1
|
Hattori M. Regulatory mechanism of Reelin activity: a platform for exploiting Reelin as a therapeutic agent. Front Mol Neurosci 2025; 18:1546083. [PMID: 39931643 PMCID: PMC11808024 DOI: 10.3389/fnmol.2025.1546083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Reelin is a secreted glycoprotein that was initially investigated in the field of neuronal development. However, in recent decades, its role in the adult brain has become increasingly important, and it is now clear that diminished Reelin function is involved in the pathogenesis and progression of neuropsychiatric and neurodegenerative disorders, including schizophrenia and Alzheimer's disease (AD). Reelin activity is regulated at multiple steps, including synthesis, posttranslational modification, secretion, oligomerization, proteolytic processing, and interactions with extracellular molecules. Moreover, the differential use of two canonical receptors and the presence of non-canonical receptors and co-receptors add to the functional diversity of Reelin. In this review, I summarize recent findings on the molecular mechanisms of Reelin activity. I also discuss possible strategies to enhance Reelin's function. A complete understanding of Reelin function and its regulatory mechanisms in the adult central nervous system could help ameliorate neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Cai B, Huang Y, Liu D, You Y, Chen N, Jie L, Du H. Identification of the ferroptosis-related gene signature and the associated regulation axis in lung cancer and rheumatoid arthritis. Genes Immun 2024; 25:367-380. [PMID: 39080453 DOI: 10.1038/s41435-024-00287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 10/17/2024]
Abstract
Patients with Rheumatoid arthritis (RA) have an elevated risk of lung cancer compared to the healthy population. However, there are few studies on the relationship between RA and lung adenocarcinoma (LUAD), especially the mechanisms at the genetic level. In this study, we investigated the link between RA and LUAD regarding Ferroptosis-Related Genes. The RNA-seq data of RA (GSE77298 and GSE 82107) and LUAD(GSE75037) in the Gene Expression Omnibus (GEO) database were obtained. 259 ferroptosis-related genes were obtained from the website ( http://www.zhounan.org/ferrdb/ ).The differential genes obtained from the RA and LUAD datasets were intersected with ferroptosis-related genes to obtain the ferroptosis-related differentially expressed genes (FRDEGs). Next, the mRNA-miRNA network was constructed, then Gene Set Enrichment Analysis (GSEA) for target genes were performed. The CIBERSORT algorithm was used to analyze the immune infiltration. Finally, the results were validated using external datasets (GSE89408 and GSE48780) and The Cancer Genome Atlas (TCGA) dataset. We obtained FRDEGs common to LUAD and RA: FANCD2, HELLS, RRM2, G6PD, VLDLR. These five genes play important roles in the progression of RA and LUAD. They also hold great diagnostic value for both diseases. Also, we found that LUAD and RA share common signaling pathways and similar immune mechanisms.
Collapse
Affiliation(s)
- Bo Cai
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China
| | - Yibin Huang
- First College of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong province, China
| | - Dandan Liu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China
| | - Yizheng You
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China
- Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China
| | - Nuoshi Chen
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China.
| | - Hongyan Du
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China.
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China.
- Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong province, China.
