1
|
Abasi M, Kianmehr A, Variji A, Sangali P, Mahrooz A. microRNAs as molecular tools for brain health: Neuroprotective potential in neurodegenerative disorders. Neuroscience 2025; 574:83-103. [PMID: 40210196 DOI: 10.1016/j.neuroscience.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/09/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
As research on microRNAs (miRNAs) advances, it is becoming increasingly clear that these small molecules play crucial roles in the central nervous system (CNS). They are involved in various essential neuronal functions, with specific miRNAs preferentially expressed in different cell types within the nervous system. Notably, certain miRNAs are found at higher levels in the brain and spinal cord compared to other tissues, suggesting they may have specialized functions in the CNS. miRNAs associated with long-term neurodegenerative changes could serve as valuable tools for early treatment decisions and disease monitoring. The significance of miRNAs such as miR-320, miR-146 and miR-29 in the early diagnosis of neurodegenerative disorders becomes evident, especially considering that many neurological and physical symptoms manifest only after substantial degeneration of specific neurons. Interestingly, serum miRNA levels such as miR-92 and miR-486 may correlate with various MRI parameters in multiple sclerosis. Targeting miRNAs using antisense strategies, such as antisense miR-146 and miR-485, may provide advantages over targeting mRNAs, as a single anti-miRNA can regulate multiple disease-related genes. In the future, anti-miRNA-based therapeutic approaches could be integrated into the clinical management of neurological diseases. Certain miRNAs, including miR-223, miR-106, miR-181, and miR-146, contribute to the pathogenesis of various neurodegenerative diseases and thus warrant greater attention. This knowledge could pave the way for the identification of new diagnostic, prognostic, and theranostic biomarkers, and potentially guiding the development of RNA-based therapeutic strategies. This review highlights recent research on the roles of miRNAs in the nervous system, particularly their protective functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Athena Variji
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Kovacevic D, Velikic G, Maric DM, Maric DL, Puletic M, Gvozdenovic L, Vojvodic D, Supic G. Parkinson's Spectrum Mechanisms in Pregnancy: Exploring Hypothetical Scenarios for MSA in the Era of ART. Int J Mol Sci 2025; 26:3348. [PMID: 40244235 PMCID: PMC11989403 DOI: 10.3390/ijms26073348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Multiple System Atrophy (MSA) is a rare, rapidly progressive neurodegenerative disorder marked by autonomic dysfunction, parkinsonism, and cerebellar ataxia. While predominantly affecting individuals in their fifth or sixth decade, advancements in assisted reproductive technologies (ART) have created new clinical scenarios involving pregnancies in women within MSA's typical onset range. Given the scarcity of documented MSA pregnancies, this review leverages insights from related Parkinson's spectrum mechanisms to explore hypothetical scenarios for how pregnancy-induced physiological changes might influence MSA progression. Pregnancy-induced hormonal fluctuations, including elevated estrogen and progesterone levels, may modulate α-synuclein aggregation and neuroinflammatory pathways. Immune adaptations, such as fetal microchimerism and Th2-biased immune profiles, introduce additional complexities, particularly in donor embryo pregnancies involving complex microchimerism. Metabolic demands and oxidative stress further intersect with these mechanisms, potentially accelerating disease progression. We analyze existing literature and theoretical models, emphasizing the need for interdisciplinary research. Clinical implications are discussed to propose evidence-based strategies for optimizing maternal-fetal outcomes. This paper identifies critical knowledge gaps and proposes avenues for future investigation to optimize maternal-fetal outcomes in this unique and underexplored clinical intersection.
Collapse
Affiliation(s)
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia
| | - Ljiljana Gvozdenovic
- Department of Anesthesia, and Intensive Care, Clinical Center Vojvodina, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Ko JH, Chun KY, Kim S. Alterations of circulating exosomal microRNAs in an LPS-induced depression model of male mice: Potential role in the anti-depressive effects of acupuncture. Physiol Rep 2025; 13:e70310. [PMID: 40192221 PMCID: PMC11973929 DOI: 10.14814/phy2.70310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
Depression is a prevalent psychological disorder frequently associated with neuroinflammation, and microRNAs (miRNAs) have been implicated in its pathogenesis. Acupuncture, widely used in East Asia, has shown efficacy in various neuropsychiatric conditions; however, its miRNA-related mechanisms remain unclear. Using an LPS-induced depression model, we examined acupuncture's effects on depression-like behaviors and circulating exosomal miRNAs in serum. Microarray data revealed multiple miRNAs significantly altered by LPS or acupuncture, and subsequent bioinformatics analyses (TargetScan, KEGG, and Gene Ontology) identified pathways related to neuroinflammation, synaptic signaling, and circadian regulation. Constructing a miRNA-target gene network further suggested that acupuncture might modulate miRNA expression to alleviate depressive symptoms. These findings not only support the therapeutic potential of acupuncture but also propose candidate exosomal miRNAs as novel biomarkers or diagnostic tools for the LPS-induced depression model. Overall, this study provides insights into the anti-inflammatory actions of acupuncture in depression through miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Jade Heejae Ko
- College of Korean MedicineDongguk UniversityGoyangKorea
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Ka Yoon Chun
- College of Korean MedicineDongguk UniversityGoyangKorea
| | - Seung‐Nam Kim
- College of Korean MedicineDongguk UniversityGoyangKorea
| |
Collapse
|
4
|
Engel A, Wagner V, Hahn O, Foltz AG, Atkins M, Beganovic A, Guldner IH, Lu N, Saksena A, Fischer U, Ludwig N, Meese E, Wyss-Coray T, Keller A. A spatio-temporal brain miRNA expression atlas identifies sex-independent age-related microglial driven miR-155-5p increase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643430. [PMID: 40161726 PMCID: PMC11952541 DOI: 10.1101/2025.03.15.643430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
An in-depth understanding of the molecular processes composing aging is crucial to develop therapeutic approaches that decrease aging as a key risk factor for cognitive decline. Herein, we present a spatio-temporal brain atlas (15 different regions) of microRNA (miRNA) expression across the mouse lifespan (7 time points) and two aging interventions composed of 1009 samples. MiRNAs are promising therapeutic targets, as they silence genes by complementary base-pair binding of messenger RNAs and are known to mediate aging speed. We first established sex- and brain-region-specific miRNA expression patterns in young adult samples. Then we focused on sex-dependent and independent brain-region-specific miRNA expression changes during aging. The corpus callosum in males and the choroid plexus in females exhibited strong sex-specific age-related signatures. In this work, we identified three sex-independent brain aging miRNAs (miR-146a-5p, miR-155-5p and miR-5100). We showed for miR-155-5p that these expression changes are driven by aging microglia. MiR-155-5p targets mTOR signaling pathway components and other cellular communication pathways and is hence a promising therapeutic target.
