive function in vitro and in vivo. Life Sci 2021; 270:119074. [PMID: 33497739 DOI: 10.1016/j.lfs.2021.119074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/27/2022]
Abstract
AIM Due to on-going safety concerns or lack of efficacy of currently used medications for the treatment of osteoporosis (OP), identifying new therapeutic agents is an important part of research. In the present study, potential anti-osteoporotic activity of a natural flavonoid glycoside, trilobatin (phloretin 4-O-glucoside, Tri) was evaluated. MATERIAL AND METHODS Osteoclastic cells were established by treating the RAW264.7 macrophage cells with RANKL and ovariectomized (OVX) C57BL/6 female mice were used as an animal model of postmenopausal OP. Actin ring formation, expression levels of osteoclastogenic marker genes and bone resorptive proteins were measured by RT-PCR, western blot, or fluorometric assays. Bone mineral density (BMD) was determined by pDEXA densitometric measurement and serum osteoprotegerin (OPG) and RANKL were measured by ELISA. KEY FINDING Tri (5-20 μM) significantly inhibited osteoclast formation and actin ring formation in RANKL-induced osteoclasts. Tri attenuated expression of osteoclastogenic genes (MMP-9 and cathepsin K), bone resorptive proteins (CA II and integrin β3), and osteoclastogenic signalling proteins (TRAF6, p-Pyk2, c-Cbl, and c-Src). Oral administration of Tri to OVX mice augmented BMD and serum OPG/RANKL ratio. Interestingly, while Tri and phloretin aglycone (Phl) showed similar levels of in vitro anti-osteoclastogenic activity, Tri more potently ameliorated bone loss than Phl in OVX mice. SIGNIFICANCE This study demonstrated that Tri inhibits osteoclastic cell differentiation and bone resorption by down-regulating the expression of osteoclastogenic marker genes and signalling proteins, bone resorptive proteins, and by augmenting serum OPG/RANKL ratio, suggesting that Tri can be a novel anti-osteoporotic compound for treating senile and postmenopausal OP.
Collapse
Affiliation(s)
- Seong Cheol Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Hyeon Jeong Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Gi Eun Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
41
|
The Nrf2/PGC1 α Pathway Regulates Antioxidant and Proteasomal Activity to Alter Cisplatin Sensitivity in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4830418. [PMID: 33294122 PMCID: PMC7714579 DOI: 10.1155/2020/4830418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
Drug resistance remains a barrier in the clinical treatment of ovarian cancer. Proteasomal and antioxidant activities play important roles in tumor drug resistance, and increasing evidence suggests the existence of an interaction between antioxidant and proteasomal activities. However, the mechanism of the synergistic effects of proteasomal activity and antioxidation on tumor drug resistance is not completely clear. In this study, we compared two ovarian cancer cells, A2780 and SKOV3 cells. Among them, SKOV3 cell is a human clear cell carcinoma cell line that is resistant to platinum. We found that compared with the findings in A2780 cells, SKOV3 cells were less sensitive to both proteasomal inhibitor and cisplatin. Proteasomal inhibition enhanced the sensitivity of A2780 cells, but not SKOV3 cells, to cisplatin. Notably, the Nrf2-mediated antioxidant pathway was identified as a resistance mechanism in proteasome inhibitor-resistant cells, but this was not the only factor identified in our research. In SKOV3 cells, PGC1α regulated the antioxidant activity of Nrf2 by increasing the phosphorylation of GSK3β, and in turn, Nrf2 regulated the transcriptional activity of PGC1α. Thus, Nrf2 and PGC1α synergistically participate in the regulation of proteasomal activity. Furthermore, the Nrf2/PGC1α pathway participated in the regulation of mitochondrial function and homeostasis, further regulating proteasomal activity in SKOV3 cells. Therefore, exploring the roles of PGC1α and Nrf2 in the regulation of proteasomal activity by antioxidant and mitochondrial functions may provide new avenues for reversing drug resistance in ovarian cancer.
