1
|
Wong WM, Mahroo OA. Monogenic Retinal Diseases Associated With Genes Encoding Phototransduction Proteins: A Review. Clin Exp Ophthalmol 2025; 53:260-280. [PMID: 40013354 PMCID: PMC11962696 DOI: 10.1111/ceo.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Phototransduction, the process by which captured photons elicit electrical changes in retinal rod and cone cells, represents the first neuronal step in vision and involves interactions between several highly specialised proteins. Pathogenic variants in genes encoding many of these proteins can give rise to significant vision impairment, accounting for a substantial portion of inherited retinal disease. Such genes include RHO, OPN1LW, OPN1MW, GNAT1, GNAT2, GNB3, PDE6A, PDE6B, PDE6G, PDE6C, PDE6H, CNGA1, CNGB1, CNGA3, CNGB3, GRK1, SAG, ARR3, RGS9, RGS9BP, GUCY2D, GUCA1A and SLC24A1. Many of these conditions have distinct mechanisms and clinical features. They follow several modes of inheritance (including in one case digenic, or tri-allelic, inheritance). Some conditions also entail myopia. Rod and cone phototransduction will be outlined, followed by the discussion of diseases associated with these genes. Some phenotypic features will be highlighted as well as their prevalence in a large genotyped inherited retinal disease cohort.
Collapse
Affiliation(s)
- Wendy M. Wong
- Institute of Ophthalmology, University College LondonLondonUK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of OphthalmologyLondonUK
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Ophthalmology, National University HospitalNational University Health SystemSingaporeSingapore
| | - Omar A. Mahroo
- Institute of Ophthalmology, University College LondonLondonUK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of OphthalmologyLondonUK
- Section of Ophthalmology, King's College LondonSt Thomas' Hospital CampusLondonUK
- Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Department of Translational OphthalmologyWills Eye HospitalPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Luo Y, Wang Y, Liu L, Huang F, Lu S, Yan Y. Identifying pathological myopia associated genes with GenePlexus in protein-protein interaction network. Front Genet 2025; 16:1533567. [PMID: 40110040 PMCID: PMC11919901 DOI: 10.3389/fgene.2025.1533567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Pathological myopia, a severe form of myopia, is characterized by an extreme elongation of the eyeball, leading to various vision-threatening complications. It is broadly classified into two primary types: high myopia, which primarily involves an excessive axial length of the eye with potential for reversible vision loss, and degenerative myopia, associated with progressive and irreversible retinal damage. Methods Leveraging data from DisGeNET, reporting 184 genes linked to high myopia and 39 genes associated with degenerative myopia, we employed the GenePlexus methodology in conjunction with screening tests to further explore the genetic landscape of pathological myopia. Results and discussion Our comprehensive analysis resulted in the discovery of 21 new genes associated with degenerative myopia and 133 genes linked to high myopia with significant confidence. Among these findings, genes such as ADCY4, a regulator of the cAMP pathway, were functionally linked to high myopia, while THBS1, involved in collagen degradation, was closely associated with the pathophysiology of degenerative myopia. These previously unreported genes play crucial roles in the underlying mechanisms of pathological myopia, thereby emphasizing the complexity and multifactorial nature of this condition. The importance of our study resides in the uncovering of new genetic associations with pathological myopia, the provision of potential biomarkers for early screening, and the identification of therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shiheng Lu
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Yan
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Kemmo Tsafack U, Lin CW, Ahn KW. Joint Screening for Ultra-High Dimensional Multi-Omics Data. Bioengineering (Basel) 2024; 11:1193. [PMID: 39768011 PMCID: PMC11727280 DOI: 10.3390/bioengineering11121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Investigators often face ultra-high dimensional multi-omics data, where identifying significant genes and omics within a gene is of interest. In such data, each gene forms a group consisting of its multiple omics. Moreover, some genes may also be highly correlated. This leads to a tri-level hierarchical structured data: the cluster level, which is the group of correlated genes, the subgroup level, which is the group of omics of the same gene, and the individual level, which consists of omics. Screening is widely used to remove unimportant variables so that the number of remaining variables becomes smaller than the sample size. Penalized regression with the remaining variables after performing screening is then used to identify important variables. To screen unimportant genes, we propose to cluster genes and conduct screening. We show that the proposed screening method possesses the sure screening property. Extensive simulations show that the proposed screening method outperforms competing methods. We apply the proposed variable selection method to the TCGA breast cancer dataset to identify genes and omics that are related to breast cancer.