Collapse
Affiliation(s)
- Annika Engel
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Viktoria Wagner
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Calico Life Sciences LLC, San Francisco, CA, USA
| | - Aulden G. Foltz
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Amila Beganovic
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Ian H. Guldner
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aryaman Saksena
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Ulrike Fischer
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Zhang RL, Wang WM, Li JQ, Li RW, Zhang J, Wu Y, Liu Y. The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 24:200355. [PMID: 39760132 PMCID: PMC11699627 DOI: 10.1016/j.ijcrp.2024.200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Cardiovascular diseases (CVDs), such as atherosclerotic cardiovascular diseases, heart failure (HF), and acute coronary syndrome, represent a significant threat to global health and impose considerable socioeconomic burdens. The intricate pathogenesis of CVD involves various regulatory mechanisms, among which microRNAs (miRNAs) have emerged as critical posttranscriptional regulators. In particular, miR-155 has demonstrated differential expression patterns across a spectrum of CVD and is implicated in the etiology and progression of arterial disorders. This systematic review synthesizes current evidence on the multifaceted roles of miR-155 in the modulation of genes and pathological processes associated with CVD. We delineate the potential of miR-155 as a diagnostic biomarker and therapeutic target, highlighting its significant regulatory influence on conditions such as atherosclerosis, aneurysm, hypertension, HF, myocardial hypertrophy, and oxidative stress. Our analysis underscores the transformative potential of miR-155 as a target for intervention in cardiovascular medicine, warranting further investigation into its clinical applicability.
Collapse
Affiliation(s)
- Rui-Lin Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wei-Ming Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ji-Qiang Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Run-Wen Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
6
|
Laurenge A, Castro-Vega LJ, Huberfeld G. Reciprocal interactions between glioma and tissue-resident cells fueling tumor progression. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:177-190. [PMID: 40148044 DOI: 10.1016/b978-0-443-19102-2.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Gliomas are the most frequent primary brain tumor and are essentially incurable. While nondiffuse gliomas are circumscribed, diffuse gliomas display an aggressive behavior characterized by tumor cell migration over large distances into the brain parenchyma, thereby precluding curative surgical resection. Almost all diffuse gliomas progress and recur as higher grades and become resistant to standard-of-care treatments. It is being increasingly recognized that glioma cells establish functional interactions with cells residing in the tumor microenvironment. Of these, tumor-associated microglia and macrophages (TAMs) play critical roles in immunosuppression through modulation of the extracellular matrix, and the secretion of molecules such as cytokines, neurotrophic factors, and micro-RNAs (miRNAs). Conversely, glioma cell signals influence cell states and drive the metabolic reprogramming of TAMs. Similarly, emergent evidence indicates that neuronal activity influences glioma by released factors and by establishing functional synapses with glioma cells to promote tumor growth and invasion. Glioma cells also affect local neuronal activities and maintain connections through microtube gap junctions to amplify local effects. Here, we discuss the molecular mechanisms underlying bidirectional interactions between glioma cells and TAMs, as well as between glioma cells and neurons. A better understanding of these cellular cross talks is crucial for the development of novel therapeutic strategies for diffuse gliomas.
Collapse
Affiliation(s)
- Alice Laurenge
- Genetics & Development of Brain Tumors Laboratory, ICM - Paris Brain Institute, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-Oncology Department, F-75013, Paris, France
| | - Luis Jaime Castro-Vega
- Genetics & Development of Brain Tumors Laboratory, ICM - Paris Brain Institute, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Gilles Huberfeld
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France; Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France.
| |
Collapse
|
7
|
Darwish R, Alcibahy Y, Bucheeri S, Albishtawi A, Tama M, Shetty J, Butler AE. The Role of Hypothalamic Microglia in the Onset of Insulin Resistance and Type 2 Diabetes: A Neuro-Immune Perspective. Int J Mol Sci 2024; 25:13169. [PMID: 39684879 DOI: 10.3390/ijms252313169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Yasmine Alcibahy
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Shahd Bucheeri
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Ashraf Albishtawi
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Jeevan Shetty
- Department of Biochemistry, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Alexandra E Butler
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| |
Collapse
|
8
|
Shamaeizadeh N, Mirian M. MicroRNA-219 in the central nervous system: a potential theranostic approach. Res Pharm Sci 2024; 19:634-655. [PMID: 39911893 PMCID: PMC11792714 DOI: 10.4103/rps.rps_163_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 02/07/2025] Open
Abstract
Despite the recent therapeutic advances in neurological disorders, curative therapy remains a serious challenge in many cases. Even though recent years have witnessed the development of gene therapy from among the different therapeutic approaches affecting pathophysiological mechanisms, intriguing aspects exist regarding the effectiveness, safety, and mechanism of action of gene therapies. Micro ribonucleic acid (microRNA-miRNA), as a fundamental gene regulator, regulates messenger ribonucleic acid (mRNA) by directly binding through the 3'-untranslated region (3'-UTR). MicroRNA-219 is a specific brain-enriched miRNA associated with neurodevelopmental disorders that play crucial roles in the differentiation of oligodendrocyte progenitorcells, promotion of oligodendrocyte maturation, remyelination, and cognitive functions to the extent that it can be considered a potential therapeutic option for demyelination in multiple sclerosis and spinal cord injury and reverse chronic inflammation pains. Additionally, miR-219 regulates the circadian clock, influencing the duration of the circadian clock period. This regulation can impact mood stability and is associated with phase fluctuations in bipolar patients. Furthermore, miR-219 also plays a role in modulating tau toxicity, which is relevant to the pathophysiology of Alzheimer's disease and schizophrenia. Finally, it reportedly has protective effects against seizures and Parkinson's disease, as well as neoplasms, by inhibiting proliferation, suppressing invasion, and inducing cell death in tumor cells. Exploring the miR-219 molecular pathways and their therapeutic effects on central nervous system disorders and the mechanisms involved, the present review study aims to illustrate how this information may change the future of gene therapy.