Collapse
|
42
|
Dong Y, Zhao J, Zhu Q, Liu H, Wang J, Lu W. Melatonin inhibits the apoptosis of rooster Leydig cells by suppressing oxidative stress via AKT-Nrf2 pathway activation. Free Radic Biol Med 2020; 160:1-12. [PMID: 32758663 DOI: 10.1016/j.freeradbiomed.2020.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been described as a key driver of Leydig cell apoptosis. Melatonin has antioxidative and antiapoptotic effects, but the potential effects and mechanism of melatonin on oxidative stress and apoptosis in rooster Leydig cells remain unclear. Our results showed that melatonin biosynthetic enzymes and melatonin receptors were expressed in rooster Leydig cells and their expression were locally inhibited as rooster sexual maturation. We found that melatonin inhibited H2O2-induced apoptosis of rooster Leydig cell by activating the melatonin receptors Mel-1a and Mel-1b. Additionally, melatonin protects mitochondria from damage by reducing the level of oxidative stress in Leydig cells. Melatonin relieved H2O2-induced oxidative stress by significantly reducing intracellular ROS, MDA and 8-OHdG levels and increasing SOD and GSH-Px activities. Simultaneously, melatonin significantly reduced H2O2-induced depolarization of ΔΨm and decreased the release of Cytochrome C and Ca2+. We also observed that melatonin activated the Nrf2 pathway, while Nrf2 silencing abrogated the anti-oxidative and anti-apoptotic effects of melatonin in rooster Leydig cells. Furthermore, melatonin promoted the phosphorylation of AKT, while AKT inhibitor suppressed the Nrf2 pathway activated by melatonin and alleviated the inhibitory effects of melatonin on apoptosis and oxidative stress. In conclusion, melatonin could inhibit apoptosis in rooster Leydig cells by suppressing oxidative stress via activation of the AKT-Nrf2 pathway.
Collapse
Affiliation(s)
- Yangyunyi Dong
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qingyu Zhu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
43
|
Dong Y, Bi W, Zheng K, Zhu E, Wang S, Xiong Y, Chang J, Jiang J, Liu B, Lu Z, Cheng Y. Nicotine Prevents Oxidative Stress-Induced Hippocampal Neuronal Injury Through α7-nAChR/Erk1/2 Signaling Pathway. Front Mol Neurosci 2020; 13:557647. [PMID: 33328880 PMCID: PMC7717967 DOI: 10.3389/fnmol.2020.557647] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress-induced neuronal damage has been implicated to play a dominant role in neurodegenerative disorders, such as Alzheimer’s disease (AD). Nicotine, a principal additive compound for tobacco users, is thought as a candidate to attenuate amyloid-β-mediated neurotoxicity and NMDA-induced excitotoxicity. Previous studies demonstrated that nicotine exerted this neuroprotective action on oxidative stress. However, the mechanisms underlying how nicotine contributes on oxidative injury in immortalized hippocampal HT-22 cells remain largely unknown. Therefore, in this study we investigated that the potential effects of nicotine on hydrogen peroxide (H2O2)-induced oxidative injury and underlying mechanisms in HT-22 cells. We found that pretreatment with nicotine at low concentrations markedly recovered the cell cycle that was arrested at the G2/M phase in the presence of H2O2 through reduced intracellular ROS generation. Moreover, nicotine attenuated H2O2-induced mitochondrial dysfunctions. Mechanistically, the application of nicotine significantly upregulated the levels of phosphorylated Erk1/2. The neuroprotective effects of nicotine, in turn, were abolished by PD0325901, a selective Erk1/2 inhibitor. Further obtained investigation showed that nicotine exerted its neuroprotective effects via specifically activating α7 nicotinic acetylcholine receptors (α7-nAChRs). A selective inhibitor of α7-nAChRs, methyllycaconitine citrate (MLA), not only completely prevented nicotine-mediated antioxidation but also abolished expression of p-Erk1/2. Taken together, our findings suggest that nicotine suppresses H2O2-induced HT-22 cell injury through activating the α7-nAChR/Erk1/2 signaling pathway, which indicates that nicotine may be a novel strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Enni Zhu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yiping Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Junlei Chang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianbing Jiang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bingfeng Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhonghua Lu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yongxian Cheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
