1
|
Vanherle S, Loix M, Miron VE, Hendriks JJA, Bogie JFJ. Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci 2025; 26:214-231. [PMID: 39972160 DOI: 10.1038/s41583-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell-cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Veronique E Miron
- Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
- University MS Centre, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
2
|
Zhao P, Zhao Y, Ma Y, Liang C, Yuan Q, Gao Y, Liu X, Zhu X, Hao X, Liang G, Fan H, Wang D. Gestational and lactational exposure to DEHP triggers ACSL4/TFR-mediated hippocampal neuronal ferroptosis via YAP activation: Implication for the neurocognitive disorders in male offspring. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138081. [PMID: 40187248 DOI: 10.1016/j.jhazmat.2025.138081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most extensively used phthalate and poses a public health concern. Perinatal exposure to DEHP has been shown to cause neurodevelopmental abnormalities and neurobehavioral disorders in offspring. However, the precise molecular mechanism has not yet been fully elucidated. In this study, pregnant C57BL/6 mice were exposed to DEHP from gestation to weaning. By RNA sequencing and animal experiments, ferroptosis has been identified as the key pathologic process contributing to DEHP-induced hippocampal injury in adult male offspring. In vitro results also showed that Ferrostatin-1 (Fer-1) effectively ameliorated Mono-(2-ethylhexyl) phthalate (MEHP) -induced cell survival via the inhibiting ferroptosis in HT22 cells. Consistently, we found that the expression of ACSL4 and TFR was significantly up-regulated in offspring hippocampi and MEHP-exposed HT22 neurons. However, silencing ACSL4 or knockdown TFR relieved MEHP-induced generation of lipid ROS and cellular iron accumulation, thereby blocking ferroptosis. Mechanistically, ACSL4/TFR-mediated ferroptosis seemed to be a Yes-associated protein (YAP) dependent via TEA domain transcription factor 4 in HT22 neurons. Importantly, treatment with Fer-1, rosiglitazone, and Deferoxamine effectively rescued DEHP-evoked cognitive decline in adult male offspring. Our findings certified that gestational and lactational exposure to DEHP provoked ACSL4/TFR-mediated hippocampal neuronal ferroptosis via YAP activation.
Collapse
Affiliation(s)
- Pu Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yuhang Zhao
- Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- Henan Province Rongkang Hospital, Luoyang, China
| | - Yufei Gao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
3
|
Ju X, Zhang H, Wang J, Wang J, Wang N, Geng J, Guo L, Wang Q. LXR agonists induces GSDME-mediated pyroptosis in tumors through alters the integrity of the MOM to activates Caspase-4/APAF-1 pyroptosome. Int J Biol Macromol 2025; 310:142568. [PMID: 40154703 DOI: 10.1016/j.ijbiomac.2025.142568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Liver X receptors (LXRs) play a key role in cholesterol transport, glucose metabolism and the tumorigenesis. LXR ligands can inhibit tumor growth through several mechanisms, such as suppressing tumor cell proliferation and migration, and inducing tumor cell death. Among them, induction of tumor cell death is one of the main mechanisms by which LXR ligands inhibit tumor growth; but how exactly LXR ligands cause cell death is still unclear. In this study, we found that LXR agonists can induce nonclassical pyroptosis in various cancer cells. Further study we found that Caspase-3-mediated GSDME cleavage is involved in LXR agonist-induced pyroptosis. Mechanically, LXR agonists firstly induce ER stress in tumor cells, then the ER stress induced by LXR agonists alters the integrity of the mitochondrial outer membrane (MOM) through the NOXA and BAX/BAK. Subsequently, mitochondrial permeability transition activates Caspase-4/APAF-1 pyroptosome to activate GSDME-dependent pyroptosis. Finally, we also found that LXR agonists induced GSDME-dependent pyroptosis in mouse cells. Our results demonstrated that LXR agonists can induce nonclassical GSDME-dependent pyroptosis in cancer cells by inducing ER stress, which alters the integrity of MOM to activate Caspase-4/APAF-1 pyroptosome.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jin Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ning Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingyao Geng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Zhao P, Yin S, Qiu Y, Sun C, Yu H. Ferroptosis and pyroptosis are connected through autophagy: a new perspective of overcoming drug resistance. Mol Cancer 2025; 24:23. [PMID: 39825385 PMCID: PMC11740669 DOI: 10.1186/s12943-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear. Ferroptosis and pyroptosis can be affected by various types of autophagy. Therefore, ferroptosis and pyroptosis have crosstalk via autophagy, potentially leading to a switch in cell death types under certain conditions. As two forms of inflammatory programmed cell death, ferroptosis and pyroptosis have different effects on inflammation, and the cGAS-STING signaling pathway is also involved. Therefore, it also plays an important role in the progression of some chronic inflammatory diseases. This review discusses the relationship between autophagy, ferroptosis and pyroptosis, and attempts to uncover the reasons behind the evasion of tumor cell death and the nature of drug resistance.
Collapse
Affiliation(s)
- Peng Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, China.
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Yuan Q, Wang M, Zhang Z, Wang R, Wang D, Sang Z, Zhao P, Liu X, Zhu X, Liang G, Fan H, Wang D. The ameliorative effects of melatonin against BDE-47-induced hippocampal neuronal ferroptosis and cognitive dysfunction through Nrf2-Chaperone-mediated autophagy of ACSL4 degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117542. [PMID: 39700775 DOI: 10.1016/j.ecoenv.2024.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Recent studies demonstrate that lipid peroxidation-induced ferroptosis participates in 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-evoked neurotoxicity and cognitive dysfunction. Melatonin has been indicated to confer neuroprotection against brain diseases via its potent anti-ferroptotic effects. Therefore, this study aims to explore whether melatonin can mitigate BDE-47-elicited cognitive impairment via suppressing ferroptosis, and further delineate the underlying mechanisms. Our results found that melatonin administration effectively inhibited BDE-47-induced ferroptosis in mice hippocampi and murine hippocampal neuronal HT-22 cells. Acyl-CoA synthetase long-chain family member 4 (ACSL4), a key lipid metabolism enzyme dictating ferroptosis sensitivity, accompanied by higher MDA and lipid reactive oxygen species (ROS), was remarkably increased under BDE-47 stress, while melatonin supplementation could suppress the elevated ACSL4 in vivo and in vitro. Furthermore, melatonin facilitated lysosomal ACSL4 degradation through enhancing lysosome-associated membrane protein type 2a (LAMP2a) expression and chaperone-mediated autophagy (CMA) activity, while LAMP2a knockdown abrogated the positive effects of melatonin on ACSL4 elimination in BDE-47-treated HT-22 cells. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) activation by melatonin contributed to LAMP2a upregulation and CMA of ACSL4 and subsequent neuronal ferroptosis. Importantly, melatonin, CMA activator CA77.1, and ACSL4 inhibitor rosiglitazone (RSG) administration substantially attenuated neuronal/synaptic injury and cognitive deficits following BDE-47 exposure. Taken together, these findings revealed that melatonin could prevent BDE-47-provoked ferroptosis in the hippocampal neurons and mitigate cognitive dysfunction by facilitating ACSL4 degradation via Nrf2-chaperone-mediated autophagy. Therefore, melatonin might be a potential candidate for treating BDE-47-elicited neurotoxicity and neurobehavioral disorder.
Collapse
Affiliation(s)
- Quan Yuan
- Henan Province Rongkang Hospital, Luoyang, China
| | - Mingwei Wang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhaoxiang Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ruofei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Dechao Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Pu Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
6
|
Jing R, Mu L, Wang C, Liu L, Wang Y, Wang Y, Li X, Yin H, Hu Y. KaiXinSan improves learning and memory impairment by regulating cholesterol homeostasis in mice overloaded with 27-OHC. J Steroid Biochem Mol Biol 2025; 245:106622. [PMID: 39326716 DOI: 10.1016/j.jsbmb.2024.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Cholesterol and its oxidative products-oxysterols homeostasis- play a crucial role in maintaining cognitive function. Chinese medicine KaiXinSan (KXS) has demonstrated effectiveness in treating mental illness and regulating cognitive dysfunction of Alzheimer's disease (AD). The purpose of this article is to explore whether the KXS can enhance cognitive function by regulating cholesterol homeostasis. Employing the 27-hydroxy cholesterol (27-OHC) induced mice model of cognitive dysfunction and coculture model of assessment neurocyte damage, we investigated learning and memory abilities while concurrently addressing the reduction of neuronal cell damage through the regulation of cholesterol metabolism. 21 days of KXS treatment improved the learning and memory ability in mice 27-OHC-overloading by alleviating the exacerbated deposition of amyloid-β (Aβ), reducing inflammatory reactions, and mitigating synaptic plasticity damage. Additionally, it repaired myelin sheath function. More importantly, KXS significantly affects the metabolism of central cholesterol by substantially inhibiting the expression of liver X receptor (LXR), ATP-binding cassette transporter (ABCA1, ABCG1), apolipoprotein E (ApoE) and upregulated cytochrome P450 46A1(CYP46A1). Furthermore, KXS may alleviate 27-OHC-induced neuronal inflammation and apoptosis by promoting the conversion of cholesterol to 24-hydroxycholesterol (24-OHC) via CYP46A1 and suppressing cholesterol release from astrocyte cells. Altogether, our results demonstrate that KXS can prevent learning and memory impairments induced by 27-OHC loading. This effect may be related to its multitarget capability in promoting the conversion of excessive cholesterol to 24-OHC and maintaining a balance in cholesterol homeostasis and metabolism between neurons and astrocyte cells.
Collapse
Affiliation(s)
- Rui Jing
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lihua Mu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Chaochen Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China; Graduate School of PLA General Hospital, Beijing 100853, China
| | - Lijun Liu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanbo Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China; Graduate School of PLA General Hospital, Beijing 100853, China
| | - Yuanbo Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xia Li
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong Yin
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
7
|
Ma Y, Xu P, Xing H, Zhang Y, Li T, Ding X, Liu L, Niu Q. Rutin mitigates fluoride-induced nephrotoxicity by inhibiting ROS-mediated lysosomal membrane permeabilization and the GSDME-HMGB1 axis involved in pyroptosis and inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116195. [PMID: 38479315 DOI: 10.1016/j.ecoenv.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
8
|
Chen Y, Zhu S, Liao T, Wang C, Han J, Yang Z, Lu X, Hu Z, Hu J, Wang X, Gu M, Gao R, Liu K, Liu X, Ding C, Hu S, Liu X. The HN protein of Newcastle disease virus induces cell apoptosis through the induction of lysosomal membrane permeabilization. PLoS Pathog 2024; 20:e1011981. [PMID: 38354122 PMCID: PMC10866534 DOI: 10.1371/journal.ppat.1011981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Tianxing Liao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Jiajun Han
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Zhenyu Yang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Caceres L, Abogunloko T, Malchow S, Ehret F, Merz J, Li X, Sol Mitre L, Magnani N, Tasat D, Mwinyella T, Spiga L, Suchanek D, Fischer L, Gorka O, Colin Gissler M, Hilgendorf I, Stachon P, Rog-Zielinska E, Groß O, Westermann D, Evelson P, Wolf D, Marchini T. Molecular mechanisms underlying NLRP3 inflammasome activation and IL-1β production in air pollution fine particulate matter (PM 2.5)-primed macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122997. [PMID: 38000727 PMCID: PMC10804998 DOI: 10.1016/j.envpol.2023.122997] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Exposure to air pollution fine particulate matter (PM2.5) aggravates respiratory and cardiovascular diseases. It has been proposed that PM2.5 uptake by alveolar macrophages promotes local inflammation that ignites a systemic response, but precise underlying mechanisms remain unclear. Here, we demonstrate that PM2.5 phagocytosis leads to NLRP3 inflammasome activation and subsequent release of the pro-inflammatory master cytokine IL-1β. Inflammasome priming and assembly was time- and dose-dependent in inflammasome-reporter THP-1-ASC-GFP cells, and consistent across PM2.5 samples of variable chemical composition. While inflammasome activation was promoted by different PM2.5 surrogates, significant IL-1β release could only be observed after stimulation with transition-metal rich Residual Oil Fly Ash (ROFA) particles. This effect was confirmed in primary human monocyte-derived macrophages and murine bone marrow-derived macrophages (BMDMs), and by confocal imaging of inflammasome-reporter ASC-Citrine BMDMs. IL-1β release by ROFA was dependent on the NLRP3 inflammasome, as indicated by lack of IL-1β production in ROFA-exposed NLRP3-deficient (Nlrp3-/-) BMDMs, and by specific NLRP3 inhibition with the pharmacological compound MCC950. In addition, while ROFA promoted the upregulation of pro-inflammatory gene expression and cytokines release, MCC950 reduced TNF-α, IL-6, and CCL2 production. Furthermore, inhibition of TNF-α with a neutralizing antibody decreased IL-1β release in ROFA-exposed BMDMs. Using electron tomography, ROFA particles were observed inside intracellular vesicles and mitochondria, which showed signs of ultrastructural damage. Mechanistically, we identified lysosomal rupture, K+ efflux, and impaired mitochondrial function as important prerequisites for ROFA-mediated IL-1β release. Interestingly, specific inhibition of superoxide anion production (O2•-) from mitochondrial respiratory Complex I, but not III, blunted IL-1β release in ROFA-exposed BMDMs. Our findings unravel the mechanism by which PM2.5 promotes IL-1β release in macrophages and provide a novel link between innate immune response and exposure to air pollution PM2.5.
Collapse
Affiliation(s)
- Lourdes Caceres
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| | - Tijani Abogunloko
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Sara Malchow
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Fabienne Ehret
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Julian Merz
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Xiaowei Li
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Lucia Sol Mitre
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| | - Deborah Tasat
- Universidad Nacional de General San Martín, Escuela de Ciencia y Tecnología, B1650, General San Martín, Argentina
| | - Timothy Mwinyella
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Lisa Spiga
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Dymphie Suchanek
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Larissa Fischer
- Faculty of Biology, University of Freiburg, 79104, Freiburg im Breisgau, Germany; Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Mark Colin Gissler
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Eva Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| | - Dennis Wolf
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany.
| | - Timoteo Marchini
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
10
|
Urano Y, Noguchi N. Enzymatically Formed Oxysterols and Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:193-211. [PMID: 38036881 DOI: 10.1007/978-3-031-43883-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The side-chain hydroxylation of cholesterol by specific enzymes produces 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, and other products. These enzymatically formed side-chain oxysterols act as intermediates in the biosynthesis of bile acids and serve as signaling molecules that regulate cholesterol homeostasis. Besides these intracellular functions, an imbalance in oxysterol homeostasis is implicated in pathophysiology. Furthermore, growing evidence reveals that oxysterols affect cell proliferation and cause cell death. This chapter provides an overview of the pathophysiological role of side-chain oxysterols in developing human diseases. We also summarize our understanding of the molecular mechanisms underlying the induction of various forms of cell death by side-chain oxysterols.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
11
|
Han J, Tong XY, Rao CY, Ouyang JM, Gui BS. Size-Dependent Cytotoxicity, Adhesion, and Endocytosis of Micro-/Nano-hydroxyapatite Crystals in HK-2 Cells. ACS OMEGA 2023; 8:48432-48443. [PMID: 38144057 PMCID: PMC10733994 DOI: 10.1021/acsomega.3c08180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Nano-hydroxyapatite (nano-HAP) is often used as a crystal nest to induce calcium oxalate (CaOx) kidney stone formation, but the mechanism of interaction between HAP crystals of different properties and renal tubular epithelial cells remains unclear. In this study, the adhesion and endocytosis of HAP crystals with sizes of 40 nm, 70 nm, 1 μm, and 2 μm (HAP-40 nm, HAP-70 nm, HAP-1 μm, and HAP-2 μm, respectively) to human renal proximal tubular epithelial cells (HK-2) were comparatively studied. The results showed that HAP crystals of all sizes promoted the expression of osteopontin and hyaluronic acid on the cell surface, destroyed the integrity of the lysosomes, and induced the apoptosis and necrosis of cells. Nano-HAP crystals had a higher specific surface area, a smaller contact angle, a higher surface energy, and a lower Zeta potential than those of micro-HAP. Therefore, the abilities of HK-2 cells to adhere to and endocytose nano-HAP crystals were greater than their abilities to do the same for micro-HAP crystals. The order of the endocytosed crystals was as follows: HAP-40 nm > HAP-70 nm > HAP-1 μm > HAP-2 μm. The endocytosed HAP crystals entered the lysosomes. The more crystal endocytosis and adhesion there is, the more toxic it is to HK-2 cells. The results of this study showed that nanosized HAP crystals greatly promoted the formation of kidney stones than micrometer-sized HAP crystals.
Collapse
Affiliation(s)
- Jin Han
- Department
of Nephrology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Xin-Yi Tong
- Department
of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chen-Ying Rao
- Department
of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian-Ming Ouyang
- Department
of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bao-Song Gui
- Department
of Nephrology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
12
|
Wang T, Feng W, Ju M, Yu H, Guo Z, Sun X, Yang K, Liu M, Xiao R. 27-hydroxycholesterol causes cognitive deficits by disturbing Th17/Treg balance and the related immune responses in mild cognitive impairment patients and C57BL/6J mice. J Neuroinflammation 2023; 20:305. [PMID: 38115100 PMCID: PMC10729399 DOI: 10.1186/s12974-023-02986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cognitive impairment is associated with dysregulated immune responses. Emerging evidence indicates that Th17 cells and their characteristic cytokine-IL-17 are receiving growing interest in the pathogenesis of cognitive decline. Here, we focus on the involvement of Th17 cells in mild cognitive impairment (MCI) and the possible mechanism of cholesterol metabolite-27-hydroxycholesterol (27-OHC). METHODS 100 individuals were recruited into the nested case-control study who completed cognition assessment and the detection of oxysterols and Th17-related cytokines in serum. In addition, mice were treated with 27-OHC and inhibitors of RORγt and Foxp3 (Th17 and Treg transcription factors), and the factors involved in Th17/Treg balance and amyloidosis were detected. RESULTS Our results showed there was enhanced 27-OHC level in serum of MCI individuals. The Th17-related cytokines homeostasis was altered, manifested as increased IL-17A, IL-12p70, IL-23, GM-CSF, MIP-3α and TNF-α but decreased IL-13, IL-28A and TGF-β1. Further, in vivo experiments showed that 27-OHC induced higher immunogenicity, which increased Th17 proportion but decreased Treg cells in peripheral blood mononuclear cells (PBMCs); Th17 proportions in hippocampus, and IL-17A level in serum and brain were also higher than control mice. The fluorescence intensity of amyloid-β (Aβ) and the precursor of amyloid A amyloidosis-serum amyloid A (SAA) was increased in the brain of 27-OHC-treated mice, and worse learning and memory performance was supported by water maze test results. While by inhibiting RORγt in 27-OHC-loaded mice, Th17 proportions in both PBMCs and hippocampus were reduced, and expressions of IL-17A and TGF-β1 were down- and up-regulated, respectively, along with a decreased amyloidosis in brain and improved learning and memory decline. CONCLUSIONS Altogether, our results demonstrate that excessive 27-OHC aggravates the amyloidosis and leads to cognitive deficits by regulating RORγt and disturbing Th17/Treg balance.
Collapse
Affiliation(s)
- Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Wenjing Feng
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Zhiting Guo
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Xuejing Sun
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Kexin Yang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Miao Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China.
| |
Collapse
|
13
|
Zhang Y, Zhang J, Zhao Y, Zhang Y, Liu L, Xu X, Wang X, Fu J. ChemR23 activation attenuates cognitive impairment in chronic cerebral hypoperfusion by inhibiting NLRP3 inflammasome-induced neuronal pyroptosis. Cell Death Dis 2023; 14:721. [PMID: 37932279 PMCID: PMC10628255 DOI: 10.1038/s41419-023-06237-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Neuroinflammation plays critical roles in vascular dementia (VaD), the second leading cause of dementia, which can be induced by chronic cerebral hypoperfusion (CCH). NLRP3 inflammasome-induced pyroptosis, the inflammatory programmed cell death, has been reported to contribute to the development of VaD. ChemR23 is a G protein-coupled receptor that has emerging roles in regulating inflammation. However, the role of ChemR23 signalling in NLRP3 inflammasome-induced pyroptosis in CCH remains elusive. In this study, a CCH rat model was established by permanent bilateral common carotid artery occlusion (BCCAO) surgery. Eight weeks after the surgery, the rats were intraperitoneally injected with the ChemR23 agonist Resolvin E1 (RvE1) or chemerin-9 (C-9). Additionally, primary rat hippocampal neurons and SH-SY5Y cells were adopted to mimic CCH injury in vitro. Our results showed that the levels of ChemR23 expression were decreased from the 8th week after BCCAO, accompanied by significant cognitive impairment. Further analysis revealed that CCH induced neuronal damage, synaptic injury and NLRP3-related pyroptosis activation in hippocampal neurons. However, pharmacologic activation of ChemR23 with RvE1 or C-9 counteracted these changes. In vitro experiments also showed that ChemR23 activation prevented primary neuron pyroptosis induced by chronic hypoxia. In addition, manipulating ChemR23 expression markedly regulated NLRP3 inflammasome-induced neuronal pyroptosis through PI3K/AKT/Nrf2 signalling in SH-SY5Y cells under hypoglycaemic and hypoxic conditions. Collectively, our data demonstrated that ChemR23 activation inhibits NLRP3 inflammasome-induced neuronal pyroptosis and improves cognitive function via the PI3K/AKT/Nrf2 signalling pathway in CCH models. ChemR23 may serve as a potential novel therapeutic target to treat CCH-induced cognitive impairment.
Collapse
Affiliation(s)
- Yaxuan Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yao Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Lan Liu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
14
|
Wang Z, Chen K, Zhang K, He K, Zhang D, Guo X, Huang T, Hu J, Zhou X, Nie S. Agrocybe cylindracea fucoglucogalactan induced lysosome-mediated apoptosis of colorectal cancer cell through H3K27ac-regulated cathepsin D. Carbohydr Polym 2023; 319:121208. [PMID: 37567726 DOI: 10.1016/j.carbpol.2023.121208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023]
Abstract
Inducing lysosomal dysfunction is emerging as a promising means for cancer therapy. Agrocybe cylindracea fucoglucogalactan (ACP) is a bioactive ingredient with anti-tumor activity, while its mechanism remains obscure. Herein, we found that ACP visibly inhibited the proliferation of colorectal cancer cells, and the IC50 value on HCT-116 cells (HT29 cells) was 490 μg/mL (786.4 μg/mL) at 24 h. RNA-seq showed that ACP regulated mitochondria, lysosome and apoptosis-related pathways. Further experiments proved that ACP indeed promoted apoptosis and lysosomal dysfunction of HCT-116 cells. Moreover, ChIP-seq revealed that ACP increased histone-H3-lysine-27 acetylation (H3K27ac) on CTSD (cathepsin D) promoter in HCT-116 cells, thus facilitating the binding of transcription factor EB (TFEB), and resulted in ascension of CTSD expression. Additionally, ACP triggered mitochondrial-mediated apoptosis by decreasing mitochondrial membrane potential and increasing pro-apoptotic protein levels. Notably, Pepstatin A (CTSD inhibitor) availably alleviated ACP-induced apoptosis. Taken together, our results indicated that ACP induced lysosome-mitochondria mediated apoptosis via H3K27ac-regulated CTSD in HCT-116 cells. This study indicates that ACP has anti-cancer potential in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ziwei Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Kunying Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Kaihong He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Xiaohan Guo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Tongwen Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
15
|
Zhang ZX, Zhou YJ, Gu P, Zhao W, Chen HX, Wu RY, Zhou LY, Cui QZ, Sun SK, Zhang LQ, Zhang K, Xu HJ, Chai XQ, An SJ. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson's disease and neuronal damage through inhibition of microglia. Neural Regen Res 2023; 18:2291-2300. [PMID: 37056150 PMCID: PMC10328268 DOI: 10.4103/1673-5374.368300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 04/15/2023] Open
Abstract
Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson's disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment of a variety of diseases. However, whether they can protect neurons in Parkinson's disease by inhibiting microglia-mediated inflammatory responses is not yet known. In this study, exosomes were isolated from human umbilical cord mesenchymal stem cells and injected into a 6-hydroxydopamine-induced rat model of Parkinson's disease. We found that the exosomes injected through the tail vein and lateral ventricle were absorbed by dopaminergic neurons and microglia on the affected side of the brain, where they repaired nigral-striatal dopamine system damage and inhibited microglial activation. Furthermore, in an in vitro cell model, pretreating lipopolysaccharide-stimulated BV2 cells with exosomes reduced interleukin-1β and interleukin-18 secretion, prevented the adoption of pyroptosis-associated morphology by BV2 cells, and increased the survival rate of SH-SY5Y cells. Potential targets for treatment with human umbilical cord mesenchymal stem cells and exosomes were further identified by high-throughput microRNA sequencing and protein spectrum sequencing. Our findings suggest that human umbilical cord mesenchymal stem cells and exosomes are a potential treatment for Parkinson's disease, and that their neuroprotective effects may be mediated by inhibition of excessive microglial proliferation.
Collapse
Affiliation(s)
- Zhong-Xia Zhang
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yong-Jie Zhou
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Gu
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Zhao
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Xu Chen
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ruo-Yu Wu
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Lu-Yang Zhou
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Qing-Zhuo Cui
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Shao-Kang Sun
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Lin-Qi Zhang
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ke Zhang
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Jun Xu
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xi-Qing Chai
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Sheng-Jun An
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| |
Collapse
|
16
|
Liu F, Sun Y, Zhou Y, Gao Y, Song Q, Yang J, Xu C, Li G. ORMDL3‑mediated bronchial epithelial pyroptosis leads to lung inflammation in obese mice with asthma. Mol Med Rep 2023; 28:186. [PMID: 37594074 PMCID: PMC10463223 DOI: 10.3892/mmr.2023.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Asthma associated with obesity is a chronic disease that poses a threat to health in children and results in severe wheezing, earlier airway remodeling and increased insensitivity to hormone therapy compared with those who only have asthma. Despite its clinical importance, knowledge on the underlying mechanisms of this disease is limited. The present study aimed to elucidate the pathogenesis of asthma associated with obesity using a murine model. A total of 30 female BALB/c mice were divided into three groups: Normal, mice with asthma and obese mice with asthma. Obese mice with asthma were fed a high‑fat diet to induce obesity. Mice with asthma were sensitized and challenged with ovalbumin (OVA). Obese mice were subjected to OVA sensitization and challenge to develop asthma associated with obesity. Airway remodeling was observed in obese mice with asthma through HE and Masson staining. Proteomic and bioinformatics analyses were conducted on lung tissue from obese mice with asthma and normal mice. A total of 200 proteins were differentially expressed in obese mice with asthma compared with normal mice; of these, 53 and 47% were up‑ and downregulated, respectively. Pathway analysis revealed that asthma associated with obesity primarily affected the 'lysosome', 'phagosome', and 'sphingolipid metabolism' pathways. Gene Set Enrichment Analysis demonstrated the presence of pyroptosis in obese asthmatic mice, along with significant increases in pyroptosis‑-associated factors such as GSDMD and Caspase. High protein expression of orosomucoid‑like 3 (ORMDL3), NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) and Gasdermin‑D (GSDMD) was observed in obese mice with asthma. In vitro experiments using HBE cells infected with ORMDL3‑overexpressing lentivirus demonstrated that the overexpression of ORMDL3 led to increased expression of NLRP3, GSDMD and cathepsin D (CTSD). These findings suggested that ORMDL3 may regulate pyroptosis and subsequent airway remodeling in asthma associated with obesity via the CTSD/NLRP3/GSDMD pathway.
Collapse
Affiliation(s)
- Fan Liu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, P.R. China
- Graduate School of Peking Union Medical College, Beijing 100020, P.R. China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Yan Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yun Zhou
- Department of Pediatrics, Shandong Provincial Lanling People's Hospital, Linyi, Shandong 277799, P.R. China
| | - Yuye Gao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qijun Song
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jianmei Yang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
17
|
Jiang W, He F, Ding G, Wu J. Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neurosci Ther 2023; 29:2843-2856. [PMID: 37081763 PMCID: PMC10493668 DOI: 10.1111/cns.14221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/01/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS Elamipretide (EPT), a novel mitochondria-targeted peptide, has been shown to be protective in a range of diseases. However, the effect of EPT in spinal cord injury (SCI) has yet to be elucidated. We aimed to investigate whether EPT would inhibit pyroptosis and protect against SCI. METHODS After establishing the SCI model, we determined the biochemical and morphological changes associated with pyroptosis, including neuronal cell death, proinflammatory cytokine expression, and signal pathway levels. Furthermore, mitochondrial function was assessed with flow cytometry, quantitative real-time polymerase chain reaction, and western blot. RESULTS Here, we demonstrate that EPT improved locomotor functional recovery following SCI as well as reduced neuronal loss. Moreover, EPT inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis occurrence and decreased pro-inflammatory cytokines levels following SCI. Furthermore, EPT alleviated mitochondrial dysfunction and reduced mitochondrial reactive oxygen species level. CONCLUSION EPT treatment may protect against SCI via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
18
|
Hjazi A, Ahsan M, Alghamdi MI, Kareem AK, Al-Saidi DN, Qasim MT, Romero-Parra RM, Zabibah RS, Ramírez-Coronel AA, Mustafa YF, Hosseini-Fard SR, Karampoor S, Mirzaei R. Unraveling the impact of 27-hydroxycholesterol in autoimmune diseases: Exploring promising therapeutic approaches. Pathol Res Pract 2023; 248:154737. [PMID: 37542860 DOI: 10.1016/j.prp.2023.154737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The role of 27-hydroxycholesterol (27-OHC) in autoimmune diseases has become a subject of intense research in recent years. This oxysterol, derived from cholesterol, has been identified as a significant player in modulating immune responses and inflammation. Its involvement in autoimmune pathogenesis has drawn attention to its potential as a therapeutic target for managing autoimmune disorders effectively. 27-OHC, an oxysterol derived from cholesterol, has emerged as a key player in modulating immune responses and inflammatory processes. It exerts its effects through various mechanisms, including activation of nuclear receptors, interaction with immune cells, and modulation of neuroinflammation. Additionally, 27-OHC has been implicated in the dysregulation of lipid metabolism, neurotoxicity, and blood-brain barrier (BBB) disruption. Understanding the intricate interplay between 27-OHC and autoimmune diseases, particularly neurodegenerative disorders, holds promise for developing targeted therapeutic strategies. Additionally, emerging evidence suggests that 27-OHC may interact with specific receptors and transcription factors, thus influencing gene expression and cellular processes in autoimmune disorders. Understanding the intricate mechanisms by which 27-OHC influences immune dysregulation and tissue damage in autoimmune diseases is crucial for developing targeted therapeutic interventions. Further investigations into the molecular pathways and signaling networks involving 27-OHC are warranted to unravel its full potential as a therapeutic target in autoimmune diseases, thereby offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Maria Ahsan
- King Edward Medical University Lahore, Pakistan
| | - Mohammed I Alghamdi
- Department of Computer Science, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - A K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Research group in educational statistics, National University of Education, Azogues, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
19
|
You M, Song Y, Chen J, Liu Y, Chen W, Cen Y, Zhao X, Tao Z, Yang G. Combined exposure to benzo(a)pyrene and dibutyl phthalate aggravates pro-inflammatory macrophage polarization in spleen via pyroptosis involving cathepsin B. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163460. [PMID: 37061049 DOI: 10.1016/j.scitotenv.2023.163460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Humans are often simultaneously exposed to benzo(a)pyrene (BaP) and dibutyl phthalate (DBP) through consumption of food and water. Yet, direct evidence of the link between BaP and DBP co-exposure and the risk of splenic injury is lacking. In the present study, we established the rats and primary splenic macrophages models to evaluate the effects of BaP or/and DBP exposure on spleen and underlying mechanisms. Compared to the single exposure or control groups, the co-exposure group showed more severe spleen damage and higher production of pro-inflammatory cytokines. Co-exposure to BaP and DBP resulted in a 1.79-fold, 2.11-fold and 1.9-fold increase in the M1 macrophage markers iNOS, NLRP3 (pyroptosis marker protein) and cathepsin B (CTSB), respectively, and a 0.8-fold decrease in the M2 macrophage marker Arg1 in vivo. The more prominent effects in perturbation of imbalance in M1/M2 polarization (iNOS, 2.25-fold; Arg1, 0.55-fold), pyroptosis (NLRP3, 1.43-fold), and excess CTSB (1.07-fold) in macrophages caused by BaP and DBP co-exposure in vitro were also found. Notably, MCC950 (the NLRP3-specific inhibitor) treatment attenuated the pro-inflammatory macrophage polarization and following pro-inflammatory cytokine production triggered by BaP and DBP co-exposure. Furthermore, CA-074Me (the CTSB-specific inhibitor) suppressed the macrophages pyroptosis, pro-inflammatory macrophage polarization, and secretion of pro-inflammatory cytokine induced by BaP and DBP co-exposure. In conclusion, this study indicates co-exposure to BaP and DBP poses a higher risk of spleen injury. Pro-inflammatory macrophage polarization regulated by pyroptosis involving CTSB underlies the spleen injury caused by BaP and DBP co-exposure.
Collapse
Affiliation(s)
- Mingdan You
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yawen Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiaodeng Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Zhongfa Tao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Ganghong Yang
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
20
|
Meng Z, Gao M, Wang C, Guan S, Zhang D, Lu J. Apigenin Alleviated High-Fat-Diet-Induced Hepatic Pyroptosis by Mitophagy-ROS-CTSB-NLRP3 Pathway in Mice and AML12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7032-7045. [PMID: 37141464 DOI: 10.1021/acs.jafc.2c07581] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Apigenin is considered the most-known natural flavonoid and is abundant in a wide variety of fruits and vegetables. A high fat diet (HFD) can induce liver injury and hepatocyte death in multiple ways. Pyroptosis is an innovative type of programmed cell death. Moreover, excessive pyroptosis of hepatocytes leads to liver injury. We used HFD to induce liver cell pyroptosis in C57BL/6J mice in this work. After gavage of apigenin, apigenin can significantly reduce the level of lactate dehydrogenase (LDH) in liver tissue ignited by HFD and reduce the levels of NLRP3 (NOD-like receptor family pyrin domain containing 3), the N-terminal domain of GSDMD (GSDMD-N), cleaved-caspase 1, cathepsin B (CTSB), interleukin-1β (IL-1β) and interleukin-18 (IL-18) protein expression and the colocalization of NLRP3 and CTSB and increase the level of lysosomal associated membrane protein-1 (LAMP-1) protein expression, thus alleviating cell pyroptosis. In a further in vitro mechanism study, we find that palmitic acid (PA) can induce pyroptosis in AML12 cells. After adding apigenin, apigenin can clear the damaged mitochondria through mitophagy and reduce the generation of intracellular reactive oxygen species (ROS), thus alleviating CTSB release caused by lysosomal membrane permeabilization (LMP), reducing the LDH release caused by PA and reducing the levels of NLRP3, GSDMD-N, cleaved-caspase 1, CTSB, IL-1β, and IL-18 protein expression. By adding the mitophagy inhibitor cyclosporin A (CsA), LC3-siRNA, the CTSB inhibitor CA-074 methyl ester (CA-074 Me), and the NLRP3 inhibitor MCC950, the aforementioned results were further confirmed. Therefore, our results show that HFD-fed and PA can damage mitochondria, promote the production of intracellular ROS, enhance the lysosomal membrane permeabilization (LMP), and cause the leakage of CTSB, thus activating the NLRP3 inflammatory body and inducing pyroptosis in C57BL/6J mice and AML12 cells, while apigenin alleviates this phenomenon through the mitophagy-ROS-CTSB-NLRP3 pathway.
Collapse
Affiliation(s)
- Zhuoqun Meng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Min Gao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Chunyun Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
21
|
Qiu Y, Shi YN, Zhu N, Zhang S, Zhang CJ, Gu J, He P, Dai AG, Qin L. A Lipid Perspective on Regulated Pyroptosis. Int J Biol Sci 2023; 19:2333-2348. [PMID: 37215994 PMCID: PMC10197892 DOI: 10.7150/ijbs.81017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Pyroptosis is a novel pro-inflammatory cell programmed death dependent on Gasdermin (GSMD) family-mediated membrane pore formation and subsequent cell lysis, accompanied by the release of inflammatory factors and expanding inflammation in multiple tissues. All of these processes have impacts on a variety of metabolic disorders. Dysregulation of lipid metabolism is one of the most prominent metabolic alterations in many diseases, including the liver, cardiovascular system, and autoimmune diseases. Lipid metabolism produces many bioactive lipid molecules, which are important triggers and endogenous regulators of pyroptosis. Bioactive lipid molecules promote pyroptosis through intrinsic pathways involving reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, lysosomal disruption, and the expression of related molecules. Pyroptosis can also be regulated during the processes of lipid metabolism, including lipid uptake and transport, de novo synthesis, lipid storage, and lipid peroxidation. Taken together, understanding the correlation between lipid molecules such as cholesterol and fatty acids and pyroptosis during metabolic processes can help to gain insight into the pathogenesis of many diseases and develop effective strategies from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Yun Qiu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Peng He
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ai-Guo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| |
Collapse
|
22
|