Collapse
Affiliation(s)
- Nahal Shamaeizadeh
- Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
9
|
Sahebdel F, Zia A, Quinta HR, Morse LR, Olson JK, Battaglino RA. Transcriptomic Profiling of Primary Microglia: Effects of miR-19a-3p and miR-19b-3p on Microglia Activation. Int J Mol Sci 2024; 25:10601. [PMID: 39408930 PMCID: PMC11477266 DOI: 10.3390/ijms251910601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Neuropathic pain resulting from spinal cord injury (SCI) is a significant secondary health issue affecting around 60% of individuals with SCI. After SCI, activation of microglia, the immune cells within the central nervous system, leads to neuroinflammation by producing pro-inflammatory cytokines and affects neuropathic pain. This interplay between inflammation and pain contributes to the persistent and intense pain experienced by many individuals with SCI. MicroRNAs (miRs) have been critical regulators of neuroinflammation. Previous research in our laboratory has revealed upregulation levels of circulating miR-19a and miR-19b in individuals with SCI with neuropathic pain compared to those without pain. In this study, we treated primary microglial cultures from mice with miR-19a and miR-19b for 24 h and conducted RNA sequencing analysis. Our results showed that miR-19a and miR-19b up- and downregulate different genes according to the volcano plots and the heatmaps. miR-19a and miR-19b regulate inflammation through distinct signaling pathways. The results showed that miR-19a promotes inflammation via toll-like receptor signaling, TNF signaling, and cytokine-cytokine receptor interactions, while miR-19b increases inflammatory responses through the PI3K-Akt signaling pathway, focal adhesion, and extracellular matrix receptor interactions. The protein-protein interaction (PPI) networks used the STRING database to identify transcription factors associated with genes up- or downregulated by miR-19a and miR-19b. Key transcription factors, such as STAT1, STAT2, and KLF4 for miR-19a, and Nr4a1, Nr4a2, and Nr4a3 for miR-19b, were identified and revealed their roles in regulating neuroinflammation. This study demonstrates that miR-19a and miR-19b modulate diverse patterns of gene expression, regulate inflammation, and induce inflammatory responses in microglia.
Collapse
Affiliation(s)
- Faezeh Sahebdel
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Aliabbas Zia
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T1C5, Canada
- Department of Pharmacology, Université de Montréal, Montreal, QC H3T1J4, Canada
| | - Hector Ramiro Quinta
- National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires C1425FQB, Argentina
- Laboratorio de Medicina Experimental, “Dr. Jorge Toblli”, Hospital Aleman, Ciudad Autonoma de Buenos Aires C1425FQB, Argentina
| | - Leslie R. Morse
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Uhealth and Jackson Health Systems, Lynn Rehabilitation Center, Miami, FL 33136, USA
| | - Julie K. Olson
- Department of Diagnostics and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ricardo A. Battaglino
- Department of Orthopaedics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Usefi F, Rustamzadeh A, Ghobadi Z, Sadigh N, Mohebi N, Ariaei A, Moradi F. Rosuvastatin attenuates total-tau serum levels and increases expression of miR-124-3p in dyslipidemic Alzheimer's patients: a historic cohort study. Metab Brain Dis 2024; 39:1201-1211. [PMID: 38896205 DOI: 10.1007/s11011-024-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
microRNAs are candidate diagnostic biomarkers for Alzheimer's disease. This study aimed to compare Silymarin with Rosuvastatin and placebo on total-Tau protein level and expression levels of microRNAs and TGF-β and COX-2 in Alzheimer's patients with secondary dyslipidemia. 36 mild AD patients with dyslipidemia were divided into three groups of 12. The first group received silymarin (140mg), the second group received placebo (140mg), and the third group recieved Rosuvastatin (10mg). Tablets were administered three times a day for Six months. The blood samples of the patients were collected before and after the intervention and the serum was separated. Using the RT-qPCR method, the expression levels of miR-124-3p and miR-125b-5p were assessed, and the serum levels of total-Tau, TGF-β, and COX-2 enzyme were measured using the ELISA method. Data were analyzed with SPSS software. In this study, the level of Δtotal-Tau was significantly lower in the Rosuvastatin group compared to the placebo (P = 0.038). Also, a significant reduction in the level of ΔTGF-β was observed in the Silymarin to Rosuvastatin group (p = 0.046) and ΔmiR-124-3p was significantly increased in the Rosuvastatin compared to the placebo group (p = 0.044). Rosuvastatin outperformed silymarin in decreasing Δtotal-Tau serum levels and enhancing expression of ΔmiR-124-3p, attributed to Rosuvastatin's capacity to lower cholesterol levels and inflammation concurrently. Conversely, silymarin was more effective than Rosuvastatin in reducing levels of ΔTGF-β. Serum miR-124-3p could serve as a promising diagnostic biomarker and a new therapeutic focus in AD.
Collapse
Affiliation(s)
- Farnoosh Usefi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, School of Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Mohebi
- Department of Neurology, Rasool Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
11
|
Duan Z, Yang L, Xu D, Qi Z, Jia W, Wu C. Scutellarin Attenuates Microglia Activation in LPS-Induced BV-2 Microglia via miRNA-7036a/MAPT/PRKCG/ERK Axis. Adv Biol (Weinh) 2024; 8:e2400123. [PMID: 38684459 DOI: 10.1002/adbi.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Scutellarin is an herbal agent which can exert anti-neuroinflammatory effects in activated microglia. However, it remains uncertain if it can inhibit microglia-mediated neuroinflammation by regulating miRNAs. This study sought to elucidate the upstream regulatory mechanisms by endogenous microRNAs and its target gene in activated microglia in lipopolysaccharide (LPS)-induced BV-2 microglia. Results show that scutellarin suppressed the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) significantly in LPS-stimulated BV-2 microglia. As with the results of miRNAs function classification in vitro, the expression levels of mir-7036a-5p are upregulated in LPS-activated BV-2 microglia, but are downregulated by scutellarin. Rescue experiments indicated that mir-7036a-5p is a pro-inflammatory factor in activated BV-2 microglia. mir-7036a-5p agomir promoted the expression of phosphorylated tau proteins (p-tau), protein kinase C gamma type (PRKCG), extracellular regulated protein kinases (ERK1/2), but the is reversed by mir-7036a-5p antagomir in vitro. It is shown here that mir-7036a-5p is involved in microglia-mediated inflammation in LPS-induced BV-2 microglia. More important is the novel finding that scutellarin mitigated microglia inflammation by down-regulating the mir-7036a-5p/MAPT/PRKCG/ERK signaling pathway.