44
|
Shang A, Liu HY, Luo M, Xia Y, Yang X, Li HY, Wu DT, Sun Q, Geng F, Li HB, Gan RY. Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Crit Rev Food Sci Nutr 2020; 62:917-934. [DOI: 10.1080/10408398.2020.1830363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ao Shang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hong-Yan Liu
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yu Xia
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiao Yang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
45
|
Caballero EP, Mariz-Ponte N, Rigazio CS, Santamaría MH, Corral RS. Honokiol attenuates oxidative stress-dependent heart dysfunction in chronic Chagas disease by targeting AMPK / NFE2L2 / SIRT3 signaling pathway. Free Radic Biol Med 2020; 156:113-124. [PMID: 32540353 DOI: 10.1016/j.freeradbiomed.2020.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Eugenia Pérez Caballero
- Laboratorio de Biología Experimental, Centro de Estudios Metabólicos, Santander, 39005, Spain
| | - Nilo Mariz-Ponte
- Instituto de Investigação Biomédica, Universidade de Coimbra, Coimbra, 3004517, Portugal
| | - Cristina S Rigazio
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP, CONICET-GCBA), Servicio de Parasitología-Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, 1425, Argentina
| | - Miguel H Santamaría
- Laboratorio de Biología Experimental, Centro de Estudios Metabólicos, Santander, 39005, Spain
| | - Ricardo S Corral
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP, CONICET-GCBA), Servicio de Parasitología-Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, 1425, Argentina.
| |
Collapse
|
46
|
Shen T, Shang Y, Wu Q, Ren H. The protective effect of trilobatin against isoflurane-induced neurotoxicity in mouse hippocampal neuronal HT22 cells involves the Nrf2/ARE pathway. Toxicology 2020; 442:152537. [PMID: 32663520 DOI: 10.1016/j.tox.2020.152537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 01/14/2023]
Abstract
Long-term exposure to isoflurane may induce long-term developmental neurotoxicity and cognitive impairments in the neonatal brains. Trilobatin, a leaf extract from the Chinese traditional sweet tea Lithocarpus polystachyus Rehd, possesses various biological properties including anti-inflammatory and anti-oxidant properties. Our study aimed to explore the neuroprotective effect of trilobatin on isoflurane-induced neurotoxicity in mouse hippocampal neuronal HT22 cells. The effects of trilobatin on cell viability, LDH release, apoptosis, and caspase-3/7 activity in isoflurane-induced HT22 cells were explored by CCK-8, LDH release assay, flow cytometry analysis, and caspase-3/7 activity assay, respectively. Oxidative stress was evaluated by measuring the levels of reactive oxygen species (ROS) and malonyldialdehyde (MDA) and activities of superoxide dismutase (SOD) and catalase (CAT). The expression of nuclear erythroid-2 related factor 2 (Nrf2), nuclear Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) was determined by western blot and qRT-PCR. Results suggested that exposure to isoflurane significantly reduced cell viability and increased LDH release, apoptotic rate and caspase-3/7 activity in HT22 cells, which were abolished by trilobatin. Trilobatin reversed isoflurane-induced increase of ROS and MDA levels and reduction of SOD and CAT activities in HT22 cells. Additionally, trilobatin promoted the nuclear translocation of Nrf2 as well as the mRNA and protein expression of HO-1 and NQO1 in HT22 cells exposed to isoflurane. Nrf2 knockdown attenuated the effects of trilobatin on isoflurane-induced viability reduction, LDH release, apoptosis, and oxidative stress in HT22 cells. Overall, trilobatin protected HT22 cells against isoflurane-induced neurotoxicity via activating the Nrf2/antioxidant response element (ARE) pathway.
Collapse
Affiliation(s)
- Tu Shen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - You Shang
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Qiaoling Wu
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China.
| | - Hongwei Ren
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
47
|
Gao J, Chen N, Li N, Xu F, Wang W, Lei Y, Shi J, Gong Q. Neuroprotective Effects of Trilobatin, a Novel Naturally Occurring Sirt3 Agonist from Lithocarpus polystachyus Rehd., Mitigate Cerebral Ischemia/Reperfusion Injury: Involvement of TLR4/NF-κB and Nrf2/Keap-1 Signaling. Antioxid Redox Signal 2020; 33:117-143. [PMID: 32212827 DOI: 10.1089/ars.2019.7825] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Neuroinflammation and oxidative stress are deemed the prime causes of brain injury after cerebral ischemia/reperfusion (I/R). Since the silent mating-type information regulation 2 homologue 3 (Sirt3) pathway plays an imperative role in protecting against neuroinflammation and oxidative stress, it has been verified as a target to treat ischemia stroke. Therefore, we attempted to seek novel Sirt3 agonist and explore its underlying mechanism for stroke treatment both in vivo and in vitro. Results: Trilobatin (TLB) not only dramatically suppressed neuroinflammation and oxidative stress injury after middle cerebral artery occlusion in rats, but also effectively mitigated oxygen and glucose deprivation/reoxygenation injury in primary cultured astrocytes. These beneficial effects, along with the reduced proinflammatory cytokines via suppressing Toll-like receptor 4 (TLR4) signaling pathway, lessened oxidative injury via activating nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, in keeping with the findings in vivo. Intriguingly, the TLB-mediated neuroprotection on cerebral I/R injury was modulated by reciprocity between TLR4-mediated neuroinflammatory responses and Nrf2 antioxidant responses as evidenced by molecular docking and silencing TLR4 and Nrf2, respectively. Most importantly, TLB not only directly bonded to Sirt3 but also increased Sirt3 expression and activity, indicating that Sirt3 might be a promising therapeutic target of TLB. Innovation: TLB is a naturally occurring Sirt3 agonist with potent neuroprotective effects via regulation of TLR4/nuclear factor-kappa B and Nrf2/Kelch-like ECH-associated protein 1 (Keap-1) signaling pathways both in vivo and in vitro. Conclusion: Our findings indicate that TLB protects against cerebral I/R-induced neuroinflammation and oxidative injury through the regulation of neuroinflammatory and oxidative responses via TLR4, Nrf2, and Sirt3, suggesting that TLB might be a promising Sirt3 agonist against ischemic stroke.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Nana Chen
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Na Li
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Wei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yaying Lei
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
48
|
Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS. Neuroprotection Against Oxidative Stress: Phytochemicals Targeting TrkB Signaling and the Nrf2-ARE Antioxidant System. Front Mol Neurosci 2020; 13:116. [PMID: 32714148 PMCID: PMC7346762 DOI: 10.3389/fnmol.2020.00116] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) plays a critical role in the pathophysiology of several brain-related disorders, including neurodegenerative diseases and ischemic stroke, which are the major causes of dementia. The Nrf2-ARE (nuclear factor erythroid 2-related factor 2/antioxidant responsive element antioxidant) system, the primary cellular defense against OS, plays an essential role in neuroprotection by regulating the expressions of antioxidant molecules and enzymes. However, simultaneous events resulting in the overproduction of reactive oxygen species (ROS) and deregulation of the Nrf2-ARE system damage essential cell components and cause loss of neuron structural and functional integrity. On the other hand, TrkB (tropomyosin-related kinase B) signaling, a classical neurotrophin signaling pathway, regulates neuronal survival and synaptic plasticity, which play pivotal roles in memory and cognition. Also, TrkB signaling, specifically the TrkB/PI3K/Akt (TrkB/phosphatidylinositol 3 kinase/protein kinase B) pathway promotes the activation and nuclear translocation of Nrf2, and thus, confers neuroprotection against OS. However, the TrkB signaling pathway is also known to be downregulated in brain disorders due to lack of neurotrophin support. Therefore, activations of TrkB and the Nrf2-ARE signaling system offer a potential approach to the design of novel therapeutic agents for brain disorders. Here, we briefly overview the development of OS and the association between OS and the pathogenesis of neurodegenerative diseases and brain injury. We propose the cellular antioxidant defense and TrkB signaling-mediated cell survival systems be considered pharmacological targets for the treatment of neurodegenerative diseases, and review the literature on the neuroprotective effects of phytochemicals that can co-activate these neuronal defense systems.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| |
Collapse
|
49
|
Chen N, Wang J, He Y, Xu Y, Zhang Y, Gong Q, Yu C, Gao J. Trilobatin Protects Against Aβ 25-35-Induced Hippocampal HT22 Cells Apoptosis Through Mediating ROS/p38/Caspase 3-Dependent Pathway. Front Pharmacol 2020; 11:584. [PMID: 32508629 PMCID: PMC7248209 DOI: 10.3389/fphar.2020.00584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence reveals that an aberrant accumulation of β-amyloid (Aβ) is the main reason of Alzheimer’s disease (AD) pathogenesis. Thus, inhibition of Aβ-induced neurotoxicity may be promising therapeutic tactics to mitigate AD onset and advance. The development of agent candidates by cultured neurons against Aβ-induced cytotoxicity is widely accepted to be an efficient strategy to explore the drug for AD patients. Previously, we have revealed that trilobatin (TLB), a small molecule monomer, derives from Lithocarpus polystachyus Rehd, possessed antioxidative activities on hydrogen peroxide-induced oxidative injury in PC12 cells. The present study was designed to investigate the effects and the underlying mechanism of TLB on Aβ-induced injury in hippocampal HT22 cells. The results demonstrated that TLB attenuated Aβ25–35-induced HT22 cell death, as evidenced by MTT assay and LDH release. Furthermore, TLB dramatically mitigated cell death after Aβ25–35 insulted via decreasing the intracellular and mitochondrial ROS overproduction and restoring antioxidant enzyme activities, as well as suppressing apoptosis. Of note, Aβ25–35 triggered increase in ratio of Bax/Bcl-2, activation of caspase-3, phosphorylation of tau, JNK, p38 MAPK, and decrease in Sirt3 expression, whereas TLB reversed these changes. Intriguingly, TLB could directly bind to p38, as evidenced by molecular docking and p38 inhibitor. Taken together, the results reveal that TLB effectively protects against Aβ25–35-induced neuronal cell death via activating ROS/p38/caspase 3-dependent pathway. Our findings afford evidence for the potential development of TLB to hinder neuronal death during AD.
Collapse
Affiliation(s)
- Nana Chen
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jiao Wang
- Department of Neurology, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuchuan Zhang
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
50
|
Yang JY, Zhong YT, Hao WN, Liu XX, Shen Q, Li YF, Ren S, Wang Z, Li W, Zhao LC. The PI3K/Akt and NF-κB signaling pathways are involved in the protective effects of Lithocarpus polystachyus (sweet tea) on APAP-induced oxidative stress injury in mice. RSC Adv 2020; 10:18044-18053. [PMID: 35517205 PMCID: PMC9053632 DOI: 10.1039/d0ra00020e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/25/2020] [Indexed: 12/17/2022] Open
Abstract
Acetaminophen (APAP)-induced acute liver injury (ALI) is a health issue that has gradually attracted attention, and is often regarded as a model of drug-induced hepatotoxicity. The leaves of Lithocarpus polystachyus Rehd. (named as “sweet tea”, ST) usually serve as tea drink and folk medicine for healthcare in the southwest part of China. In previous reports, it has been proven to protect various animal models, except for APAP-induced liver injury model. Therefore, this study initially explored the protective effect of ST leaf extract (STL-E) on hepatotoxicity induced by APAP in ICR mice. STL-E of 50 and 100 mg kg−1 were given to each group for 7 days. ALI was intraperitoneally induced by APAP treatment (i.p. 250 mg per kg body weight). Biochemical markers, levels of inflammatory factors, histopathological staining and western blotting were used to analyze the inflammation and apoptosis of liver tissues. Interestingly, the treatment with STL-E significantly attenuated APAP-induced liver injury (p < 0.05). Moreover, STL-E partially mitigated APAP-induced liver injury by effectively activating the PI3K/Akt pathway and inhibiting the NF-κB pathway. In a word, STL-E protected liver against APAP-induced hepatotoxicity by inhibiting the PI3K/Akt-mediated apoptosis signal pathway and inhibiting the NF-κB-mediated signaling pathway. Acetaminophen (APAP)-induced acute liver injury (ALI) is a health issue that has gradually attracted attention, and is often regarded as a model of drug-induced hepatotoxicity.![]()
Collapse
Affiliation(s)
- Jia-Yu Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Yu-Te Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Wei-Nan Hao
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Xiang-Xiang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Yan-Fei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|