Kaur P, Attri S, Singh D, Rashid F, Singh S, Kumar A, Kaur H, Bedi N, Arora S. Neuromodulatory effect of 4-(methylthio)butyl isothiocyanate against 3-nitropropionic acid induced oxidative impairments in human dopaminergic SH-SY5Y cells via BDNF/CREB/TrkB pathway. Sci Rep 2023; 13:4461. [PMID: 36932199 PMCID: PMC10023800 DOI: 10.1038/s41598-023-31716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Mitochondrial impairment, energetic crisis and elevated oxidative stress have been demonstrated to play a pivotal role in the pathological processes of Huntington's disease (HD). 3-Nitropropionic acid (3-NPA) is a natural neurotoxin that mimics the neurological dysfunctions, mitochondrial impairments and oxidative imbalance of HD. The current investigation was undertaken to demonstrate the neuroprotective effect of 4-(methylthio)butyl isothiocyanate (4-MTBITC) against the 3-NPA induced neurotoxicity in human dopaminergic SH-SY5Y cells. The experimental evidence of oxidative DNA damage by 3-NPA was elucidated by pBR322 DNA nicking assay. In contrast, the 4-MTBITC considerably attenuated the DNA damage, suggesting its free radical scavenging action against 3-NPA and Fenton's reagent. The dose and time-dependent increase of 3-NPA revealed its neurotoxic dose as 0.5 mM after 24 h of treatment of SH-SY5Y cells in MTT assay. In order to determine the optimal dose at which 4-MTBITC protects cell death, the 3-NPA (IC50) induced cells were pretreated with different concentrations of 4-MTBITC for 1 h. The neuroprotective dose of 4-MTBITC against 3-NPA was found to be 0.25 μM. Additionally, the elevated GSH levels in cells treated with 4-MTBITC indicate its propensity to eliminate reactive species generated as a result of 3-NPA-induced mitochondrial dysfunction. Likewise, it was determined through microscopic and flow cytometric experiments that 3-NPA's induced overproduction of reactive species and a decline in mitochondrial membrane potential (MMP) could be efficiently prevented by pre-treating cells with 4-MTBITC. To elucidate the underlying molecular mechanism, the RT-qPCR analysis revealed that the pre-treatment of 4-MTBITC effectively protected neuronal cells against 3-NPA-induced cell death by preventing Caspase-3 activation, Brain-derived neurotrophic factor (BDNF) upregulation, activation of cAMP response element-binding protein (CREB) and Nrf2 induction. Together, our findings lend credence to the idea that pre-treatment with 4-MTBITC reduced 3-NPA-induced neurotoxicity by lowering redox impairment, apoptotic state, and mitochondrial dysfunction. The present work, in conclusion, presented the first proof that the phytoconstituent 4-MTBITC supports the antioxidant system, BDNF/TrkB/CREB signaling, and neuronal survival in dopaminergic SH-SY5Y cells against 3-NPA-induced oxidative deficits.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harjot Kaur
- Department of Biotechnology, Punjabi University, Patiala, 147001, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
23
|
de Dios C, Abadin X, Roca-Agujetas V, Jimenez-Martinez M, Morales A, Trullas R, Mari M, Colell A. Inflammasome activation under high cholesterol load triggers a protective microglial phenotype while promoting neuronal pyroptosis. Transl Neurodegener 2023; 12:10. [PMID: 36895045 PMCID: PMC9996936 DOI: 10.1186/s40035-023-00343-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Persistent inflammatory response in the brain can lead to tissue damage and neurodegeneration. In Alzheimer's disease (AD), there is an aberrant activation of inflammasomes, molecular platforms that drive inflammation through caspase-1-mediated proteolytic cleavage of proinflammatory cytokines and gasdermin D (GSDMD), the executor of pyroptosis. However, the mechanisms underlying the sustained activation of inflammasomes in AD are largely unknown. We have previously shown that high brain cholesterol levels promote amyloid-β (Aβ) accumulation and oxidative stress. Here, we investigate whether these cholesterol-mediated changes may regulate the inflammasome pathway. METHODS SIM-A9 microglia and SH-SY5Y neuroblastoma cells were cholesterol-enriched using a water-soluble cholesterol complex. After exposure to lipopolysaccharide (LPS) plus muramyl dipeptide or Aβ, activation of the inflammasome pathway was analyzed by immunofluorescence, ELISA and immunoblotting analysis. Fluorescently-labeled Aβ was employed to monitor changes in microglia phagocytosis. Conditioned medium was used to study how microglia-neuron interrelationship modulates the inflammasome-mediated response. RESULTS In activated microglia, cholesterol enrichment promoted the release of encapsulated IL-1β accompanied by a switch to a more neuroprotective phenotype, with increased phagocytic capacity and release of neurotrophic factors. In contrast, in SH-SY5Y cells, high cholesterol levels stimulated inflammasome assembly triggered by both bacterial toxins and Aβ peptides, resulting in GSDMD-mediated pyroptosis. Glutathione (GSH) ethyl ester treatment, which recovered the cholesterol-mediated depletion of mitochondrial GSH levels, significantly reduced the Aβ-induced oxidative stress in the neuronal cells, resulting in lower inflammasome activation and cell death. Furthermore, using conditioned media, we showed that neuronal pyroptosis affects the function of the cholesterol-enriched microglia, lowering its phagocytic activity and, therefore, the ability to degrade extracellular Aβ. CONCLUSIONS Changes in intracellular cholesterol levels differentially regulate the inflammasome-mediated immune response in microglia and neuronal cells. Given the microglia-neuron cross-talk in the brain, cholesterol modulation should be considered a potential therapeutic target for AD treatment, which may help to block the aberrant and chronic inflammation observed during the disease progression.
Collapse
Affiliation(s)
- Cristina de Dios
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Xenia Abadin
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Vicente Roca-Agujetas
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla., Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marina Jimenez-Martinez
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Immunology and Rheumatology, Amsterdam UMC, Amsterdam, Netherlands
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Trullas
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Montserrat Mari
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
24
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
25
|
Jiang W, He F, Ding G, Wu J. Dopamine inhibits pyroptosis and attenuates secondary damage after spinal cord injury in female mice. Neurosci Lett 2023; 792:136935. [PMID: 36307053 DOI: 10.1016/j.neulet.2022.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND An excessive inflammatory response accompanies the pathogenesis of spinal cord injury (SCI) and has been found to be promoted by inflammasomes in a variety of disease models. Dopamine is a neurotransmitter that also regulates nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome-dependent neuroinflammation. However, little is known regarding the effects and molecular mechanisms underlying the role of dopamine in SCI. METHODS Functional recovery in mice was assessed with the Basso Mouse Scale (BMS). Neuronal loss was evaluated with immunochemical staining of NeuN. Pyroptosis was assessed with immunofluorescence staining, flow cytometry, western blotting, and cell viability and cytotoxicity assays. RESULTS Dopamine was significantly associated with enhanced locomotor recovery after SCI, and with decreased NLRP3 inflammasome activation, pyroptosis, neuronal loss and pro-inflammatory cytokine levels. In vitro data suggested that dopamine suppressed NLRP3 inflammasome activation and pyroptosis, and decreased pro-inflammatory cytokine levels. CONCLUSIONS Dopamine may be a novel approach for alleviating secondary damage after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China; Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
26
|
Inhibited transcription factor EB function induces reactive oxygen species overproduction to promote pyroptosis in cadmium-exposed renal tubular epithelial cells. Chem Biol Interact 2022; 368:110249. [DOI: 10.1016/j.cbi.2022.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
27
|
Jiang W, He F, Ding G, Wu J. Topotecan Reduces Neuron Death after Spinal Cord Injury by Suppressing Caspase-1-Dependent Pyroptosis. Mol Neurobiol 2022; 59:6033-6048. [DOI: 10.1007/s12035-022-02960-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
|
28
|
Lysosomal dysfunction is associated with NLRP3 inflammasome activation in chronic unpredictable mild stress-induced depressive mice. Behav Brain Res 2022; 432:113987. [PMID: 35780959 DOI: 10.1016/j.bbr.2022.113987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
NLRP3 inflammasome pathway-mediated inflammatory response is closely associated with depression. Increasing attention has been recently paid to the links between autophagy and depression, however, the relationship between autophagy and NLRP3 inflammasome in depressive behavior remain poorly understood. In the present study, the potential roles of autophagy-lysosome pathway in NLRP3 inflammasome regulation were investigated both in vivo (chronic unpredictable mild stress (CUMS)-induced depressive mouse model) and in vitro (LPS-induced cellular model) model. It demonstrated that CUMS induces depressive-like behaviors in mice, accompanied by increased expression of NLRP3 inflammasome and inflammatory responses. Meanwhile, it promoted the autophagosome marker LC3 and autophagic adaptor protein p62 accumulation, accompanied by the decrease of lysosomal cathepsins B and D expression in the prefrontal cortex of mice. Notably, a significant colocalization of NLRP3 and LC3 in CUMS mice by immunofluorescence co-staining were observed. For the in vitro study, disrupting the lysosomal function with Baf A1 significantly increased the LPS-induced NLRP3 inflammasome accumulation and pro-inflammatory factors (IL-1β and IL-18) production in BV2 cells. Collectively, our results suggested that the autophagic process is related to NLRP3 inflammasome activation, and dysfunctional lysosome in autophagy-lysosomal pathway may retard NLRP3 inflammasome degradation, facilitating the production of pro-inflammatory factors, thereby contributing to depressive behavior in CUMS mice.
Collapse
|
29
|
Piao MH, Wang H, Jiang YJ, Wu YL, Nan JX, Lian LH. Taxifolin blocks monosodium urate crystal-induced gouty inflammation by regulating phagocytosis and autophagy. Inflammopharmacology 2022; 30:1335-1349. [PMID: 35708797 DOI: 10.1007/s10787-022-01014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Gout is a chronic disease caused by monosodium urate (MSU) crystal deposition in the joints and surrounding tissues. We examined the effects of Taxifolin, a natural flavonoid mainly existing in vegetables and fruits, on MSU-induced gout. Pretreatment with Taxifolin significantly reduced IL-1β, Caspase-1 and HMGB1 levels, upregulation of autophagy-related protein, LC3, as well as improved phagocytosis of macrophages. This study indicated that Taxifolin-attenuated inflammatory response in MSU-induced acute gout model by decreasing pro-inflammatory cytokine production and promoting the autophagy and phagocytic capacity of macrophages. Dietary supplementation with Taxifolin induces the autophagy and attenuated inflammatory response, which in consequence modulates acute gout. A preventive strategy combining dietary interventions with Taxifolin may offer a potential therapeutic alternative to pharmacological treatment to reduce inflammatory response to gout.
Collapse
Affiliation(s)
- Mei-Hua Piao
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Hui Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Yin-Jing Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin, China.
| |
Collapse
|
30
|
Jiang W, He F, Ding G, Wu J. Topoisomerase 1 inhibition modulates pyroptosis to improve recovery after spinal cord injury. FASEB J 2022; 36:e22294. [PMID: 35579890 DOI: 10.1096/fj.202100713rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Excessive neuroinflammation and neuronal loss contribute to mechanisms of spinal cord injury (SCI). Accumulating evidence has suggested that topoisomerase 1 (Top1) inhibition can suppress exacerbated immune responses and protect against lethal inflammation. Pyroptosis is a recently identified pro-inflammatory programmed mode of cell death. However, the effects and underlying mechanisms of Top1 inhibition in SCI remains unclear. Locomotor functional recovery in mice was evaluated through Basso Mouse Scale (BMS). Neuronal loss was evaluated by immunochemistry staining of NeuN. Pyroptosis was determined by immunofluorescence staining, western blot, flow cytometry, cell viability, and cytotoxicity assays. In the present study, we estimated the effects of chemical inhibition of Top1 in an SCI model. Administration of Top1 inhibitor camptothecin (CPT) to mice significantly improved locomotor functional recovery after SCI. Moreover, CPT reduced Top1 level, inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis, attenuated proinflammatory cytokines levels, diminished the number of neutrophil and neuronal loss in mice. Furthermore, CPT in oxygen-glucose deprivation neurons down-regulated Top1 level, attenuated NLRP3 inflammasome activation, and suppressed pyroptosis and inflammatory response. Together, our findings indicate that inhibition of Top1 with CPT can inhibit pyroptosis, control neuroinflammation, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Regulation of Th17/Treg Balance by 27-Hydroxycholesterol and 24S-Hydroxycholesterol Correlates with Learning and Memory Ability in Mice. Int J Mol Sci 2022; 23:ijms23084370. [PMID: 35457188 PMCID: PMC9028251 DOI: 10.3390/ijms23084370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of cholesterol metabolism and its oxidative products-oxysterols-in the brain is known to be associated with neurodegenerative diseases. It is well-known that 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC) are the main oxysterols contributing to the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanism of how 27-OHC and 24S-OHC cause cognitive decline remains unclear. To verify whether 27-OHC and 24S-OHC affect learning and memory by regulating immune responses, C57BL/6J mice were subcutaneously injected with saline, 27-OHC, 24S-OHC, 27-OHC+24S-OHC for 21 days. The oxysterols level and expression level of related metabolic enzymes, as well as the immunomodulatory factors were measured. Our results indicated that 27-OHC-treated mice showed worse learning and memory ability and higher immune responses, but lower expression level of interleukin-10 (IL-10) and interferon (IFN-λ2) compared with saline-treated mice, while 24S-OHC mice performed better in the Morris water maze test than control mice. No obvious morphological lesion was observed in these 24S-OHC-treated mice. Moreover, the expression level of interleukin-17A (IL-17A), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein 3α (MIP-3α) were significantly decreased after 24S-OHC treatment. Notably, compared with 27-OHC group, mice treated with 27-OHC+24S-OHC showed higher brain 24S-OHC level, accompanied by increased CYP46A1 expression level while decreased CYP7B1, retinoic acid-related orphan receptor gamma t (RORγt) and IL-17A expression level. In conclusion, our study indicated that 27-OHC is involved in regulating the expression of RORγt, disturbing Th17/Treg balance-related immune responses which may be associated with the learning and memory impairment in mice. In contrast, 24S-OHC is neuroprotective and attenuates the neurotoxicity of 27-OHC.
Collapse
|
32
|
Zhang L, Qiu J, Shi J, Liu S, Zou H. MicroRNA-140-5p represses chondrocyte pyroptosis and relieves cartilage injury in osteoarthritis by inhibiting cathepsin B/Nod-like receptor protein 3. Bioengineered 2021; 12:9949-9964. [PMID: 34565303 PMCID: PMC8810115 DOI: 10.1080/21655979.2021.1985342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. Dysregulated microRNA (miRNA) expressions are implicated in OA progression. Consequently, the current study set out to investigate the mechanism of miR-140-5p in OA cartilage injury. Firstly, the murine and cell models of OA were established, and cartilage tissues of OA mice were observed using hematoxylin and eosin staining and safranin O staining. Chondrocyte pyroptosis was further assessed using immunohistochemical and Calcein-AM/PI staining. The levels of gasdermin-D (GSDMD)-N, cleaved caspase-1, interleukin (IL)-1β, and IL-18 in cartilage tissues and cells were determined using Western blot and enzyme-linked immunosorbent assay kits. The targeting relationship between miR-140-5p and cathepsin B (CTSB) was verified using a dual-luciferase assay. Moreover, the binding of CTSB and Nod-like receptor protein 3 (NLRP3) was detected using co-immunoprecipitation assay. Lastly, the effects of NLRP3 activation and CTSB overexpression on chondrocyte pyroptosis were documented. It was found that OA induction aggravated cartilage tissue injury and enhanced chondrocyte pyroptosis. miR-140-5p was poorly-expressed in OA models, and miR-140-5p over-expression alleviated chondrocyte pyroptosis, as evidenced by decreased GSDMD-N, cleaved caspase-1, IL-1β, and IL-18 levels. miR-140-5p targeted the CTSB gene, whereas CTSB further bound to NLRP3 and activated the NLRP3 inflammasome. Additionally, CTSB over-expression or NLRP3 activation reversed the inhibitory effect of miR-140-5p on chondrocyte pyroptosis. Collectively, our findings revealed that miR-140-5p repressed chondrocyte pyroptosis and alleviated OA cartilage injury via inhibition of the CTSB/NLRP3. This study may confer a theoretical basis for the treatment of OA cartilage injury.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianjun Qiu
- Department of Orthopedics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jixiang Shi
- Department of Orthopedics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoyang Liu
- Department of Orthopedics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanlin Zou
- Department of Orthopedics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Xie X, Ding F, Xiao H. Knockdown of hsa_circ_0000729 Inhibits the Tumorigenesis of Non-Small Cell Lung Cancer Through Mediation of miR-1281/FOXO3 Axis. Cancer Manag Res 2021; 13:8445-8455. [PMID: 34785952 PMCID: PMC8590964 DOI: 10.2147/cmar.s318980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a subtype of lung cancer which seriously threatens the health of people. Circular RNAs (CircRNAs) are endogenous RNAs which have stable closed structure; they are known to be involved in tumorigenesis of NSCLC. Meanwhile, hsa_circ_0000729 was reported to be upregulated in NSCLC. Nevertheless, the function of hsa_circ_0000729 in NSCLC remains unclear. Methods Western blot and RT-qPCR were performed to investigate protein and mRNA levels, respectively. CCK-8 assay was performed to test the cell viability and cell death was investigated by flow cytometry. NSCLC cell pyroptosis was observed by electron microscope. In addition, the migration and invasion of NSCLC cells were detected by wound healing and transwell assay. The relation among hsa_circ_0000729, miR-1281 and FOXO3 was explored by dual luciferase reporter assay and RNA pull-down. Results Hsa_circ_0000729 was found to be upregulated in NSCLC cells, and hsa_circ_0000729 knockdown obviously suppressed the proliferation of NSCLC cells through inducing pyroptosis. In addition, silencing of hsa_circ_0000729 notably inhibited the invasion and migration of NSCLC cells. Meanwhile, hsa_circ_0000729 could bind with miR-1281, and FOXO3 was directly targeted by miR-1281. Moreover, the anti-tumor effect of hsa_circ_0000729 siRNAs on NSCLC was markedly reversed by miR-1281 antagomir. Furthermore, silencing of hsa_circ_0000729 inhibited the tumor growth of NSCLC in vivo. Conclusion Knockdown of hsa_circ_0000729 inhibits the tumorigenesis of NSCLC through mediation of miR-1281/FOXO3 axis. Thus, hsa_circ_0000729 might be served as a crucial mediator in NSCLC.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|
34
|
Shi J, Jia J, Tian S, Zhang H, An K, Zhu W, Cao W, Yuan Y, Wang S. Increased Plasma Level of 24S-Hydroxycholesterol and Polymorphism of CYP46A1 SNP (rs754203) Are Associated With Mild Cognitive Impairment in Patients With Type 2 Diabetes. Front Aging Neurosci 2021; 13:619916. [PMID: 34054500 PMCID: PMC8155290 DOI: 10.3389/fnagi.2021.619916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Background Abnormal cholesterol metabolism is common in type 2 diabetes mellitus (T2DM) and causes dementia. Cholesterol 24S-hydroxylase (CYP46A1) converts cholesterol into 24S-hydroxycholesterol (24-OHC) and maintains cholesterol homeostasis in the brain. Objective This study aimed to investigate the roles of 24-OHC and the CYP46A1 (rs754203) polymorphism in patients with T2DM and mild cognitive impairment (MCI). Methods A total of 193 Chinese patients with T2DM were recruited into two groups according to the Montreal Cognitive Assessment (MoCA). Demographic and clinical data were collected, and neuropsychological tests were conducted. Enzyme-linked immunosorbent assay (ELISA) and Seqnome method were used to detect the concentration of plasma 24-OHC and the CYP46A1 rs754203 genotype, respectively. Results Compared with 118 healthy cognition participants, patients with MCI (n = 75) displayed a higher plasma level of 24-OHC and total cholesterol concentration (all p = 0.031), while no correlation was found between them. In the overall diabetes population, the plasma level of 24-OHC was negatively correlated with MoCA (r = −0.150, p = 0.039), and it was further proved to be an independent risk factor of diabetic MCI (OR = 1.848, p = 0.001). Additionally, patients with MCI and the CC genotype of CYP46A1 rs754203 showed the highest plasma level of 24-OHC even though the difference was not statistically significant, and they obtained low scores in both the verbal fluency test and Stroop color and word test A (p = 0.008 and p = 0.029, respectively). Conclusion In patients with T2DM, high plasma level of 24-OHC and the CC genotype carrier of CYP46A1 rs754203 may portend a high risk of developing early cognitive impairment, including attention and executive deficits.
Collapse
Affiliation(s)
- Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Jianhong Jia
- Department of Endocrinology, Siyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Sai Tian
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Yang Yuan
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
35
|
Huang Y, Wang S, Huang F, Zhang Q, Qin B, Liao L, Wang M, Wan H, Yan W, Chen D, Liu F, Jiang B, Ji D, Xia X, Huang J, Xiong K. c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway. Ann Anat 2021; 235:151672. [PMID: 33434657 DOI: 10.1016/j.aanat.2020.151672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, shows remarkable similarities to caspase-8, which plays a key role in the cleavage of gasdermin D (GSDMD). It has been reported that the oxygen-glucose deprivation/recovery (OGD/R) model and lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment could induce inflammation and pyroptosis. However, the regulatory role of c-FLIP in the pyroptotic death of retinal neurons is unclear. In this study, we hypothesized that c-FLIP might regulate retinal neuronal pyroptosis by GSDMD cleavage. To investigate this hypothesis, we induced retinal neuronal damage in vitro (OGD/R and LPS/ATP) and in vivo (acute high intraocular pressure [aHIOP]). Our results demonstrated that the three injuries triggered the up-regulation of pyroptosis-related proteins, and c-FLIP could cleave GSDMD to generate a functional N-terminal (NT) domain of GSDMD, causing retinal neuronal pyroptosis. In addition, c-FLIP knockdown in vivo ameliorated the already established visual impairment mediated by acute IOP elevation. Taken together, these findings revealed that decreased c-FLIP expression protected against pyroptotic death of retinal neurons possibly by inhibiting GSDMD-NT generation. Therefore, c-FLIP might provide new insights into the pathogenesis of pyroptosis-related diseases and help to elucidate new therapeutic targets and potential treatment strategies.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuchao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha 410013, China
| | - Fei Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Bo Qin
- Department of Anatomy, Medical College of Hubei Polytechnic University, Huang shi 435003, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
36
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
37
|
Wang ZH, Xia Y, Liu P, Liu X, Edgington-Mitchell L, Lei K, Yu SP, Wang XC, Ye K. ApoE4 activates C/EBPβ/δ-secretase with 27-hydroxycholesterol, driving the pathogenesis of Alzheimer's disease. Prog Neurobiol 2021; 202:102032. [PMID: 33716161 DOI: 10.1016/j.pneurobio.2021.102032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
ApoE4, an apolipoprotein implicated in cholesterol transport and amyloid-β (Aβ) metabolism, is a major genetic risk determinant for Alzheimer's Disease (AD) and drives its pathogenesis via Aβ-dependent and -independent pathways. C/EBPβ, a proinflammatory cytokines-activated transcription factor, is upregulated in AD and mediates cytokines and δ-secretase expression. However, how ApoE4 contributes to AD pathogenesis remains incompletely understood. Here we show that ApoE4 and 27-hydroxycholesterol (27-OHC) co-activate C/EBPβ/δ-secretase signaling in neurons, mediating AD pathogenesis, and this effect is dependent on neuronal secreted Aβ and inflammatory cytokines. Inhibition of cholesterol metabolism with lovastatin diminishes neuronal ApoE4's stimulatory effects. Furthermore, ApoE4 and 27-OHC also mediate lysosomal δ-secretase leakage, activation, secretion and endocytosis. Notably, 27-OHC strongly activates C/EBPβ/δ-secretase pathway in human ApoE4-TR mice and triggers AD pathologies and cognitive deficits, which is blocked by C/EBPβ depletion. Hence, our findings demonstrate that ApoE4 and 27-OHC additively trigger AD pathogenesis via activating C/EBPβ/δ-secretase pathway. Lowering cholesterol levels with statins should benefit the ApoE4 AD carriers.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Laura Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne Victoria, 3010, Australia
| | - Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
38
|
Ma Y, Li C, He Y, Fu T, Song L, Ye Q, Zhang F. Beclin-1/LC3-II dependent macroautophagy was uninfluenced in ischemia-challenged vascular endothelial cells. Genes Dis 2021; 9:549-561. [PMID: 35224166 PMCID: PMC8843992 DOI: 10.1016/j.gendis.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/17/2021] [Accepted: 02/21/2021] [Indexed: 12/27/2022] Open
|
39
|
Wang Y, Zhang X, Wang T, Liu W, Wang L, Hao L, Ju M, Xiao R. 27-Hydroxycholesterol Promotes the Transfer of Astrocyte-Derived Cholesterol to Neurons in Co-cultured SH-SY5Y Cells and C6 Cells. Front Cell Dev Biol 2020; 8:580599. [PMID: 33330456 PMCID: PMC7732486 DOI: 10.3389/fcell.2020.580599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormality in cholesterol homeostasis in the brain is a feature of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) has been identified as a possible biomarker of AD, but its effects on cholesterol metabolism have not been fully characterized. This study was aimed to investigate the impacts of 27-OHC on cholesterol metabolism in nerve cells. SH-SY5Y cells and C6 cells were co-cultured and treated with 5, 10, and 20 μM 27-OHC for 24 h. Results showed that 27-OHC decreased cholesterol levels and up-regulated the expression of transport-related proteins in C6 cells. In SH-SY5Y cells, 27-OHC increased cholesterol accumulation, especially on plasma membrane (PM), which was consistent with the up-regulation of expressions of cholesterol endocytosis receptors, lipid raft-related proteins, and cholesterol esterase. Simultaneously, accumulation of membrane cholesterol promoted cholesterol conversion to 24S-OHC by CYP46A1(24S-hydroxylase) transfer from the endoplasmic reticulum (ER) to PM. Besides, Aβ levels were elevated in SH-SY5Y cells after 27-OHC treatment. Our results suggest that 27-OHC motivates the transfer of astrocyte-derived cholesterol to neurons. Although there exists a feedback mechanism that excessive cholesterol promotes its conversion to 24S-OHC, the increased cholesterol induced by 27-OHC could not be wholly offset in neurons.
Collapse
Affiliation(s)
- Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Wen Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lijing Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ling Hao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Alu A, Han X, Ma X, Wu M, Wei Y, Wei X. The role of lysosome in regulated necrosis. Acta Pharm Sin B 2020; 10:1880-1903. [PMID: 33163342 PMCID: PMC7606114 DOI: 10.1016/j.apsb.2020.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules, particles, and organelles. Currently, the pivotal role of lysosome in regulating cell death is drawing great attention. Over the past decades, we largely focused on how lysosome influences apoptosis and autophagic cell death. However, extensive studies showed that lysosome is also prerequisite for the execution of regulated necrosis (RN). Different types of RN have been uncovered, among which, necroptosis, ferroptosis, and pyroptosis are under the most intensive investigation. It becomes a hot topic nowadays to target RN as a therapeutic intervention, since it is important in many patho/physiological settings and contributing to numerous diseases. It is promising to target lysosome to control the occurrence of RN thus altering the outcomes of diseases. Therefore, we aim to give an introduction about the common factors influencing lysosomal stability and then summarize the current knowledge on the role of lysosome in the execution of RN, especially in that of necroptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
42
|
Blauwendraat C, Reed X, Krohn L, Heilbron K, Bandres-Ciga S, Tan M, Gibbs JR, Hernandez DG, Kumaran R, Langston R, Bonet-Ponce L, Alcalay RN, Hassin-Baer S, Greenbaum L, Iwaki H, Leonard HL, Grenn FP, Ruskey JA, Sabir M, Ahmed S, Makarious MB, Pihlstrøm L, Toft M, van Hilten JJ, Marinus J, Schulte C, Brockmann K, Sharma M, Siitonen A, Majamaa K, Eerola-Rautio J, Tienari PJ, Pantelyat A, Hillis AE, Dawson TM, Rosenthal LS, Albert MS, Resnick SM, Ferrucci L, Morris CM, Pletnikova O, Troncoso J, Grosset D, Lesage S, Corvol JC, Brice A, Noyce AJ, Masliah E, Wood N, Hardy J, Shulman LM, Jankovic J, Shulman JM, Heutink P, Gasser T, Cannon P, Scholz SW, Morris H, Cookson MR, Nalls MA, Gan-Or Z, Singleton AB. Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain 2020; 143:234-248. [PMID: 31755958 DOI: 10.1093/brain/awz350] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 11/14/2022] Open
Abstract
Parkinson's disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson's disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson's disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson's disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson's disease cases, 13 431 Parkinson's disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson's disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson's disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson's disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson's disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Manuela Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rebekah Langston
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Luis Bonet-Ponce
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel.,Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.,The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A Ruskey
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marya Sabir
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Ahmed
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary B Makarious
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Marinus
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Kathrin Brockmann
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Kari Majamaa
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Johanna Eerola-Rautio
- Department of Neurology, Helsinki University Hospital, and Molecular Neurology, Research Programs Unit, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Department of Neurology, Helsinki University Hospital, and Molecular Neurology, Research Programs Unit, Biomedicum, University of Helsinki, Helsinki, Finland
| | | | - Alexander Pantelyat
- Neuroregeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Argye E Hillis
- Neuroregeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Olga Pletnikova
- Department of Pathology (Neuropathology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.,Department of Pathology (Neuropathology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Donald Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Suzanne Lesage
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Christophe Corvol
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alexis Brice
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alastair J Noyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Nick Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - John Hardy
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Lisa M Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, USA.,Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, Houston, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA
| | - Peter Heutink
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Thomas Gasser
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | | | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Huw Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Data Tecnica International, Glen Echo, MD, USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Yan YQ, Fang Y, Zheng R, Pu JL, Zhang BR. NLRP3 Inflammasomes in Parkinson's disease and their Regulation by Parkin. Neuroscience 2020; 446:323-334. [PMID: 32795556 DOI: 10.1016/j.neuroscience.2020.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation might correlate with the formation of α-synuclein oligomers, subsequently leading to dopaminergic (DA) neuronal death in Parkinson's disease (PD). As major components of chronic inflammation, NOD-like receptor protein 3 (NLRP3) inflammasomes play a crucial role in PD via caspase 1 activation, primarily induced by mitochondrial damage. NLRP3 binds to apoptosis-associated speck-like protein containing a CARD (PYCARD/ASC), and forms inflammasomes in the brain. Inflammasomes act as a platform for caspase 1 to induce interleukin 1 Beta (IL1β) maturation, leading to neuronal pyroptosis. Furthermore, alpha-synuclein, whose abnormal aggregation is the main pathogenesis of PD, also activates NLRP3 inflammasomes. Mutations to PRKN (encoding Parkin) are the most common cause of autosomal recessive familial and sporadic early-onset PD. Evidence has confirmed a relationship between Parkin and NLRP3 inflammasomes. In this review, we summarize the current understanding of NLRP3 inflammasomes and their role in PD progression, and discuss their regulation by Parkin.
Collapse
Affiliation(s)
- Yi-Qun Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
44
|
Wang Y, An Y, Ma W, Yu H, Lu Y, Zhang X, Wang Y, Liu W, Wang T, Xiao R. 27-Hydroxycholesterol contributes to cognitive deficits in APP/PS1 transgenic mice through microbiota dysbiosis and intestinal barrier dysfunction. J Neuroinflammation 2020; 17:199. [PMID: 32593306 PMCID: PMC7321549 DOI: 10.1186/s12974-020-01873-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Research on the brain-gut-microbiota axis has led to accumulating interest in gut microbiota dysbiosis and intestinal barrier dysfunction in Alzheimer’s disease (AD). Our previous studies have demonstrated neurotoxic effects of 27-hydroxycholesterol (27-OHC) in in vitro and in vivo models. Here, alterations in the gut microbiota and intestinal barrier functions were investigated as the possible causes of cognitive deficits induced by 27-OHC treatment. Methods Male APP/PS1 transgenic and C57BL/6J mice were treated for 3 weeks with 27-OHC (5.5 mg/kg/day, subcutaneous injection) and either a 27-OHC synthetase inhibitor (anastrozole, ANS) or saline. The Morris water maze and passive avoidance test were used to assess cognitive impairment. Injuries of the intestine were evaluated by histopathological examination. Intestinal barrier function was assessed by plasma diamine oxidase (DAO) activity and d-lactate. Systemic and intestinal inflammation were evaluated by IL-1β, TNF-α, IL-10, and IL-17 concentrations as determined by ELISA. The fecal microbiome and short-chain fatty acids (SCFAs) were analyzed using 16S rDNA sequencing and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Tight junction proteins were evaluated in the ileum and colon by qRT-PCR and Western blots. Tight junction ultrastructure was examined by transmission electron microscopy. Results Treatment with 27-OHC resulted in severe pathologies in the ileum and colon. There was impaired intestinal barrier integrity as indicated by dilated tight junctions and downregulation of tight junction proteins, including occludin, claudin 1, claudin 5, and ZO-1, and signs of inflammation (increased IL-1β, TNF-α, and IL-17). Fecal 16S rDNA sequencing and taxonomic analysis further revealed a decreased abundance of Roseburia and reduced fecal levels of several SCFAs in 27-OHC-treated mice. Meanwhile, co-treatment with ANS reduced intestinal inflammation and partially preserved intestinal barrier integrity in the presence of 27-OHC. Conclusions The current study demonstrates for the first time that 27-OHC treatment aggravates AD-associated pathophysiological alterations, specifically gut microbiota dysbiosis and intestinal barrier dysfunction, which suggests that the gut microbiome and intestinal barrier function warrant further investigation as potential targets to mitigate the neurotoxic impact of 27-OHC on cognitive function and the development of AD.
Collapse
Affiliation(s)
- Ying Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Yu An
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Yanhui Lu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,School of Nursing, Peking University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Wen Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China.
| |
Collapse
|
45
|
Jantas D, Chwastek J, Grygier B, Lasoń W. Neuroprotective Effects of Necrostatin-1 Against Oxidative Stress-Induced Cell Damage: an Involvement of Cathepsin D Inhibition. Neurotox Res 2020; 37:525-542. [PMID: 31960265 PMCID: PMC7062871 DOI: 10.1007/s12640-020-00164-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Necroptosis, a recently discovered form of non-apoptotic programmed cell death, can be implicated in many pathological conditions including neuronal cell death. Moreover, an inhibition of this process by necrostatin-1 (Nec-1) has been shown to be neuroprotective in in vitro and in vivo models of cerebral ischemia. However, the involvement of this type of cell death in oxidative stress–induced neuronal cell damage is less recognized. Therefore, we tested the effects of Nec-1, an inhibitor of necroptosis, in the model of hydrogen peroxide (H2O2)-induced cell damage in human neuroblastoma SH-SY5Y and murine hippocampal HT-22 cell lines. The data showed that Nec-1 (10–40 μM) attenuated the cell death induced by H2O2 in undifferentiated (UN-) and neuronal differentiated (RA-) SH-SY5Y cells with a higher efficacy in the former cell type. Moreover, Nec-1 partially reduced cell damage induced by 6-hydroxydopamine in UN- and RA-SH-SY5Y cells. The protective effect of Nec-1 was of similar magnitude as the effect of a caspase-3 inhibitor in both cell phenotypes and this effect were not potentiated after combined treatment. Furthermore, the non-specific apoptosis and necroptosis inhibitor curcumin augmented the beneficial effect of Nec-1 against H2O2-evoked cell damage albeit only in RA-SH-SY5Y cells. Next, it was found that the mechanisms of neuroprotective effect of Nec-1 against H2O2-induced cell damage in SH-SY5Y cells involved the inhibition of lysosomal protease, cathepsin D, but not caspase-3 or calpain activities. In HT-22 cells, Nec-1 was protective in two models of oxidative stress (H2O2 and glutamate) and that effect was blocked by a caspase inhibitor. Our data showed neuroprotective effects of the necroptosis inhibitor, Nec-1, against oxidative stress–induced cell damage and pointed to involvement of cathepsin D inhibition in the mechanism of its action. Moreover, a cell type–specific interplay between necroptosis and apoptosis has been demonstrated.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
46
|
Revilla G, Pons MDP, Baila-Rueda L, García-León A, Santos D, Cenarro A, Magalhaes M, Blanco RM, Moral A, Ignacio Pérez J, Sabé G, González C, Fuste V, Lerma E, Faria MDS, de Leiva A, Corcoy R, Carles Escolà-Gil J, Mato E. Cholesterol and 27-hydroxycholesterol promote thyroid carcinoma aggressiveness. Sci Rep 2019; 9:10260. [PMID: 31311983 PMCID: PMC6635382 DOI: 10.1038/s41598-019-46727-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/04/2019] [Indexed: 01/16/2023] Open
Abstract
Cholesterol mediates its proliferative and metastatic effects via the metabolite 27-hydroxycholesterol (27-HC), at least in breast and endometrial cancer. We determined the serum lipoprotein profile, intratumoral cholesterol and 27-HC levels in a cohort of patients with well-differentiated papillary thyroid carcinoma (PTC; low/intermediate and high risk), advanced thyroid cancers (poorly differentiated, PDTC and anaplastic thyroid carcinoma, ATC) and benign thyroid tumors, as well as the expression of genes involved in cholesterol metabolism. We investigated the gene expression profile, cellular proliferation, and migration in Nthy-ori 3.1 and CAL-62 cell lines loaded with human low-density lipoprotein (LDL). Patients with more aggressive tumors (high-risk PTC and PDTC/ATC) showed a decrease in blood LDL cholesterol and apolipoprotein B. These changes were associated with an increase in the expression of the thyroid’s LDL receptor, whereas 3-hydroxy-3-methylglutaryl-CoA reductase and 25-hydroxycholesterol 7-alpha-hydroxylase were downregulated, with an intratumoral increase of the 27-HC metabolite. Furthermore, LDL promoted proliferation in both the Nthy-ori 3.1 and CAL-62 thyroid cellular models, but only in ATC cells was its cellular migration increased significantly. We conclude that cholesterol and intratumoral accumulation of 27-HC promote the aggressive behavior process of PTC. Targeting cholesterol metabolism could be a new therapeutic strategy in thyroid tumors with poor prognosis.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Monica de Pablo Pons
- Department of Endocrinology-EDUAB-HSP, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Cardiovasculares, CIBERCV, Madrid, Spain
| | - Annabel García-León
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David Santos
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Ana Cenarro
- CIBER de Enfermedades Cardiovasculares, CIBERCV, Madrid, Spain
| | - Marcelo Magalhaes
- Service of Endocrinology, Clinical Research Center (CEPEC), Hospital of the Federal University of Maranhão (HUUFMA), São Luís, Maranhão, Brazil
| | - R M Blanco
- CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Antonio Moral
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of General Surgery-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Medicine Department, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - José Ignacio Pérez
- Department of General Surgery-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gerard Sabé
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cintia González
- Department of Endocrinology-EDUAB-HSP, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Victoria Fuste
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Anatomic Pathology-Hospital de la Santa Creu i Sant Pau, UAB, Barcelona, Spain
| | - Enrique Lerma
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Anatomic Pathology-Hospital de la Santa Creu i Sant Pau, UAB, Barcelona, Spain
| | - Manuel Dos Santos Faria
- Service of Endocrinology, Clinical Research Center (CEPEC), Hospital of the Federal University of Maranhão (HUUFMA), São Luís, Maranhão, Brazil
| | - Alberto de Leiva
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Rosa Corcoy
- Department of Endocrinology-EDUAB-HSP, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,Medicine Department, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain.
| | - Eugenia Mato
- Department of Endocrinology-EDUAB-HSP, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
47
|
Gamba P, Staurenghi E, Testa G, Giannelli S, Sottero B, Leonarduzzi G. A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer's Disease. Front Neurosci 2019; 13:556. [PMID: 31213973 PMCID: PMC6554318 DOI: 10.3389/fnins.2019.00556] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
In Alzheimer’s disease (AD), both cholesterol and glucose dysmetabolism precede the onset of memory deficit and contribute to the disease’s progression. It is indeed now believed that oxidized cholesterol in the form of oxysterols and altered glucose uptake are the main triggers in AD affecting production and clearance of Aβ, and tau phosphorylation. However, only a few studies highlight the relationship between them, suggesting the importance of further extensive studies on this topic. Recently, a molecular link was demonstrated between cholesterol oxidative metabolism and glucose uptake in the brain. In particular, 27-hydroxycholesterol, a key linker between hypercholesterolemia and the increased AD risk, is considered a biomarker for reduced glucose metabolism. In fact, its excess increases the activity of the renin-angiotensin system in the brain, thus reducing insulin-mediated glucose uptake, which has a major impact on brain functioning. Despite this important evidence regarding the role of 27-hydroxycholesterol in regulating glucose uptake by neurons, the involvement of other cholesterol oxidation products that have been clearly demonstrated to be key players in AD cannot be ruled out. This review highlights the current understanding of the potential role of cholesterol and glucose dysmetabolism in AD progression, and the bidirectional crosstalk between these two phenomena.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| |
Collapse
|