Collapse
Affiliation(s)
- Zhaoda Duan
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| | - Li Yang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| | - Dongyao Xu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| | - Zhi Qi
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, P. R. China
| | - Wenji Jia
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, P. R. China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| |
Collapse
|
12
|
Zhou C, Li S, Qiu N, Sun P, Hamblin MH, Dixon CE, Chen J, Yin KJ. Loss of microRNA-15a/16-1 function promotes neuropathological and functional recovery in experimental traumatic brain injury. JCI Insight 2024; 9:e178650. [PMID: 38912585 PMCID: PMC11383186 DOI: 10.1172/jci.insight.178650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
The diffuse axonal damage in white matter and neuronal loss, along with excessive neuroinflammation, hinder long-term functional recovery after traumatic brain injury (TBI). MicroRNAs (miRs) are small noncoding RNAs that negatively regulate protein-coding target genes in a posttranscriptional manner. Recent studies have shown that loss of function of the miR-15a/16-1 cluster reduced neurovascular damage and improved functional recovery in ischemic stroke and vascular dementia. However, the role of the miR-15a/16-1 cluster in neurotrauma is poorly explored. Here, we report that genetic deletion of the miR-15a/16-1 cluster facilitated the recovery of sensorimotor and cognitive functions, alleviated white matter/gray matter lesions, reduced cerebral glial cell activation, and inhibited infiltration of peripheral blood immune cells to brain parenchyma in a murine model of TBI when compared with WT controls. Moreover, intranasal delivery of the miR-15a/16-1 antagomir provided similar brain-protective effects conferred by genetic deletion of the miR-15a/16-1 cluster after experimental TBI, as evidenced by showing improved sensorimotor and cognitive outcomes, better white/gray matter integrity, and less inflammatory responses than the control antagomir-treated mice after brain trauma. miR-15a/16-1 genetic deficiency and miR-15a/16-1 antagomir also significantly suppressed inflammatory mediators in posttrauma brains. These results suggest miR-15a/16-1 as a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Shun Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Na Qiu
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Ping Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Li Y, Yu C, Jiang X, Fu J, Sun N, Zhang D. The mechanistic view of non-coding RNAs as a regulator of inflammatory pathogenesis of Parkinson's disease. Pathol Res Pract 2024; 258:155349. [PMID: 38772115 DOI: 10.1016/j.prp.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yu'an Li
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Chunlei Yu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jia Fu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Ning Sun
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Daquan Zhang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China.
| |
Collapse
|
14
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
15
|
Fan X, Shi L, Yang Z, Li Y, Zhang C, Bai B, Chen L, Yilihamu EE, Qi Z, Li W, Xiao P, Liu M, Qiu J, Yang F, Ran N, Shang Y, Liu J, Zhang T, Kong X, Liu H, Zhou H, Feng S. Targeted Repair of Spinal Cord Injury Based on miRNA-124-3p-Loaded Mesoporous Silica Camouflaged by Stem Cell Membrane Modified with Rabies Virus Glycoprotein. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309305. [PMID: 38509833 PMCID: PMC11151008 DOI: 10.1002/advs.202309305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Spinal cord injury (SCI) has no effective treatment modalities. It faces a significant global therapeutical challenge, given its features of poor axon regeneration, progressive local inflammation, and inefficient systemic drug delivery due to the blood-spinal cord barrier (BSCB). To address these challenges, a new nano complex that achieves targeted drug delivery to the damaged spinal cord is proposed, which contains a mesoporous silica nanoparticle core loaded with microRNA and a cloaking layer of human umbilical cord mesenchymal stem cell membrane modified with rabies virus glycoprotein (RVG). The nano complex more readily crosses the damaged BSCB with its exosome-resembling properties, including appropriate size and a low-immunogenic cell membrane disguise and accumulates in the injury center because of RVG, where it releases abundant microRNAs to elicit axon sprouting and rehabilitate the inflammatory microenvironment. Culturing with nano complexes promotes axonal growth in neurons and M2 polarization in microglia. Furthermore, it showed that SCI mice treated with this nano complex by tail vein injection display significant improvement in axon regrowth, microenvironment regulation, and functional restoration. The efficacy and biocompatibility of the targeted delivery of microRNA by nano complexes demonstrate their immense potential as a noninvasive treatment for SCI.
Collapse
Affiliation(s)
- Xiangchuang Fan
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Lusen Shi
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Zimeng Yang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Yiwei Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Chi Zhang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Baoshuai Bai
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Lu Chen
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Elzat Elham‐Yilizati Yilihamu
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Zhangyang Qi
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Wenxiang Li
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of EducationDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Mingshan Liu
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of EducationDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Advanced Medical Research InstituteShandong UniversityJinan250012P. R. China
| | - Ning Ran
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033P. R. China
| | - Yifan Shang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Jiaxing Liu
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Tehan Zhang
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033P. R. China
| | - Xiaohong Kong
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Advanced Medical Research InstituteShandong UniversityJinan250012P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Hefei National LaboratoryJinan BranchJinan Institute of Quantum TechnologyJinan250101P. R. China
| | - Hengxing Zhou
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Advanced Medical Research InstituteShandong UniversityJinan250012P. R. China
| | - Shiqing Feng
- Department of OrthopaedicsQilu Hospital of Shandong UniversityShandong University Centre for OrthopaedicsCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Advanced Medical Research InstituteShandong UniversityJinan250012P. R. China
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033P. R. China
- Department of OrthopaedicsTianjin Medical University General HospitalInternational Science and Technology Cooperation Base of Spinal Cord InjuryTianjin Key Laboratory of Spine and Spinal CordTianjin Medical UniversityTianjin300052P.R. China
| |
Collapse
|
16
|
Guo X, Qiu W, Li B, Qi Y, Wang S, Zhao R, Cheng B, Han X, Du H, Pan Z, Zhao S, Qiu J, Li G, Xue H. Hypoxia-Induced Neuronal Activity in Glioma Patients Polarizes Microglia by Potentiating RNA m6A Demethylation. Clin Cancer Res 2024; 30:1160-1174. [PMID: 37855702 DOI: 10.1158/1078-0432.ccr-23-0430] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE Neuronal activity in the brain has been reported to promote the malignant progression of glioma cells via nonsynaptic paracrine and electrical synaptic integration mechanisms. However, the interaction between neuronal activity and the immune microenvironment in glioblastoma (GBM) remains largely unclear. EXPERIMENTAL DESIGN By applying chemogenetic techniques, we enhanced and inhibited neuronal activity in vitro and in a mouse model to study how neuronal activity regulates microglial polarization and affects GBM progression. RESULTS We demonstrate that hypoxia drove glioma stem cells (GSC) to produce higher levels of glutamate, which activated local neurons. Neuronal activity promoted GBM progression by facilitating microglial M2 polarization through enriching miR-200c-3p in neuron-derived exosomes, which decreased the expression of the m6A writer zinc finger CCCH-type containing 13 (ZC3H13) in microglia, impairing methylation of dual specificity phosphatase 9 (DUSP9) mRNA. Downregulation of DUSP9 promoted ERK pathway activation, which subsequently induced microglial M2 polarization. In the mouse model, cortical neuronal activation promoted microglial M2 polarization whereas cortical neuronal inhibition decreased microglial M2 polarization in GBM xenografts. miR-200c-3p knockdown in cortical neurons impaired microglial M2 polarization and GBM xenograft growth, even when cortical neurons were activated. Treatment with the anti-seizure medication levetiracetam impaired neuronal activation and subsequently reduced neuron-mediated microglial M2 polarization. CONCLUSIONS These findings indicated that hypoxic GSC-induced neuron activation promotes GBM progression by polarizing microglia via the exosomal miR-200c-3p/ZC3H13/DUSP9/p-ERK pathway. Levetiracetam, an antiepileptic drug, blocks the abnormal activation of neurons in GBM and impairs activity-dependent GBM progression. See related commentary by Cui et al., p. 1073.
Collapse
Affiliation(s)
- Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Neurology, Loma Linda University Health, Loma Linda, California
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bo Cheng
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hao Du
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jiawei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| |
Collapse
|
17
|
Dos Santos BL, Dos Santos CC, da Silva KC, Nonaka CKV, Souza BSDF, David JM, de Oliveira JVR, Costa MDFD, Butt AM, da Silva VDA, Costa SL. The Phytochemical Agathisflavone Modulates miR146a and miR155 in Activated Microglia Involving STAT3 Signaling. Int J Mol Sci 2024; 25:2547. [PMID: 38473794 DOI: 10.3390/ijms25052547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the β-amyloid peptide (Aβ, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that β-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-β, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aβ, as well as inflammatory cytokines IL1-β, IL-6, and NOS2. In cells stimulated with Aβ, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.
Collapse
Affiliation(s)
- Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- College of Nursing, Federal University of Vale do São Francisco, Av. José de Sá Maniçoba, S/N, Petrolina 56304-917, PE, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D'Or Institute for Research and Teaching (IDOR), Salvador 41253-190, BA, Brazil
| | - Bruno Solano de Freitas Souza
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D'Or Institute for Research and Teaching (IDOR), Salvador 41253-190, BA, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador 40296-710, BA, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, BA, Brazil
| | - Juciele Valéria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-971, RJ, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-971, RJ, Brazil
- Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon S/N Vale do Canela, Salvador 40110-902, BA, Brazil
| |
Collapse
|
18
|
Zhao QC, Xu ZW, Peng QM, Zhou JH, Li ZY. Enhancement of miR-16-5p on spinal cord injury-induced neuron apoptosis and inflammatory response through inactivating ERK1/2 pathway. J Neurosurg Sci 2024; 68:101-108. [PMID: 32043849 DOI: 10.23736/s0390-5616.20.04880-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to explore the effect and mechanism of miR-16-5p on neuron apoptosis and inflammatory response induced by spinal cord injury (SCI). METHODS Allen's weight-drop method and Basso Bcattie Bresnahan (BBB) rating scale were used to establish SCI rat model and assess locomotor function, respectively. Histopathology of SCI rats and Sham-operated rats was validated by hematoxylin and eosin (H&E) staining. After intravenous injection of miR-16-5p agomir, miR-16-5p antagomir, pcDNA3.1-Apelin-13 or negative controls into SCI rat tails, neuron apoptosis and the expression of miR-16-5p, Apelin-13, apoptotic proteins, inflammatory response-related proteins, and ERK1/2 pathway-related protein were detected. Dual luciferase reporter gene assay was applied for identifying the binding between miR-16-5p and Apelin-13. RESULTS SCI rats had locomotor impairment with markedly edema and hemorrhage. Upregulated miR-16-5p expression and downregulated Apelin-13 expression were presented in SCI rats. Intravenous injection of miR-16-5p antagomir or/and pcDNA3.1-Apelin-13 could increase the expression of antiapoptotic proteins (Bcl-2 and Mcl-1) and p-ERK1/2 expression while decrease the expression of proapoptotic proteins (cleaved caspase-3 and Bax) and inflammatory response-related proteins (TNF-α, IL-1β and IL-6). The reverse pattern was shown in rats injected with miR-16-5p agomir. MiR-16-5p targeted Apelin-13. Promotion of miR-16-5p agomir on SCI was attenuated by injection of agomir + pcDNA3.1-Apelin-13. CONCLUSIONS Downregulation of miR-16-5p could upregulate Apelin-13 expression to activate ERK1/2 pathway, thus alleviating SCI-induced neuron apoptosis and inflammatory response.
Collapse
Affiliation(s)
- Qian-Cheng Zhao
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhe-Wei Xu
- Department of Orthopedics and Traumatology, Hunan Chest Hospital, Changsha, China
| | - Qing-Ming Peng
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia-Hui Zhou
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-Yue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China -
| |
Collapse
|
19
|
Luo EY, Sugimura RR. Taming microglia: the promise of engineered microglia in treating neurological diseases. J Neuroinflammation 2024; 21:19. [PMID: 38212785 PMCID: PMC10785527 DOI: 10.1186/s12974-024-03015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Microglia, the CNS-resident immune cells, are implicated in many neurological diseases. Nearly one in six of the world's population suffers from neurological disorders, encompassing neurodegenerative and neuroautoimmune diseases, most with dysregulated neuroinflammation involved. Activated microglia become phagocytotic and secret various immune molecules, which are mediators of the brain immune microenvironment. Given their ability to penetrate through the blood-brain barrier in the neuroinflammatory context and their close interaction with neurons and other glial cells, microglia are potential therapeutic delivery vehicles and modulators of neuronal activity. Re-engineering microglia to treat neurological diseases is, thus, increasingly gaining attention. By altering gene expression, re-programmed microglia can be utilized to deliver therapeutics to targeted sites and control neuroinflammation in various neuroinflammatory diseases. This review addresses the current development in microglial engineering, including genetic targeting and therapeutic modulation. Furthermore, we discuss limitations to the genetic engineering techniques and models used to test the functionality of re-engineered microglia, including cell culture and animal models. Finally, we will discuss future directions for the application of engineered microglia in treating neurological diseases.
Collapse
Affiliation(s)
- Echo Yongqi Luo
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rio Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
20
|
Yang J, Dong J, Li H, Gong Z, Wang B, Du K, Zhang C, Bi H, Wang J, Tian X, Chen L. Circular RNA HIPK2 Promotes A1 Astrocyte Activation after Spinal Cord Injury through Autophagy and Endoplasmic Reticulum Stress by Modulating miR-124-3p-Mediated Smad2 Repression. ACS OMEGA 2024; 9:781-797. [PMID: 38222662 PMCID: PMC10785321 DOI: 10.1021/acsomega.3c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Glial scarring formed by reactive astrocytes after spinal cord injury (SCI) is the primary obstacle to neuronal regeneration within the central nervous system, making them a promising target for SCI treatment. Our previous studies have demonstrated the positive impact of miR-124-3p on neuronal repair, but it remains unclear how miR-124-3p is involved in autophagy or ER stress in astrocyte activation. To answer this question, the expression of A1 astrocyte-related markers at the transcriptional and protein levels after SCI was checked in RNA-sequencing data and verified using quantitative polymerase chain reaction (qPCR) and Western blotting in vitro and in vivo. The potential interactions among circHIPK2, miR-124-3p, and Smad2 were analyzed and confirmed by bioinformatics analyses and a luciferase reporter assay. In the end, the role of miR-124-3p in autophagy, ER stress, and SCI was investigated by using Western blotting to measure key biomarkers (C3, LC3, and Chop) in the absence or presence of corresponding selective inhibitors (siRNA, 4-PBA, TG). As a result, SCI caused the increase of A1 astrocyte markers, in which the upregulated circHIPK2 directly targeted miR-124-3p, and the direct downregulating effect of Smad2 by miR-124-3p was abolished, while Agomir-124 treatment reversed this effect. Injury caused a significant change of markers for ER stress and autophagy through the circHIPK2/miR-124-3p/Smad2 pathway, which might activate the A1 phenotype, and ER stress might promote autophagy in astrocytes. In conclusion, circHIPK2 may play a functional role in sequestering miR-124-3p and facilitating the activation of A1 astrocytes through regulating Smad2-mediated downstream autophagy and ER stress pathways, providing a new perspective on potential targets for functional recovery after SCI.
Collapse
Affiliation(s)
| | | | - Haotian Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Zhiqiang Gong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kaili Du
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chunqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hangchuan Bi
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Junfei Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xinpeng Tian
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lingqiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
21
|
Tang S, Geng Y, Wang Y, Lin Q, Yu Y, Li H. The roles of ubiquitination and deubiquitination of NLRP3 inflammasome in inflammation-related diseases: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:708-721. [PMID: 38193803 PMCID: PMC11293225 DOI: 10.17305/bb.2023.9997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The inflammatory response is a natural immune response that prevents microbial invasion and repairs damaged tissues. However, excessive inflammatory responses can lead to various inflammation-related diseases, posing a significant threat to human health. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a vital mediator in the activation of the inflammatory cascade. Targeting the hyperactivation of the NLRP3 inflammasome may offer potential strategies for the prevention or treatment of inflammation-related diseases. It has been established that the ubiquitination and deubiquitination modifications of the NLRP3 inflammasome can provide protective effects in inflammation-related diseases. These modifications modulate several pathological processes, including excessive inflammatory responses, pyroptosis, abnormal autophagy, proliferation disorders, and oxidative stress damage. Therefore, this review discusses the regulation of NLRP3 inflammasome activation by ubiquitination and deubiquitination modifications, explores the role of these modifications in inflammation-related diseases, and examines the potential underlying mechanisms.
Collapse
Affiliation(s)
- Shaokai Tang
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yuanwen Geng
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yawei Wang
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Qinqin Lin
- School of Physical Education, Yanshan University, Qinhuangdao, China
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Yirong Yu
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Hao Li
- School of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
22
|
Wies Mancini VSB, Mattera VS, Pasquini JM, Pasquini LA, Correale JD. Microglia-derived extracellular vesicles in homeostasis and demyelination/remyelination processes. J Neurochem 2024; 168:3-25. [PMID: 38055776 DOI: 10.1111/jnc.16011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Microglia (MG) play a crucial role as the predominant myeloid cells in the central nervous system and are commonly activated in multiple sclerosis. They perform essential functions under normal conditions, such as actively surveying the surrounding parenchyma, facilitating synaptic remodeling, engulfing dead cells and debris, and protecting the brain against infectious pathogens and harmful self-proteins. Extracellular vesicles (EVs) are diverse structures enclosed by a lipid bilayer that originate from intracellular endocytic trafficking or the plasma membrane. They are released by cells into the extracellular space and can be found in various bodily fluids. EVs have recently emerged as a communication mechanism between cells, enabling the transfer of functional proteins, lipids, different RNA species, and even fragments of DNA from donor cells. MG act as both source and recipient of EVs. Consequently, MG-derived EVs are involved in regulating synapse development and maintaining homeostasis. These EVs also directly influence astrocytes, significantly increasing the release of inflammatory cytokines like IL-1β, IL-6, and TNF-α, resulting in a robust inflammatory response. Furthermore, EVs derived from inflammatory MG have been found to inhibit remyelination, whereas Evs produced by pro-regenerative MG effectively promote myelin repair. This review aims to provide an overview of the current understanding of MG-derived Evs, their impact on neighboring cells, and the cellular microenvironment in normal conditions and pathological states, specifically focusing on demyelination and remyelination processes.
Collapse
Affiliation(s)
- V S B Wies Mancini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - V S Mattera
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L A Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J D Correale
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| |
Collapse
|
23
|
Shi J, Huang S. Comparative Insight into Microglia/Macrophages-Associated Pathways in Glioblastoma and Alzheimer's Disease. Int J Mol Sci 2023; 25:16. [PMID: 38203185 PMCID: PMC10778632 DOI: 10.3390/ijms25010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Microglia and macrophages are pivotal to the brain's innate immune response and have garnered considerable attention in the context of glioblastoma (GBM) and Alzheimer's disease (AD) research. This review delineates the complex roles of these cells within the neuropathological landscape, focusing on a range of signaling pathways-namely, NF-κB, microRNAs (miRNAs), and TREM2-that regulate the behavior of tumor-associated macrophages (TAMs) in GBM and disease-associated microglia (DAMs) in AD. These pathways are critical to the processes of neuroinflammation, angiogenesis, and apoptosis, which are hallmarks of GBM and AD. We concentrate on the multifaceted regulation of TAMs by NF-κB signaling in GBM, the influence of TREM2 on DAMs' responses to amyloid-beta deposition, and the modulation of both TAMs and DAMs by GBM- and AD-related miRNAs. Incorporating recent advancements in molecular biology, immunology, and AI techniques, through a detailed exploration of these molecular mechanisms, we aim to shed light on their distinct and overlapping regulatory functions in GBM and AD. The review culminates with a discussion on how insights into NF-κB, miRNAs, and TREM2 signaling may inform novel therapeutic approaches targeting microglia and macrophages in these neurodegenerative and neoplastic conditions. This comparative analysis underscores the potential for new, targeted treatments, offering a roadmap for future research aimed at mitigating the progression of these complex diseases.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - Shiwei Huang
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Zhang Y, Yang YS, Chen WC, Wang CM, He HF. Constructing and Validating a Network of Potential Olfactory Sheathing Cell Transplants Regulating Spinal Cord Injury Progression. Mol Neurobiol 2023; 60:6883-6895. [PMID: 37515671 DOI: 10.1007/s12035-023-03510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
The pathology of spinal cord injury (SCI), including primary and secondary injuries, primarily involves hemorrhage, ischemia, edema, and inflammatory responses. Cell transplantation has been the most promising treatment for SCI in recent years; however, its specific molecular mechanism remains unclear. In this study, bioinformatics analysis verified by experiment was used to elucidate the hub genes associated with SCI and to discover the underlying molecular mechanisms of cell intervention. GSE46988 data were downloaded from the Gene Expression Omnibus dataset. In our study, differentially expressed genes (DEGs) were reanalyzed using the "R" software (R v4.2.1). Functional enrichment and protein-protein interaction network analyses were performed, and key modules and hub genes were identified. Network construction was performed for the hub genes and their associated miRNAs. Finally, a semi-quantitative analysis of hub genes and pathways was performed using quantitative real-time polymerase chain reaction. In total, 718 DEGs were identified, mainly enriched in immune and inflammation-related functions. We found that Cd4, Tp53, Rac2, and Akt3 differed between vehicle and transplanted groups, suggesting that these genes may play an essential role in the transplantation of olfactory ensheathing cells, while a toll-like receptor signaling pathway was significantly enriched in Gene set enrichment analysis, and then, the differences were statistically significant by experimentally verifying the expression of their associated molecules (Tlr4, Nf-κb, Ikkβ, Cxcl2, and Tnf-α). In addition, we searched for upstream regulatory molecules of these four central genes and constructed a regulatory network. This study is the first to construct a regulatory network for olfactory ensheathing cell transplantation in treating SCI, providing a new idea for SCI cell therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
25
|
Moustafa EM, Moawed FSM, Elmaghraby DF. Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA-124 by targeting C/EBPA. ENVIRONMENTAL TOXICOLOGY 2023; 38:2691-2704. [PMID: 37483155 DOI: 10.1002/tox.23903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The most prevalent brain-specific microRNA, MicroRNA-124, exhibits anti-inflammatory properties. Luteolin nano-formulation with Zn oxide in the form of L/ZnO NPs may boost anti-diabetic properties; however, its beneficial effect on miRNAs is yet unknown in diabetes. The effectiveness of L/ZnONPs supplements in preventing diabetic neurodegeneration by modulating inflammatory responses in a diabetic model was investigated. METHODS A diabetic rat model was induced by a high-fat diet and streptozotocin (30 mg/kg I.P.). Plasma glucose, insulin, and HOMR-IR levels, as well as cytokines, lipid peroxidation, GSH/GSSG, and glucose transporter 1, were determined along with the tight junction proteins occludin (OCLN) and zona occludens 1 (ZO-1). Moreover, the expressions of brain CCAAT/enhancer-binding protein (C/EBPA mRNA), miR-124, glial fibrillary acidic protein (GFAP), and NF-kBp65 were measured alongside the histological investigation. RESULTS The results revealed that L/ZnO NPs were able to diminish lipid peroxidation, increase the activity of antioxidant enzymes, and reduce inflammation under oxidative stress. Consequently, it was able to reduce hyperglycemia, elevate insulin levels, and improve insulin resistance. Besides, L/ZnO NPs upregulate miR-124, reduce C/EBPA mRNA, increase BCl-2, and inhibit apoptosis. The results indicate that diabetes raises BBB permeability via tight junction protein decline, which is restored following L/ZnO NPs treatment. Luteolin/ZnO NPs regulate miR-124 and microglia polarization by targeting C/EBPA and are expected to alleviate inflammatory injury via modulation of the redox-sensitive signal transduction pathways. Luteolin/ZnO NPs have a novel target for the protection of the BBB and the prevention of neurological complications in diabetes.
Collapse
Affiliation(s)
- Enas M Moustafa
- Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Dina F Elmaghraby
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
26
|
He C, Li Z, Yang M, Yu W, Luo R, Zhou J, He J, Chen Q, Song Z, Cheng S. Non-Coding RNA in Microglia Activation and Neuroinflammation in Alzheimer's Disease. J Inflamm Res 2023; 16:4165-4211. [PMID: 37753266 PMCID: PMC10519213 DOI: 10.2147/jir.s422114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathophysiological features. Amyloid plaques resulting from extracellular amyloid deposition and neurofibrillary tangles formed by intracellular hyperphosphorylated tau accumulation serve as primary neuropathological criteria for AD diagnosis. The activation of microglia has been closely associated with these pathological manifestations. Non-coding RNA (ncRNA), a versatile molecule involved in various cellular functions such as genetic information storage and transport, as well as catalysis of biochemical reactions, plays a crucial role in microglial activation. This review aims to investigate the regulatory role of ncRNAs in protein expression by directly targeting genes, proteins, and interactions. Furthermore, it explores the ability of ncRNAs to modulate inflammatory pathways, influence the expression of inflammatory factors, and regulate microglia activation, all of which contribute to neuroinflammation and AD. However, there are still significant controversies surrounding microglial activation and polarization. The categorization into M1 and M2 phenotypes may oversimplify the intricate and multifaceted regulatory processes in microglial response to neuroinflammation. Limited research has been conducted on the role of ncRNAs in regulating microglial activation and inducing distinct polarization states in the context of neuroinflammation. Moreover, the regulatory mechanisms through which ncRNAs govern microglial function continue to be refined. The current understanding of ncRNA regulatory pathways involved in microglial activation remains incomplete and may be influenced by spatial, temporal, and tissue-specific factors. Therefore, further in-depth investigations are warranted. In conclusion, there are ongoing debates and uncertainties regarding the activation and polarization of microglial cells, particularly concerning the categorization into M1 and M2 phenotypes. The study of ncRNA regulation in microglial activation and polarization, as well as its mechanisms, is still in its early stages and requires further investigation. However, this review offers new insights and opportunities for therapeutic approaches in AD. The development of ncRNA-based drugs may hold promise as a new direction in AD treatment.
Collapse
Affiliation(s)
- Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Miao Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
27
|
Huo A, Wang F. Biomarkers of ulcerative colitis disease activity CXCL1, CYP2R1, LPCAT1, and NEU4 and their relationship to immune infiltrates. Sci Rep 2023; 13:12126. [PMID: 37495756 PMCID: PMC10372061 DOI: 10.1038/s41598-023-39012-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The diagnosis and assessment of ulcerative colitis (UC) poses significant challenges, which may result in inadequate treatment and a poor prognosis for patients. This study aims to identify potential activity biomarkers for UC and investigate the role of infiltrating immune cells in the disease. To perform gene set enrichment analysis, we utilized the cluster profiler and ggplot2 packages. Kyoto encyclopedia of genes and genomes was used to analyze degenerate enrichment genes. Significant gene set enrichment was determined using the cluster profiler and ggplot2 packages. Additionally, quantitative PCR (qRT-PCR) was employed to validate the expression of each marker in the ulcerative colitis model. We identified 651 differentially expressed genes (DEGs) and further investigated potential UC activity biomarkers. Our analysis revealed that CXCL1 (AUC = 0.710), CYP2R1 (AUC = 0.863), LPCAT1 (AUC = 0.783), and NEU4 (AUC = 0.833) were promising activity markers for the diagnosis of UC. Using rat DSS model, we validated these markers through qRT-PCR, which showed statistically significant differences between UC and normal colon mucosa. Infiltrating immune cell analysis indicated that M1 macrophages, M2 macrophages, activated dendritic cells (DCs), and neutrophils played crucial roles in the occurrence and progression of UC. Moreover, the activity markers exhibited varying degrees of correlation with activated memory CD4 T cells, M0 macrophages, T follicular helper cells, memory B cells, and activated DCs. The potential diagnostic genes for UC activity, such as CXCL1, CYP2R1, LPCAT1, and NEU4, as well as the infiltration of immune cells, may contribute to the pathogenesis and progression of UC.
Collapse
Affiliation(s)
- Aijing Huo
- Department of Nephropathy and Immunology, The Third Central Clinical College of Tianjin Medical University, No. 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fengmei Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China.
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, No. 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| |
Collapse
|
28
|
Carneiro VCDS, Moreira ODC, Coelho WLDCNP, Rio BC, Sarmento DJDS, Salvio AL, Alves-Leon SV, de Paula VS, Leon LAA. miRNAs in Neurological Manifestation in Patients Co-Infected with SARS-CoV-2 and Herpesvírus 6 (HHV-6). Int J Mol Sci 2023; 24:11201. [PMID: 37446381 PMCID: PMC10342854 DOI: 10.3390/ijms241311201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Human herpesviruses (HHVs) can establish latency and be reactivated, also are neurotropic viruses that can trigger neurological disorders. HHV-6 is a herpesvirus that is associated with neurological disorders. Studies have reported the detection of HHV-6 in patients with COVID-19 and neurological manifestations. However, specific diagnoses of the neurological disorders caused by these viruses tend to be invasive or difficult to interpret. This study aimed to establish a relationship between miRNA and neurological manifestations in patients co-infected with COVID-19 and HHV-6 and evaluate miRNAs as potential biomarkers. Serum samples from COVID-19 patients in the three cohorts were analyzed. miRNA analysis by real-time polymerase chain reaction (qPCR) revealed miRNAs associated with neuroinflammation were highly expressed in patients with neurological disorders and HHV-6 detection. When compared with the group of patients without detection of HHVs DNA and without neurological alterations, the group with detection of HHV-6 DNA and neurological alteration, displayed significant differences in the expression of mir-21, mir-146a, miR-155 and miR-let-7b (p < 0.01). Our results reinforce the involvement of miRNAs in neurological disorders and provide insights into their use as biomarkers for neurological disorders triggered by HHV-6. Furthermore, understanding the expression of miRNAs may contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Vanessa Cristine de Souza Carneiro
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil (L.A.A.L.)
| | - Otacilio da Cruz Moreira
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
- Real Time PCR Platform RPT09A, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - Beatriz Chan Rio
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil (L.A.A.L.)
| | | | - Andreza Lemos Salvio
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
| | - Soniza Vieira Alves-Leon
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- Department of Neurology, Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luciane Almeida Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil (L.A.A.L.)
| |
Collapse
|
29
|
Kalashnikova I, Cambell H, Kolpek D, Park J. