1
|
Zarazúa-Guzmán S, Vicente-Martínez JG, Pinos-Rodríguez JM, Arevalo-Villalobos JI. An overview of major depression disorder: The endocannabinoid system as a potential target for therapy. Basic Clin Pharmacol Toxicol 2024; 135:669-684. [PMID: 39370369 DOI: 10.1111/bcpt.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Major depressive disorder is the psychiatric disease with the highest global prevalence, impacting social functioning and decreasing the quality of life. The partial pathophysiological knowledge of the disease, the economic burden and the low remission rates are sufficient justification to carry out an update on the subject in the search for new therapeutic approaches and targets. The endocannabinoid system has been linked to the development of depression, and its stimulation or antagonism is a promising approach in the treatment of major depressive disorder. Cannabidiol (CBD) and its properties have been widely studied recently; its analgesic, anti-inflammatory, antineoplastic and neuroprotective roles have even been reported in animal models and clinical trials, achieving its approved use for certain neurodegenerative pathologies. The use of CBD in depression biomodels and clinical trials has not been the exception, and here we contrast the current evidence of its administration and pharmacology against the pathological mechanisms of major depressive disorder.
Collapse
Affiliation(s)
- Sergio Zarazúa-Guzmán
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | |
Collapse
|
2
|
Palmisano M, Ramunno CF, Farhat E, Dvir-Ginzberg M, Lutz B, de Almodovar CR, Bilkei-Gorzo A. Local cannabinoid receptor type-1 regulates glial cell activity and insulin-like growth factor-1 receptor signaling in the mediobasal hypothalamus. Mech Ageing Dev 2024; 220:111954. [PMID: 38821184 DOI: 10.1016/j.mad.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
As organisms age, the activity of the endocannabinoid system in the brain declines, coinciding with increased neuroinflammation and disrupted hypothalamic functions. Notably, cannabinoid receptors type-1 (CB1) are highly expressed in the ventromedial hypothalamic nucleus (VMH) within the mediobasal hypothalamus, a central area of neuroendocrine regulation. This study investigates whether the CB1 receptor influences age-related changes in a brain region-dependent manner. Therefore, we performed stereotaxic injections of rAAV1/2 expressing Cre recombinase in 2-month-old CB1flox/flox male animals to delete the CB1 gene and in CB1-deficient (CB1-STOP) mice to induce its re-expression. The intensity of pro-inflammatory glial activity, gonadotropin-releasing hormone (GnRH) and insulin-like growth factor-1 receptor (IGF-1R) expression was assessed in the hypothalamus of mice at 18-19 months of age. Site-specific CB1 receptor deletion induced pro-inflammatory glial activity and increased hypothalamic Igf1r mRNA expression. Unexpectedly, GnRH levels remained unaltered. Importantly, rescuing the receptor in null mutant animals had the opposite effect: it reduced pro-inflammatory glial activation and decreased Igf1r mRNA expression without affecting GnRH production. Overall, the study highlights the important role of the CB1 receptor in the VMH in reducing age-related inflammation and modulating IGF-1R signaling.
Collapse
Affiliation(s)
- Michela Palmisano
- Institute of Molecular Psychiatry, Medical Faculty, University Clinics of Bonn, Bonn 53125, Germany
| | - Carla Florencia Ramunno
- Institute for Neurovascular Cell Biology, University Hospital Bonn, University Clinics of Bonn, Bonn 53125, Germany
| | - Eli Farhat
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Mona Dvir-Ginzberg
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany; Leibniz Institute for Resilience Research, Mainz 55122, Germany
| | - Carmen Ruiz de Almodovar
- Institute for Neurovascular Cell Biology, University Hospital Bonn, University Clinics of Bonn, Bonn 53125, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University Clinics of Bonn, Bonn 53125, Germany.
| |
Collapse
|
3
|
Prado-Fernández MF, Magdaleno-Madrigal VM, Cabañas-García E, Mucio-Ramírez S, Almazán-Alvarado S, Pérez-Molphe-Balch E, Gómez-Aguirre YA, Sánchez-Jaramillo E. Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity. Curr Issues Mol Biol 2024; 46:6885-6902. [PMID: 39057053 PMCID: PMC11275307 DOI: 10.3390/cimb46070411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.