| |
Collapse
|
3
|
Xiong J, Chen J, Guo Z, Zhang C, Yuan L, Gao K. A novel machine learning-based programmed cell death-related clinical diagnostic and prognostic model associated with immune infiltration in endometrial cancer. Front Oncol 2023; 13:1224071. [PMID: 37534256 PMCID: PMC10393255 DOI: 10.3389/fonc.2023.1224071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Background To explore the underlying mechanism of programmed cell death (PCD)-related genes in patients with endometrial cancer (EC) and establish a prognostic model. Methods The RNA sequencing data (RNAseq), single nucleotide variation (SNV) data, and corresponding clinical data were downloaded from TCGA. The prognostic PCD-related genes were screened and subjected to consensus clustering analysis. The two clusters were compared by weighted correlation network analysis (WGCNA), immune infiltration analysis, and other analyses. The least absolute shrinkage and selection operator (LASSO) algorithm was used to construct the PCD-related prognostic model. The biological significance of the PCD-related gene signature was evaluated through various bioinformatics methods. Results We identified 43 PCD-related genes that were significantly related to prognoses of EC patients, and classified them into two clusters via consistent clustering analysis. Patients in cluster B had higher tumor purity, higher T stage, and worse prognoses compared to those in cluster A. The latter generally showed higher immune infiltration. A prognostic model was constructed using 11 genes (GZMA, ASNS, GLS, PRKAA2, VLDLR, PRDX6, PSAT1, CDKN2A, SIRT3, TNFRSF1A, LRPPRC), and exhibited good diagnostic performance. Patients with high-risk scores were older, and had higher stage and grade tumors, along with worse prognoses. The frequency of mutations in PCD-related genes was correlated with the risk score. LRPPRC, an adverse prognostic gene in EC, was strongly correlated with proliferation-related genes and multiple PCD-related genes. LRPPRC expression was higher in patients with higher clinical staging and in the deceased patients. In addition, a positive correlation was observed between LRPPRC and infiltration of multiple immune cell types. Conclusion We identified a PCD-related gene signature that can predict the prognosis of EC patients and offer potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Zhongming Guo
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Li Yuan
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kefei Gao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Li Q, Morrill NK, Moerman-Herzog AM, Barger SW, Joly-Amado A, Peters M, Soueidan H, Diemler C, Prabhudeva S, Weeber EJ, Nash KR. Central repeat fragment of reelin leads to active reelin intracellular signaling and rescues cognitive deficits in a mouse model of reelin deficiency. Cell Signal 2023:110763. [PMID: 37315752 DOI: 10.1016/j.cellsig.2023.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.
Collapse
Affiliation(s)
- Qingyou Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nicole K Morrill
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Andréa M Moerman-Herzog
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Melinda Peters
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Hana Soueidan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cory Diemler
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Sahana Prabhudeva
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Antanaviciute A, Kusumbe A, Simmons A. Lymphatic endothelia stakeout cryptic stem cells. Cell Stem Cell 2022; 29:1292-1293. [PMID: 36055189 DOI: 10.1016/j.stem.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A trio of studies in this issue of Cell Stem Cell catalogs the anatomical and functional relationship of intestinal lymphatics with epithelial stem cells, defining an important niche role for the lymphatic endothelium.
Collapse
Affiliation(s)
- Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Anjali Kusumbe
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
6
|
Lopez-Font I, Lennol MP, Iborra-Lazaro G, Zetterberg H, Blennow K, Sáez-Valero J. Altered Balance of Reelin Proteolytic Fragments in the Cerebrospinal Fluid of Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:7522. [PMID: 35886870 PMCID: PMC9318932 DOI: 10.3390/ijms23147522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Reelin binds to the apolipoprotein E receptor apoER2 to activate an intracellular signaling cascade. The proteolytic cleavage of reelin follows receptor binding but can also occur independently of its binding to receptors. This study assesses whether reelin proteolytic fragments are differentially affected in the cerebrospinal fluid (CSF) of Alzheimer's disease (AD) subjects. CSF reelin species were analyzed by Western blotting, employing antibodies against the N- and C-terminal domains. In AD patients, we found a decrease in the 420 kDa full-length reelin compared with controls. In these patients, we also found an increase in the N-terminal 310 kDa fragment resulting