Collapse
Affiliation(s)
| | | | - Kwang Woo Ahn
- Division of Biostatistics, Medical College of Wisconsin (MCW), Milwaukee, WI 53226, USA; (U.K.T.); (C.-W.L.)
| |
Collapse
|
4
|
Shahu M, Schuhmann F, Wong SY, Solov’yov IA, Koch KW. Allosteric Communication of the Dimerization and the Catalytic Domain in Photoreceptor Guanylate Cyclase. Biochemistry 2024; 63:2131-2140. [PMID: 39175413 PMCID: PMC11375764 DOI: 10.1021/acs.biochem.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Phototransduction in vertebrate photoreceptor cells is controlled by Ca2+-dependent feedback loops involving the membrane-bound guanylate cyclase GC-E that synthesizes the second messenger guanosine-3',5'-cyclic monophosphate. Intracellular Ca2+-sensor proteins named guanylate cyclase-activating proteins (GCAPs) regulate the activity of GC-E by switching from a Ca2+-bound inhibiting state to a Ca2+-free/Mg2+-bound activating state. The gene GUCY2D encodes for human GC-E, and mutations in GUCY2D are often associated with an imbalance of Ca2+ and cGMP homeostasis causing retinal disorders. Here, we investigate the Ca2+-dependent inhibition of the constitutively active GC-E mutant V902L. The inhibition is not mediated by GCAP variants but by Ca2+ replacing Mg2+ in the catalytic center. Distant from the cyclase catalytic domain is an α-helical domain containing a highly conserved helix-turn-helix motif. Mutating the critical amino acid position 804 from leucine to proline left the principal activation mechanism intact but resulted in a lower level of catalytic efficiency. Our experimental analysis of amino acid positions in two distant GC-E domains implied an allosteric communication pathway connecting the α-helical and the cyclase catalytic domains. A computational connectivity analysis unveiled critical differences between wildtype GC-E and the mutant V902L in the allosteric network of critical amino acid positions.
Collapse
Affiliation(s)
- Manisha
Kumari Shahu
- Department
of Neuroscience, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Str.
9-11, 26129 Oldenburg ,Germany
| | - Fabian Schuhmann
- Niels
Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Siu Ying Wong
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg ,Germany
- Center
for Nanoscale Dynamics (CENAD), Institute of Physics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department
of Neuroscience, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Str.
9-11, 26129 Oldenburg ,Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg ,Germany
| |
Collapse
|
5
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
6
|
Chen Y, Bräuer AU, Koch KW. Retinal degeneration protein 3 controls membrane guanylate cyclase activities in brain tissue. Front Mol Neurosci 2022; 15:1076430. [PMID: 36618828 PMCID: PMC9812585 DOI: 10.3389/fnmol.2022.1076430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degeneration protein RD3 is involved in regulatory processes of photoreceptor cells. Among its main functions is the inhibition of photoreceptor specific membrane guanylate cyclases during trafficking from the inner segment to their final destination in the outer segment. However, any physiological role of RD3 in non-retinal tissue is unsolved at present and specific protein targets outside of retinal tissue have not been identified so far. The family of membrane bound guanylate cyclases share a high homology of their amino acid sequences in their cytoplasmic domains. Therefore, we reasoned that membrane guanylate cyclases that are activated by natriuretic peptides are also regulated by RD3. We analyzed transcript levels of the rd3 gene and natriuretic peptide receptor genes Npr1 and Npr2 in the mouse retina, cerebellum, hippocampus, neocortex, and the olfactory bulb during development from the embryonic to the postnatal stage at P60. The rd3 gene showed a lower expression level than Npr1 and Npr2 (encoding for GC-A and GC-B, respectively) in all tested brain tissues, but was at least one order of magnitude higher in the retina. RD3 and natriuretic peptide receptor GCs co-express in the retina and brain tissue leading to functional tests. We expressed GC-A and GC-B in HEK293T cells and measured the inhibition of GCs by RD3 after activation by natriuretic peptides yielding inhibitory constants around 25 nM. Furthermore, endogenous GCs in astrocytes were inhibited by RD3 to a similar extent. We here show for the first time that RD3 can inhibit two hormone-stimulated GCs, namely GC-A and GC-B indicating a new regulatory feature of these hormone receptors.
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany,Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany
| | - Anja U. Bräuer
- Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany,*Correspondence: Karl-Wilhelm Koch,
| |
Collapse
|
7
|
Hahn LC, Georgiou M, Almushattat H, van Schooneveld MJ, de Carvalho ER, Wesseling NL, Ten Brink JB, Florijn RJ, Lissenberg-Witte BI, Strubbe I, van Cauwenbergh C, de Zaeytijd J, Walraedt S, de Baere E, Mukherjee R, McKibbin M, Meester-Smoor MA, Thiadens AAHJ, Al-Khuzaei S, Akyol E, Lotery AJ, van Genderen MM, Ossewaarde-van Norel J, van den Born LI, Hoyng CB, Klaver CCW, Downes SM, Bergen AA, Leroy BP, Michaelides M, Boon CJF. The Natural History of Leber Congenital Amaurosis and Cone-Rod Dystrophy Associated with Variants in the GUCY2D Gene. Ophthalmol Retina 2022; 6:711-722. [PMID: 35314386 DOI: 10.1016/j.oret.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To describe the spectrum of Leber congenital amaurosis (LCA) and cone-rod dystrophy (CORD) associated with the GUCY2D gene and to identify potential end points and optimal patient selection for future therapeutic trials. DESIGN International, multicenter, retrospective cohort study. SUBJECTS Eighty-two patients with GUCY2D-associated LCA or CORD from 54 families. METHODS Medical records were reviewed for medical history, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain OCT [SD-OCT], fundus autofluorescence). MAIN OUTCOMES MEASURES Age of onset, evolution of BCVA, genotype-phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging. RESULTS Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up times were 5.2 years (interquartile range [IQR] 2.6-8.8 years) for LCA and 7.2 years (IQR 2.2-14.2 years) for CORD. Generally, LCA presented in the first year of life. The BCVA in patients with LCA ranged from no light perception to 1.00 logarithm of the minimum angle of resolution (logMAR) and remained relatively stable during follow-up. Imaging for LCA was limited but showed little to no structural degeneration. In patients with CORD, progressive vision loss started around the second decade of life. The BCVA declined annually by 0.022 logMAR (P < 0.001) with no difference between patients with the c.2513G>A and the c.2512C>T GUCY2D variants (P = 0.798). At the age of 40 years, the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and that of the external limiting membrane (ELM) on SD-OCT correlated significantly with BCVA (Spearman ρ = 0.744, P = 0.001, and ρ = 0.712, P < 0.001, respectively) in those with CORD. CONCLUSIONS Leber congenital amaurosis associated with GUCY2D caused severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting long preservation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence, with a progressive loss of vision, and culminated in severe visual impairment during mid-to-late adulthood. The integrity of the ELM and EZ may be suitable structural end points for therapeutic studies of GUCY2D-associated CORD.
Collapse
Affiliation(s)
- Leo C Hahn
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Michalis Georgiou
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Emanuel R de Carvalho
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Nieneke L Wesseling
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ine Strubbe
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Caroline van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Julie de Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Elfride de Baere
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Rajarshi Mukherjee
- Department of Ophthalmology, St James's University Hospital, Leeds, United Kingdom
| | - Martin McKibbin
- Department of Ophthalmology, St James's University Hospital, Leeds, United Kingdom
| | | | | | - Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals National Health Service Foundation Trust, & Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Engin Akyol
- Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| | - Andrew J Lotery
- Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susan M Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals National Health Service Foundation Trust, & Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium; Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michel Michaelides
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Shahu MK, Schuhmann F, Scholten A, Solov’yov IA, Koch KW. The Transition of Photoreceptor Guanylate Cyclase Type 1 to the Active State. Int J Mol Sci 2022; 23:ijms23074030. [PMID: 35409388 PMCID: PMC8999790 DOI: 10.3390/ijms23074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane-bound guanylate cyclases (GCs), which synthesize the second messenger guanosine-3', 5'-cyclic monophosphate, differ in their activation modes to reach the active state. Hormone peptides bind to the extracellular domain in hormone-receptor-type GCs and trigger a conformational change in the intracellular, cytoplasmic part of the enzyme. Sensory GCs that are present in rod and cone photoreceptor cells have intracellular binding sites for regulatory Ca2+-sensor proteins, named guanylate-cyclase-activating proteins. A rotation model of activation involving an α-helix rotation was described as a common activation motif among hormone-receptor GCs. We tested whether the photoreceptor GC-E underwent an α-helix rotation when reaching the active state. We experimentally simulated such a transitory switch by integrating alanine residues close to the transmembrane region, and compared the effects of alanine integration with the point mutation V902L in GC-E. The V902L mutation is found in patients suffering from retinal cone-rod dystrophies, and leads to a constitutively active state of GC-E. We analyzed the enzymatic catalytic parameters of wild-type and mutant GC-E. Our data showed no involvement of an α-helix rotation when reaching the active state, indicating a difference in hormone receptor GCs. To characterize the protein conformations that represent the transition to the active state, we investigated the protein dynamics by using a computational approach based on all-atom molecular dynamics simulations. We detected a swinging movement of the dimerization domain in the V902L mutant as the critical conformational switch in the cyclase going from the low to high activity state.
Collapse
Affiliation(s)
- Manisha Kumari Shahu
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
| | - Fabian Schuhmann
- Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany; (F.S.); (I.A.S.)
| | - Alexander Scholten
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
| | - Ilia A. Solov’yov
- Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany; (F.S.); (I.A.S.)
- Research Centre for Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
- Research Centre for Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Neissi M, Al-Badran AI, Mohammadi-Asl J. Exome sequencing identifies a novel GUCY2D mutation in an Iranian family with Leber congenital amaurosis-1: a case report. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Leber congenital amaurosis (LCA), the severe form of inherited retinal degenerative disorder, is a prevalent disorder in the first year of life. Recently, genetic studies discovered that different gene mutations are responsible for LCA clinical manifestations.
Case presentation
In this study, we applied whole exome sequencing (WES) to identify probable gene defects in an Iranian girl with LCA-1. We found a novel disease-causing GUCY2D gene mutation (c.2348T > C; p.L783P), located in exon 12 (NM_000180), causing a missense mutation that has been changed the coding protein. The WES-identified variant was confirmed by Sanger sequencing for the patient and her healthy parents. Submitted to genetic counseling that the patient was 1-year old and blindness from birth.
Conclusions
Our findings establish that this detected GUCY2D-p.L783P mutation is the pathogenic variant for LCA-1. This is the first genetic study indicating that c.2348T > C missense mutation in the homozygous state in GUCY2D gene is responsible for the LCA-1 phenotype.
Collapse
|
10
|
Avesani A, Marino V, Zanzoni S, Koch KW, Dell'Orco D. Molecular properties of human guanylate cyclase-activating protein 2 (GCAP2) and its retinal dystrophy-associated variant G157R. J Biol Chem 2021; 296:100619. [PMID: 33812995 PMCID: PMC8113879 DOI: 10.1016/j.jbc.2021.100619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
In murine and bovine photoreceptors, guanylate cyclase-activating protein 2 (GCAP2) activates retinal guanylate cyclases (GCs) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog guanylate cyclase-activating protein 1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to 3 Mg2+ with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, nonmyristoylated GCAP2 does not bind Mg2+ over the physiological range and remains as a monomer in the absence of Ca2+. Both myristoylated and nonmyristoylated GCAP2 bind Ca2+ with high affinity. At odds with guanylate cyclase-activating protein 1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations and prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 might be mostly implicated in processes other than phototransduction in human photoreceptors and suggest a possible molecular mechanism for G157R-associated IRD.
Collapse
Affiliation(s)
- Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
First 3D-Structural Data of Full-Length Guanylyl Cyclase 1 in Rod-Outer-Segment Preparations of Bovine Retina by Cross-Linking/Mass Spectrometry. J Mol Biol 2021; 433:166947. [PMID: 33744315 DOI: 10.1016/j.jmb.2021.166947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.
Collapse
|
12
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
13
|
Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene Neparvovec and Gene Therapy for Leber's Congenital Amaurosis: Review of Evidence to Date. APPLICATION OF CLINICAL GENETICS 2020; 13:179-208. [PMID: 33268999 PMCID: PMC7701157 DOI: 10.2147/tacg.s230720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Gene therapy has now evolved as the upcoming modality for management of many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to a disease has therefore become paramount for physicians across most specialities. Inheritable retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is a typical example of an IRD that manifests very early in childhood. Research in gene therapy has led to the development and approval of voretigene neparvovec (VN) for use in patients of LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of a recombinant virus vector that carries the RPE65 gene in the subretinal space. This comprehensive review reports the evidence thus far in support of gene therapy for LCA. We explore and compare the various gene targets including but not limited to RPE65, and discuss the choice of vector and method for ocular delivery. The review details the evolution of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead for its translation for use in communities that differ much both genetically and economically.
Collapse
Affiliation(s)
- Srikanta Kumar Padhy
- Vitreoretina and Uveitis Services, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Brijesh Takkar
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Center of Excellence for Rare Eye Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Jasti V. Ramanamma Childrens' Eye Care Centre, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
14
|
Rashid M, Qasim M, Ishaq R, Bukhari SA, Sajid Z, Ashfaq UA, Haque A, Ahmed ZM. Pathogenic variants of AIPL1, MERTK, GUCY2D, and FOXE3 in Pakistani families with clinically heterogeneous eye diseases. PLoS One 2020; 15:e0239748. [PMID: 32976546 PMCID: PMC7518604 DOI: 10.1371/journal.pone.0239748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022] Open
Abstract
Significant number out of 2.2 billion vision impairments in the world can be attributed to genetics. The current study is aimed to decipher the genetic basis of Leber congenital Amaurosis (LCA), Anterior Segment dysgenesis (ASD), and Retinitis Pigmentosa (RP), segregating in four large consanguineous Pakistani families. The exome sequencing followed by segregation analysis via Sanger sequencing revealed the LCA phenotypes segregating in families GCUF01 and GCUF04 can be attributed to c.465G>T (p.(Gln155His)) missense and novel c.139_140delinsA p.(Pro47Trhfster38) frameshift variant of AIPL1 and GUCY2D, respectively. The c.1843A>T (p.(Lys615*) truncating allele of MERTK is homozygous in all the affected individuals, presumably suffering with RP, of the GCUF02 family. Meanwhile, co-segregation of the ASD phenotype and the c.289A>G (p.(Ile97Val)) variant of FOXE3 was found in the GCUF06 family. All the identified variants were either absent or present in very low frequencies in the control databases. Our in-silico analyses and 3D molecular modeling support the deleterious impact of these variants on the encoded proteins. Variants identified in MERTK, GUCY2D, and FOXE3 were categorized as "pathogenic" or "likely pathogenic", while the missense variant found in AIPL1 was deemed to have "uncertain significance" based upon the variant pathogenicity guidelines from the American College of Medical Genetics and Genomics (ACMG). This paper highlights the genetic diversity of vision disorders in the Pakistani population and reports the identification of four novel mutations in families who segregate clinically heterogeneous eye diseases. Our results give insight into the genotype-phenotype correlations of AIPL1, FOXE3, MERTK, and GUCY2D variants.
Collapse
Affiliation(s)
- Muhammad Rashid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States of America
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rafaqat Ishaq
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States of America
- University Institute of Biochemistry & Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Zureesha Sajid
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States of America
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States of America
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
15
|
Liu X, Fujinami K, Kuniyoshi K, Kondo M, Ueno S, Hayashi T, Mochizuki K, Kameya S, Yang L, Fujinami-Yokokawa Y, Arno G, Pontikos N, Sakuramoto H, Kominami T, Terasaki H, Katagiri S, Mizobuchi K, Nakamura N, Yoshitake K, Miyake Y, Li S, Kurihara T, Tsubota K, Iwata T, Tsunoda K. Clinical and Genetic Characteristics of 15 Affected Patients From 12 Japanese Families with GUCY2D-Associated Retinal Disorder. Transl Vis Sci Technol 2020; 9:2. [PMID: 32821499 PMCID: PMC7408927 DOI: 10.1167/tvst.9.6.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the clinical and genetic characteristics of patients with GUCY2D-associated retinal disorder (GUCY2D-RD). Methods Fifteen patients from 12 families with inherited retinal disorder (IRD) and harboring GUCY2D variants were ascertained from 730 Japanese families with IRD. Comprehensive ophthalmological examinations, including visual acuity (VA) measurement, retinal imaging, and electrophysiological assessment were performed to classify patients into three phenotype subgroups; macular dystrophy (MD), cone-rod dystrophy (CORD), and Leber congenital amaurosis (LCA). In silico analysis was performed for the detected variants, and the molecularly confirmed inheritance pattern was determined (autosomal dominant/recessive [AD/AR]). Results The median age of onset/examination was 22.0/38.0 years (ranges, 0-55 and 1-73) with a median VA of 0.80/0.70 LogMAR units (ranges, 0.00-1.52 and 0.10-1.52) in the right/left eye, respectively. Macular atrophy was identified in seven patients (46.7%), and two had diffuse fundus disturbance (13.3%), and six had an essentially normal fundus (40.0%). There were 11 patients with generalized cone-rod dysfunction (78.6%), two with entire functional loss (14.3%), and one with confined macular dysfunction (7.1%). There were nine families with ADCORD, one with ARCORD, one with ADMD, and one with ARLCA. Ten GUCY2D variants were identified, including four novel variants (p.Val56GlyfsTer262, p.Met246Ile, p.Arg761Trp, p.Glu874Lys). Conclusions This large cohort study delineates the disease spectrum of GUCY2D-RD. Diverse clinical presentations with various severities of ADCORD and the early-onset severe phenotype of ARLCA are illustrated. A relatively lower prevalence of GUCY2D-RD for ADCORD and ARLCA in the Japanese population was revealed. Translational Relevance The obtained data help to monitor and counsel patients, especially in East Asia, as well as to design future therapeutic approaches.
Collapse
Affiliation(s)
- Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu-shi, Gifu, Japan
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Graduate School of Health Management, Keio University, Shinjuku-ku, Tokyo, Japan.,Division of Public Health, Yokokawa Clinic, Suita, Osaka, Japan
| | - Gavin Arno
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Hiroyuki Sakuramoto
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Natsuko Nakamura
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization National Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Yozo Miyake
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Aichi Medical University, Nagakute, Aichi, Japan
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization National Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | | |
Collapse
|
16
|
Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies. Genes (Basel) 2020; 11:genes11050473. [PMID: 32349249 PMCID: PMC7290804 DOI: 10.3390/genes11050473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Inherited retinal dystrophies are an assorted group of rare diseases that collectively account for the major cause of visual impairment of genetic origin worldwide. Besides clinically, these vision loss disorders present a high genetic and allelic heterogeneity. To date, over 250 genes have been associated to retinal dystrophies with reported causative variants of every nature (nonsense, missense, frameshift, splice-site, large rearrangements, and so forth). Except for a fistful of mutations, most of them are private and affect one or few families, making it a challenge to ratify the newly identified candidate genes or the pathogenicity of dubious variants in disease-associated loci. A recurrent option involves altering the gene in in vitro or in vivo systems to contrast the resulting phenotype and molecular imprint. To validate specific mutations, the process must rely on simulating the precise genetic change, which, until recently, proved to be a difficult endeavor. The rise of the CRISPR/Cas9 technology and its adaptation for genetic engineering now offers a resourceful suite of tools to alleviate the process of functional studies. Here we review the implementation of these RNA-programmable Cas9 nucleases in culture-based and animal models to elucidate the role of novel genes and variants in retinal dystrophies.
Collapse
|
17
|
Feng X, Wei T, Sun J, Luo Y, Huo Y, Yu P, Chen J, Wei X, Qi M, Ye Y. The pathogenicity of novel GUCY2D mutations in Leber congenital amaurosis 1 assessed by HPLC-MS/MS. PLoS One 2020; 15:e0231115. [PMID: 32255808 PMCID: PMC7138296 DOI: 10.1371/journal.pone.0231115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 12/04/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a group of severe congenital retinal diseases. Variants in the guanylate cyclase 2D gene (GUCY2D), which encodes guanylate cyclase 1 (ROS-GC1), are associated with LCA1 and account for 6%–21% of all LCA cases. In this study, one family with LCA1 was recruited from China. A combination of next generation sequencing and Sanger sequencing was used to screen for disease-causing mutations. We found three novel mutations (c.139delC, p.Ala49Profs*36; c.835G>A, p.Asp279Asn and c.2783G>A, p.Gly928Glu) in the GUCY2D gene. Proband III-2 carries mutations c.139delC and c.2783G>A, which are inherited from the heterozygous mutation carriers, II-2 (c.139delC) and II-3 (c.2783G>A) that possess c.139delC and c.2783G>A. Additionally, II-8 carries heterozygous mutation c.835G>A. Sanger sequencing was used to confirm the presence of the three novel mutations in other family members. Mutation c.139delC results in a truncated protein. Mutations c.835G>A and c.2783G>A significantly reduce the catalytic activity of ROS-GC1. Our findings highlight the gene variants range of LCA. Moreover, HPLC-coupled tandem mass spectrometry (HPLC-MS/MS) was used to analyze the concentration of 3',5'-cyclic guanosine monophosphate (cGMP), suggesting that HPLC-MS/MS is an effective alternative method to evaluate the catalytic activity of wild-type and mutant ROS-GC1.
Collapse
Affiliation(s)
- Xue Feng
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianying Wei
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Junhui Sun
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqin Luo
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanan Huo
- Department of Eye Center, The Second Affiliated Hospital of School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Yu
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiao Chen
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Ming Qi
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (YY); (MQ)
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (YY); (MQ)
| |
Collapse
|
18
|
Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res 2019; 189:107834. [PMID: 31639339 DOI: 10.1016/j.exer.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Retinal dystrophies are one of the leading causes of pediatric congenital blindness. Leber's congenital amaurosis (LCA) encompasses one of the most severe forms of inherited retinal dystrophy responsible for early-onset childhood blindness in infancy. These are clinically characterized by nystagmus, amaurotic pupil response and markedly reduced or in most instances completely absent full-field electroretinogram. LCA exhibits immense genetic heterogeneity. With advances in next-generation genetic technologies, tremendous progress has been achieved over the last two decades in discovering genes and genetic defects leading to retinal dystrophies. Currently, 28 genes have been implicated in the pathogenesis of LCA and with initial reports of success in management with targeted gene therapy the disease has attracted a lot of research attention in the recent time. The review provides an update on genetic basis of LCA, scope for genetic testing and pharmacogenetic medicine in diagnosis and treatment of these diseases.
Collapse
|
19
|
Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP. Prog Retin Eye Res 2019; 74:100772. [PMID: 31374251 DOI: 10.1016/j.preteyeres.2019.07.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Collapse
Affiliation(s)
- Michael Power
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | | | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.
| |
Collapse
|
20
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|