Collapse
Affiliation(s)
- María Fernanda Prado-Fernández
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
| | - Víctor Manuel Magdaleno-Madrigal
- Laboratorio de Neuromodulación Experimental, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Emmanuel Cabañas-García
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Zacatecas, Mexico;
| | - Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Salvador Almazán-Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Eugenio Pérez-Molphe-Balch
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
| | - Yenny Adriana Gómez-Aguirre
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
- CONAHCyT Research Fellow, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo, Huipulco, Ciudad de México 14370, Mexico
| |
Collapse
|
4
|
Maiorov SA, Laryushkin DP, Kritskaya KA, Zinchenko VP, Gaidin SG, Kosenkov AM. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci 2024; 14:668. [PMID: 39061409 PMCID: PMC11274798 DOI: 10.3390/brainsci14070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways.
Collapse
Affiliation(s)
| | | | | | | | - Sergei G. Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia (A.M.K.)
| | | |
Collapse
|
5
|
Sharon N, Yarmolinsky L, Khalfin B, Fleisher-Berkovich S, Ben-Shabat S. Cannabinoids' Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:6402. [PMID: 38928109 PMCID: PMC11204381 DOI: 10.3390/ijms25126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases. The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases. To our knowledge, few reviews are devoted to cannabinoids' impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.
Collapse
Affiliation(s)
| | | | | | | | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.S.); (L.Y.); (B.K.); (S.F.-B.)
| |
Collapse
|
6
|
van der Heijden AR, Houben T. Lipids in major depressive disorder: new kids on the block or old friends revisited? Front Psychiatry 2023; 14:1213011. [PMID: 37663599 PMCID: PMC10469871 DOI: 10.3389/fpsyt.2023.1213011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric mood disorder that results in substantial functional impairment and is characterized by symptoms such as depressed mood, diminished interest, impaired cognitive function, and vegetative symptoms such as disturbed sleep. Although the exact etiology of MDD is unclear, several underlying mechanisms (disturbances in immune response and/or stress response) have been associated with its development, with no single mechanism able to account for all aspects of the disorder. Currently, about 1 in 3 patients are resistant to current antidepressant therapies. Providing an alternative perspective on MDD could therefore pave the way for new, unexplored diagnostic and therapeutic solutions. The central nervous system harbors an enormous pool of lipids and lipid intermediates that have been linked to a plethora of its physiological functions. The aim of this review is therefore to provide an overview of the implications of lipids in MDD and highlight certain MDD-related underlying mechanisms that involve lipids and/or their intermediates. Furthermore, we will also focus on the bidirectional relationship between MDD and the lipid-related disorders obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Sun Y, Che J, Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res Bull 2023; 199:110664. [PMID: 37192719 DOI: 10.1016/j.brainresbull.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Microglia, the resident myeloid cells of the central nervous system, are the first line of defense against foreign pathogens, thereby confining the extent of brain injury. However, the role of microglia is not limited to macrophage-like functions. In addition to proinflammatory response mediation, microglia are involved in neurodevelopmental remodeling and homeostatic maintenance in the absence of disease. An increasing number of studies have also elucidated microglia-mediated regulation of tumor growth and neural repair in diseased brains. Here, we review the non-proinflammatory roles of microglia, with the aim of promoting a deeper understanding of the functions of microglia in healthy and diseased brains and contributing to the development of novel therapeutics that target microglia in neurological disorders.
Collapse
Affiliation(s)
- Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China; Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai China.
| |
Collapse
|
8
|
Stratoulias V, Ruiz R, Kanatani S, Osman AM, Keane L, Armengol JA, Rodríguez-Moreno A, Murgoci AN, García-Domínguez I, Alonso-Bellido I, González Ibáñez F, Picard K, Vázquez-Cabrera G, Posada-Pérez M, Vernoux N, Tejera D, Grabert K, Cheray M, González-Rodríguez P, Pérez-Villegas EM, Martínez-Gallego I, Lastra-Romero A, Brodin D, Avila-Cariño J, Cao Y, Airavaara M, Uhlén P, Heneka MT, Tremblay MÈ, Blomgren K, Venero JL, Joseph B. ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain. Nat Neurosci 2023:10.1038/s41593-023-01326-3. [PMID: 37169859 DOI: 10.1038/s41593-023-01326-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.
Collapse
Affiliation(s)
- Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Adriana-Natalia Murgoci
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Isabel Alonso-Bellido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Fernando González Ibáñez
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Guillermo Vázquez-Cabrera
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Mercedes Posada-Pérez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Nathalie Vernoux
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
| | - Dario Tejera
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | | | - David Brodin
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Javier Avila-Cariño
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Ève Tremblay
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Jose L Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Romero-Torres BM, Alvarado-Ramírez YA, Duran-Alonzo SR, Ruiz-Contreras AE, Herrera-Solis A, Amancio-Belmont O, Prospéro-García OE, Méndez-Díaz M. A potential role of hippocampus on impulsivity and alcohol consumption through CB1R. Pharmacol Biochem Behav 2023; 225:173558. [PMID: 37088449 DOI: 10.1016/j.pbb.2023.173558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
There are a few studies suggesting that the hippocampus is involved in the regulation of impulsivity, and which attempt to explain drug seeking behavior in addiction. In addition, cannabinoid receptor 1 (CB1R) is highly expressed in the hippocampus (HPP). To further understand the potential role of the hippocampal CB1R in impulsive and drug seeking behaviors, we characterized impulsivity in adolescent and adult male rats, by means of a delay discounting task (DDT) by evaluating preference and seeking motivation for alcohol (10 % v/v) consumption, and analyzing CB1R expression in CA1, CA3 and the dentate gyrus (DG) of the HPP as well as in the medial prefrontal cortex (mPFC). Our results show that adolescent rats display more impulsive choices than adult rats in the DDT. The k value is statistically higher in adolescents, further supporting that they are more impulsive. Besides, adolescent rats have higher forced and voluntary alcohol consumption and display a higher alcohol conditioned place preference (CPP) vs. adult rats. In addition, CB1R expression in CA3 and the DG is higher in adolescent vs. adult rats. Our data further support the role of the hippocampus in impulsivity with the potential involvement of the endocannabinoid system, considering that CB1R in CA3 and DG is higher in adolescents, who display impulsivity and alcohol seeking and consumption.
Collapse
Affiliation(s)
- B M Romero-Torres
- Grupo de Neurociencias, Laboratorio de Canabinoides, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Y A Alvarado-Ramírez
- Grupo de Neurociencias, Laboratorio de Canabinoides, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - S R Duran-Alonzo
- Grupo de Neurociencias, Laboratorio de Canabinoides, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - A E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | - A Herrera-Solis
- Laboratorio Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Médica, Hospital General Dr. Manuel Gea González, Mexico
| | - O Amancio-Belmont
- Grupo de Neurociencias, Laboratorio de Canabinoides, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - O E Prospéro-García
- Grupo de Neurociencias, Laboratorio de Canabinoides, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - M Méndez-Díaz
- Grupo de Neurociencias, Laboratorio de Canabinoides, Depto. de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
10
|
Palmisano M, Gargano A, Olabiyi BF, Lutz B, Bilkei-Gorzo A. Hippocampal Deletion of CB1 Receptor Impairs Social Memory and Leads to Age-Related Changes in the Hippocampus of Adult Mice. Int J Mol Sci 2022; 24:ijms24010026. [PMID: 36613469 PMCID: PMC9819823 DOI: 10.3390/ijms24010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Endocannabinoid system activity declines with age in the hippocampus, along with the density of the cannabinoid receptor type-1 (CB1). This process might contribute to brain ageing, as previous studies showed that the constitutive deletion of the CB1 receptor in mice leads to early onset of memory deficits and histological signs of ageing in the hippocampus including enhanced pro-inflammatory glial activity and reduced neurogenesis. Here we asked whether the CB1 receptor exerts its activity locally, directly influencing hippocampal ageing or indirectly, accelerating systemic ageing. Thus, we deleted the CB1 receptor site-specifically in the hippocampus of 2-month-old CB1flox/flox mice using stereotaxic injections of rAAV-Cre-Venus viruses and assessed their social recognition memory four months later. Mice with hippocampus-specific deletion of the CB1 receptor displayed a memory impairment, similarly as observed in constitutive knockouts at the same age. We next analysed neuroinflammatory changes in the hippocampus, neuronal density and cell proliferation. Site-specific mutant mice had enhanced glial cell activity, up-regulated levels of TNFα in the hippocampus and decreased cell proliferation, specifically in the subgranular zone of the dentate gyrus. Our data indicate that a local activity of the CB1 receptor in the hippocampus is required to maintain neurogenesis and to prevent neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Michela Palmisano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53125 Bonn, Germany
| | - Alessandra Gargano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53125 Bonn, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53125 Bonn, Germany
- Correspondence: ; Tel.: +49-0228-6885-317
| |
Collapse
|
11
|
Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia 2022; 71:71-90. [PMID: 36222019 DOI: 10.1002/glia.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR-National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Maria Cristina Marrone
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Marina Di Domenico
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
12
|
Onwudiwe K, Burchett AA, Datta M. Mechanical and metabolic interplay in the brain metastatic microenvironment. Front Oncol 2022; 12:932285. [PMID: 36059679 PMCID: PMC9436395 DOI: 10.3389/fonc.2022.932285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this Perspective, we provide our insights and opinions about the contribution-and potential co-regulation-of mechanics and metabolism in incurable breast cancer brain metastasis. Altered metabolic activity can affect cancer metastasis as high glucose supply and demand in the brain microenvironment favors aerobic glycolysis. Similarly, the altered mechanical properties of disseminating cancer cells facilitate migration to and metastatic seeding of the brain, where local metabolites support their progression. Cancer cells in the brain and the brain tumor microenvironment often possess opposing mechanical and metabolic properties compared to extracranial cancer cells and their microenvironment, which inhibit the ease of extravasation and metastasis of these cells outside the central nervous system. We posit that the brain provides a metabolic microenvironment that mechanically reinforces the cellular structure of cancer cells and supports their metastatic growth while restricting their spread from the brain to external organs.
Collapse
Affiliation(s)
| | | | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
13
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Scipioni L, Ciaramellano F, Carnicelli V, Leuti A, Lizzi AR, De Dominicis N, Oddi S, Maccarrone M. Microglial Endocannabinoid Signalling in AD. Cells 2022; 11:1237. [PMID: 35406803 PMCID: PMC8997504 DOI: 10.3390/cells11071237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammation in Alzheimer's disease (AD) has been recently identified as a major contributor to disease pathogenesis. Once activated, microglial cells, which are brain-resident immune cells, exert several key actions, including phagocytosis, chemotaxis, and the release of pro- or anti-inflammatory mediators, which could have opposite effects on brain homeostasis, depending on the stage of disease and the particular phenotype of microglial cells. The endocannabinoids (eCBs) are pleiotropic bioactive lipids increasingly recognized for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. Here, we review the current literature regarding the involvement of this signalling system in modulating microglial phenotypes and activity in the context of homeostasis and AD-related neurodegeneration.
Collapse
Affiliation(s)
- Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| | - Francesca Ciaramellano
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Alessandro Leuti
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Noemi De Dominicis
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| |
Collapse
|
15
|
Gallego-Landin I, García-Baos A, Castro-Zavala A, Valverde O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front Pharmacol 2021; 12:762738. [PMID: 34938182 PMCID: PMC8685322 DOI: 10.3389/fphar.2021.762738] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder is a high-impact, debilitating disease and it is currently considered the most prevalent mental illness. It is associated with disability, as well as increased morbidity and mortality. Despite its significant repercussions in our society, its exact pathophysiology remains unclear and therefore, available antidepressant treatment options are limited and, in some cases, ineffective. In the past years, research has focused on the development of a multifactorial theory of depression. Simultaneously, evidence supporting the role of the endocannabinoid system in the neurobiology of neuropsychiatric diseases has emerged. Studies have shown that the endocannabinoid system strongly impacts neurotransmission, and the neuroendocrine and neuroimmune systems, which are known to be dysfunctional in depressive patients. Accordingly, common antidepressants were shown to have a direct impact on the expression of cannabinoid receptors throughout the brain. Therefore, the relationship between the endocannabinoid system and major depressive disorder is worth consideration. Nevertheless, most studies focus on smaller pieces of what is undoubtedly a larger mosaic of interdependent processes. Therefore, the present review summarizes the existing literature regarding the role of the endocannabinoid system in depression aiming to integrate this information into a holistic picture for a better understanding of the relationship between the two.
Collapse
Affiliation(s)
- Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
16
|
Li F, Geng X, Yun HJ, Haddad Y, Chen Y, Ding Y. Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis 2021; 12:1644-1657. [PMID: 34631212 PMCID: PMC8460294 DOI: 10.14336/ad.2021.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Physical exercise is an effective therapy for neurorehabilitation. Exercise has been shown to induce remodeling and proliferation of astrocyte. Astrocytes potentially affect the recruitment and function of neurons; they could intensify responses of neurons and bring more neurons for the process of neuroplasticity. Interactions between astrocytes, microglia and neurons modulate neuroplasticity and, subsequently, neural circuit function. These cellular interactions promote the number and function of synapses, neurogenesis, and cerebrovascular remodeling. However, the roles and crosstalk of astrocytes with neurons and microglia and any subsequent neuroplastic effects have not been studied extensively in exercise-induced settings. This article discusses the impact of physical exercise on astrocyte proliferation and highlights the interplay between astrocytes, microglia and neurons. The crosstalk between these cells may enhance neuroplasticity, leading to the neuroplastic effects of exercise.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yazeed Haddad
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
17
|
Swinton MK, Sundermann EE, Pedersen L, Nguyen JD, Grelotti DJ, Taffe MA, Iudicello JE, Fields JA. Alterations in Brain Cannabinoid Receptor Levels Are Associated with HIV-Associated Neurocognitive Disorders in the ART Era: Implications for Therapeutic Strategies Targeting the Endocannabinoid System. Viruses 2021; 13:v13091742. [PMID: 34578323 PMCID: PMC8473156 DOI: 10.3390/v13091742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms. The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported. In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors. Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker. These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.
Collapse
|
18
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
19
|
Robledo-Menendez A, Vella M, Grandes P, Soria-Gomez E. Cannabinoid control of hippocampal functions: the where matters. FEBS J 2021; 289:2162-2175. [PMID: 33977665 DOI: 10.1111/febs.15907] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
In the brain, hippocampal circuits are crucial for cognitive performance (e.g., memory) and deeply affected in pathological conditions (e.g., epilepsy, Alzheimer). Specialized molecular mechanisms regulate different cell types underlying hippocampal circuitries functions. Among them, cannabinoid receptors exhibit various roles depending on the cell type (e.g., neuron, glial cell) or subcellular organelle (e.g., mitochondria). Determining the site of action and precise mechanisms triggered by cannabinoid receptor activation at a local cellular and subcellular level helps us understand hippocampal pathophysiological states. In doing so, past and current research have advanced our knowledge of cannabinoid functions and proposed novel routes for potential therapeutics. By outlining these data in this work, we aim to showcase current findings and highlight the pathophysiological impact of the cannabinoid receptor type 1 (CB1) localization/activation in hippocampal circuits.
Collapse
Affiliation(s)
- Almudena Robledo-Menendez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Maria Vella
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
20
|
Cannabinoid receptor 1 signalling modulates stress susceptibility and microglial responses to chronic social defeat stress. Transl Psychiatry 2021; 11:164. [PMID: 33723234 PMCID: PMC7961142 DOI: 10.1038/s41398-021-01283-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Psychosocial stress is one of the main environmental factors contributing to the development of psychiatric disorders. In humans and rodents, chronic stress is associated with elevated inflammatory responses, indicated by increased numbers of circulating myeloid cells and activation of microglia, the brain-resident immune cells. The endocannabinoid system (ECS) regulates neuronal and endocrine stress responses via the cannabinoid receptor 1 (CB1). CB1-deficient mice (Cnr1-/-) are highly sensitive to stress, but if this involves altered inflammatory responses is not known. To test this, we exposed Cnr1+/+ and Cnr1-/- mice to chronic social defeat stress (CSDS). Cnr1-/- mice were extremely sensitive to a standard protocol of CSDS, indicated by an increased mortality rate. Therefore, a mild CSDS protocol was established, which still induced a behavioural phenotype in susceptible Cnr1-/- mice. These mice also showed altered glucocorticoid levels after mild CSDS, suggesting dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Mild CSDS induced weak myelopoiesis in the periphery, but no recruitment of myeloid cells to the brain. In contrast, mild CSDS altered microglial activation marker expression and morphology in Cnr1-/- mice. These microglial changes correlated with the severity of the behavioural phenotype. Furthermore, microglia of Cnr1-/- mice showed increased expression of Fkbp5, an important regulator of glucocorticoid signalling. Overall, the results confirm that CB1 signalling protects the organism from the physical and emotional harm of social stress and implicate endocannabinoid-mediated modulation of microglia in the development of stress-related pathologies.
Collapse
|
21
|
Carrera J, Tomberlin J, Kurtz J, Karakaya E, Bostanciklioglu M, Albayram O. Endocannabinoid Signaling for GABAergic-Microglia (Mis)Communication in the Brain Aging. Front Neurosci 2021; 14:606808. [PMID: 33613174 PMCID: PMC7887316 DOI: 10.3389/fnins.2020.606808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The aging brain seems to be characterized by neuronal loss leading to cognitive decline and progressively worsening symptoms related to neurodegeneration. Also, pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive activation of microglia and their pro-inflammatory by-products, which is seen as individuals increase in age. Consequently, microglial activity is tightly regulated by neuron-microglia communications. The endocannabinoid system (ECS) is emerging as a regulator of microglia and the neuronal-microglia communication system. Recently, it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic interneurons plays a crucial role in regulating microglial activity. Interestingly, if endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic central nervous system insult models by activating microglia and leading to accelerated brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions yields the potential to understand the communication system and mechanism by which the ECS regulates glial cells and aspects of aging. While there remains much to discover with the ECS, the information gathered and identified already could lead to the development of cell-specific therapeutic interventions that help in reducing the effects of age-related pro-inflammatory states and neurodegeneration.
Collapse
Affiliation(s)
- Jorge Carrera
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jensen Tomberlin
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - John Kurtz
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Eda Karakaya
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
22
|
Cankara FN, Çelik ZB, Günaydın C. Cannabinoid receptors modulate LPS-induced increase of class-II transactivator expression levels in a microglial cell line. J Recept Signal Transduct Res 2021; 41:209-216. [PMID: 33401964 DOI: 10.1080/10799893.2020.1868510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microglial antigen generation (MAG) is an essential process in regulating disease states and homeostasis of the central nervous system. MAG is considered as responsible autoimmune mechanism in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Neuroprotective and regulator effects of cannabinoid receptors on these disease states and modulation with pharmacological agents are urgent subjects in recent decades. Although different aspects of microglial immune response have been investigated, specific effects of these receptor subtypes in the MAG are still unclear. Therefore, in the current study, we have investigated the effects of CB1 and CB2 receptors on antigen generation by investigating MHC-II and its master regulator CIITA by specific cannabinoid agents (ACEA, AM-251, CP 55,940, and SR144528) in the LPS-induced BV-2 cells. Additionally, the effects of drug treatments on inflammatory status were measured by determining IL-1β, IL-6, and TNF-α levels. LPS-induced increase in MHC-II and CIITA expression was inhibited by specific CB1 agonist, ACEA, and nonselective cannabinoid agonist CP 55,940. A combination with specific CB1 antagonist AM-251 prevented these inhibitory effects of ACEA and CP 55,940 on both MHC-II and CIITA expression. Although specific CB2 antagonist, SR144528, also prevented the inhibitory effect of CP 55,940 on MHC-II, it did not affect CIITA expression. LPS-induced IL-1β, IL-6, and TNF-α increase both attenuated with CP 55,940 and ACEA treatments. Although both selective cannabinoid antagonists inhibited this effect, preventive effects were more dominant on CB1 receptors. Our results demonstrated that CB1 receptors majorly mediates LPS-induced MHC-II and its regulator CIITA expression in microglial cells.
Collapse
Affiliation(s)
- Fatma Nihan Cankara
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Zülfinaz Betül Çelik
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
23
|
Kwan Cheung KA, Mitchell MD, Heussler HS. Cannabidiol and Neurodevelopmental Disorders in Children. Front Psychiatry 2021; 12:643442. [PMID: 34093265 PMCID: PMC8175856 DOI: 10.3389/fpsyt.2021.643442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keith A Kwan Cheung
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen S Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Komorowska-Müller JA, Schmöle AC. CB2 Receptor in Microglia: The Guardian of Self-Control. Int J Mol Sci 2020; 22:E19. [PMID: 33375006 PMCID: PMC7792761 DOI: 10.3390/ijms22010019] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are key to maintaining the homeostasis of the brain. These immune cells of the brain can be our biggest ally in fighting infections, but can worsen pathology or hinder recovery when uncontrolled. Thus, understanding how microglia contribute to neuroinflammatory processes and how their activity can be controlled is of great importance. It is known that activation of endocannabinoid system, and especially the cannabinoid type 2 receptor (CB2R), decreases inflammation. Alongside its non-psychoactive effect, it makes the CB2R receptor a perfect target for treating diseases accompanied by neuroinflammation including neurodegenerative diseases. However, the exact mechanisms by which CB2R regulates microglial activity are not yet understood. Here, we review the current knowledge on the roles of microglial CB2R from in vitro and in vivo studies. We look into CB2R function under physiological and pathological conditions and focus on four different disease models representing chronic and acute inflammation. We highlight open questions and controversies and provide an update on the latest discoveries that were enabled by the development of novel technologies. Also, we discuss the recent findings on the role of microglia CB2R in cognition and its role in neuron-microglia communication.
Collapse
Affiliation(s)
- Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
- International Max Planck Research School for Brain and Behavior, University of Bonn, 53175 Bonn, Germany
| | - Anne-Caroline Schmöle
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| |
Collapse
|
25
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
26
|
Nguyen AX, Wu AY. Association between cannabis and the eyelids: A comprehensive review. Clin Exp Ophthalmol 2020; 48:230-239. [DOI: 10.1111/ceo.13687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/15/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Anne X. Nguyen
- Faculty of MedicineMcGill University Montréal Quebec Canada
| | - Albert Y. Wu
- Department of OphthalmologyStanford University School of Medicine Stanford California
| |
Collapse
|
27
|
Stearoylethanolamide interferes with retrograde endocannabinoid signalling and supports the blood-brain barrier integrity under acute systemic inflammation. Biochem Pharmacol 2019; 174:113783. [PMID: 31881191 DOI: 10.1016/j.bcp.2019.113783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation plays a prominent role in the onset of demyelinating diseases, major depressive disorder and delayed neurodegeneration. An open question remains whether pharmacological suppression of inflammation can effectively reduce the progression of these states. Bioactive lipid mediators such as N-acylethanolamines (NAEs) have an anti-inflammatory activity and are of pharmacological interest due to their endogenous on-demand production and the existence of distinct biological targets in humans and animals. Here we demonstrate for the first time, that treatment with stearoylethanolamide (SEA), a prevailing endogenously formed NAE, is neuroprotective against LPS-induced neuroinflammation in C57BL/6 male mice. SEA restricted the spreading of peripheral inflammation to the brain, and averted the activation of resident microglia and leukocyte trafficking to the brain parenchyma. Treatment with SEA per se increased the neuronal expression of cannabinoid receptors CB1/2 and brain levels of the most potent endogenous CB1/2 agonist 2-arachidonoylglycerol in vivo. SEA enhanced the amplitude of synaptic vesicle release, supported the balanced signal-to-noise ratio in glutamate- and GABAergic neurotransmission and decreased the excitotoxic risk associated with higher extracellular glutamate levels under neuroinflammation. The interference of SEA with the endocannabinoid system and presynaptic neurotransmitter release may represent an intrinsic neuroprotective mechanism that is triggered by inflammation and glutamate excitotoxicity. Thus, our data allows to consider SEA for the preventive therapy of acute and late-onset neuroinflammation-associated synaptic dysfunction and neurodegeneration.
Collapse
|
28
|
Matraszek-Gawron R, Chwil M, Terlecka P, Skoczylas MM. Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the Genera Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals (Basel) 2019; 12:ph12040172. [PMID: 31775329 PMCID: PMC6958339 DOI: 10.3390/ph12040172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Herbal therapy is a potential alternative applied to pharmacological alleviation of depression symptoms and treatment of this disorder, which is predicted by the World Health Organization (WHO) to be the most serious health problem worldwide over the next several years. It has been well documented that many herbs with psychotropic effects have far fewer side effects than a variety of pharmaceutical agents used by psychiatrists for the treatment of depression. This systematic review presents literature data on the antidepressant activity of representatives of the genera Hemerocallis (H. fulva and H. citrina Baroni, family Xanthorrhoeaceae) and Gladiolus (G. dalenii, family Iridaceae) and on biologically active compounds and their mechanisms of action to consider the application of herbal preparations supporting the treatment of depression.
Collapse
Affiliation(s)
- Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-445-66-24
| | - Paulina Terlecka
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland;
| | - Michał M. Skoczylas
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland;
| |
Collapse
|
29
|
Tejera D, Mercan D, Sanchez‐Caro JM, Hanan M, Greenberg D, Soreq H, Latz E, Golenbock D, Heneka MT. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J 2019; 38:e101064. [PMID: 31359456 PMCID: PMC6717897 DOI: 10.15252/embj.2018101064] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease is the most prevalent type of dementia and is caused by the deposition of extracellular amyloid-beta and abnormal tau phosphorylation. Neuroinflammation has emerged as an additional pathological component. Microglia, representing the brain's major innate immune cells, play an important role during Alzheimer's. Once activated, microglia show changes in their morphology, characterized by a retraction of cell processes. Systemic inflammation is known to increase the risk for cognitive decline in human neurogenerative diseases including Alzheimer's. Here, we assess for the first time microglial changes upon a peripheral immune challenge in the context of aging and Alzheimer's in vivo, using 2-photon laser scanning microscopy. Microglia were monitored at 2 and 10 days post-challenge by lipopolysaccharide. Microglia exhibited a reduction in the number of branches and the area covered at 2 days, a phenomenon that resolved at 10 days. Systemic inflammation reduced microglial clearance of amyloid-beta in APP/PS1 mice. NLRP3 inflammasome knockout blocked many of the observed microglial changes upon lipopolysaccharide, including alterations in microglial morphology and amyloid pathology. NLRP3 inhibition may thus represent a novel therapeutic target that may protect the brain from toxic peripheral inflammation during systemic infection.
Collapse
Affiliation(s)
- Dario Tejera
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Dilek Mercan
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
| | - Juan M Sanchez‐Caro
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
| | - Mor Hanan
- Department of Biological ChemistryThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - David Greenberg
- Department of Biological ChemistryThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- Department of Biological ChemistryThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Institute of Innate ImmunityUniversity Hospitals BonnBonnGermany
| | - Douglas Golenbock
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric PsychiatryUniversity Hospitals BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|