from the cleavage at the so-called C-t site, whereas the 180 kDa fragment originated from the N-t site remained unchanged. Regarding the C-terminal proteolytic fragments, the 100 kDa fragment resulting from the cleavage at the C-t site also displayed increased levels, whilst the one resulting from the N-t site, the 250 kDa fragment, decreased. We also detected the presence of an aberrant reelin species with a molecular mass of around 500 kDa present in AD samples (34 of 43 cases), while it was absent in the 14 control cases analyzed. These 500 kDa species were only immunoreactive to N-terminal antibodies. We validated the occurrence of these aberrant reelin species in an Aβ42-treated reelin-overexpressing cell model. When we compared the AD samples from APOE genotype subgroups, we only found minor differences in the levels of reelin fragments associated to the APOE genotype, but interestingly, the levels of fragments of apoER2 were lower in APOE ε4 carriers with regards to APOE ε3/ε3. The altered proportion of reelin/apoER2 fragments and the occurrence of reelin aberrant species suggest a complex regulation of the reelin signaling pathway, which results impaired in AD subjects.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Matthew P. Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
| | - Guillermo Iborra-Lazaro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden; (H.Z.); (K.B.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 413 90 Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden; (H.Z.); (K.B.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 413 90 Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d’Alacant, Spain; (M.P.L.); (G.I.-L.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
7
|
Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the Role of Extracellular Matrix Molecules, in Particular Reelin, in Granule Cell Dispersion Related to Temporal Lobe Epilepsy. Front Cell Dev Biol 2022; 10:917575. [PMID: 35733853 PMCID: PMC9207388 DOI: 10.3389/fcell.2022.917575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) of the nervous system can be considered as a dynamically adaptable compartment between neuronal cells, in particular neurons and glial cells, that participates in physiological functions of the nervous system. It is mainly composed of carbohydrates and proteins that are secreted by the different kinds of cell types found in the nervous system, in particular neurons and glial cells, but also other cell types, such as pericytes of capillaries, ependymocytes and meningeal cells. ECM molecules participate in developmental processes, synaptic plasticity, neurodegeneration and regenerative processes. As an example, the ECM of the hippocampal formation is involved in degenerative and adaptive processes related to epilepsy. The role of various components of the ECM has been explored extensively. In particular, the ECM protein reelin, well known for orchestrating the formation of neuronal layer formation in the cerebral cortex, is also considered as a player involved in the occurrence of postnatal granule cell dispersion (GCD), a morphologically peculiar feature frequently observed in hippocampal tissue from epileptic patients. Possible causes and consequences of GCD have been studied in various in vivo and in vitro models. The present review discusses different interpretations of GCD and different views on the role of ECM protein reelin in the formation of this morphological peculiarity.
Collapse
Affiliation(s)
- Jennifer Leifeld
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry I—Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| | - Mohammad I. K. Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| |
Collapse
|
8
|
Turk LS, Kuang X, Dal Pozzo V, Patel K, Chen M, Huynh K, Currie MJ, Mitchell D, Dobson RCJ, D'Arcangelo G, Dai W, Comoletti D. The structure-function relationship of a signaling-competent, dimeric Reelin fragment. Structure 2021; 29:1156-1170.e6. [PMID: 34089653 DOI: 10.1016/j.str.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/21/2023]
Abstract
Reelin operates through canonical and non-canonical pathways that mediate several aspects of brain development and function. Reelin's dimeric central fragment (CF), generated through proteolytic cleavage, is required for the lipoprotein-receptor-dependent canonical pathway activation. Here, we analyze the signaling properties of a variety of Reelin fragments and measure the differential binding affinities of monomeric and dimeric CF fragments to lipoprotein receptors to investigate the mode of canonical signal activation. We also present the cryoelectron tomography-solved dimeric structure of Reelin CF and support it using several other biophysical techniques. Our findings suggest that Reelin CF forms a covalent parallel dimer with some degree of flexibility between the two protein chains. As a result of this conformation, Reelin binds to lipoprotein receptors in a manner inaccessible to its monomeric form and is capable of stimulating canonical pathway signaling.
Collapse
Affiliation(s)
- Liam S Turk
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Xuyuan Kuang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Hyperbaric Oxygen, Central South University, Changsha, Hunan Province, China
| | - Valentina Dal Pozzo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khush Patel
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Muyuan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin Huynh
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael J Currie
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Daniel Mitchell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wei Dai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
9
|
Dlugosz P, Teufl M, Schwab M, Kohl KE, Nimpf J. Disabled 1 Is Part of a Signaling Pathway Activated by Epidermal Growth Factor Receptor. Int J Mol Sci 2021; 22:1745. [PMID: 33572344 PMCID: PMC7916142 DOI: 10.3390/ijms22041745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Disabled 1 (Dab1) is an adapter protein for very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) and an integral component of the Reelin pathway which orchestrates neuronal layering during embryonic brain development. Activation of Dab1 is induced by binding of Reelin to ApoER2 and VLDLR and phosphorylation of Dab1 mediated by Src family kinases. Here we show that Dab1 also acts as an adaptor for epidermal growth factor receptor (EGFR) and can be phosphorylated by epidermal growth factor (EGF) binding to EGFR. Phosphorylation of Dab1 depends on the kinase activity of EGFR constituting a signal pathway independent of Reelin and its receptors.
Collapse
Affiliation(s)
| | | | | | | | - Johannes Nimpf
- Max Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, 1030 Vienna, Austria; (P.D.); (M.T.); (M.S.); (K.E.K.)
| |
Collapse
|
10
|
Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10:biom10060964. [PMID: 32604886 PMCID: PMC7355739 DOI: 10.3390/biom10060964] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
11
|
Okugawa E, Ogino H, Shigenobu T, Yamakage Y, Tsuiji H, Oishi H, Kohno T, Hattori M. Physiological significance of proteolytic processing of Reelin revealed by cleavage-resistant Reelin knock-in mice. Sci Rep 2020; 10:4471. [PMID: 32161359 PMCID: PMC7066138 DOI: 10.1038/s41598-020-61380-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Reelin is a secreted protein that plays versatile roles in neuronal development and function. The strength of Reelin signaling is regulated by proteolytic processing, but its importance in vivo is not yet fully understood. Here, we generated Reelin knock-in (PA-DV KI) mice in which the key cleavage site of Reelin was abolished by mutation. As expected, the cleavage of Reelin was severely abrogated in the cerebral cortex and hippocampus of PA-DV KI mice. The amount of Dab1, whose degradation is induced by Reelin signaling, decreased in these tissues, indicating that the signaling strength of Reelin was augmented. The brains of PA-DV KI mice were largely structurally normal, but unexpectedly, the hippocampal layer was disturbed. This phenotype was ameliorated in hemizygote PA-DV KI mice, indicating that excess Reelin signaling is detrimental to hippocampal layer formation. The neuronal dendrites of PA-DV KI mice had more branches and were elongated compared to wild-type mice. These results present the first direct evidence of the physiological importance of Reelin cleavage.
Collapse
Affiliation(s)
- Eisuke Okugawa
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Himari Ogino
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tomofumi Shigenobu
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Yuko Yamakage
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
12
|
Ishii K, Kohno T, Hattori M. Differential binding of anti-Reelin monoclonal antibodies reveals the characteristics of Reelin protein under various conditions. Biochem Biophys Res Commun 2019; 514:815-820. [PMID: 31079931 DOI: 10.1016/j.bbrc.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/01/2019] [Indexed: 01/09/2023]
Abstract
Reelin is a large secreted protein that is essential for the development and function of the central nervous system. Dimerization and/or oligomerization is required for its biological activity, but the underlying mechanism is not fully understood. There are several widely used anti-Reelin antibodies and we noticed that their reactivity to monomeric or dimeric Reelin protein is different. We also found that their reactivity to Reelin in the solution or in fixed brain tissues also differs. Our results provide the information regarding how the N-terminal region of Reelin folds and contributes to the formation of higher order structure. We also provide a caveat that appropriate use of anti-Reelin antibody is necessary for quantitative analyses.
Collapse
Affiliation(s)
- Keisuke Ishii
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|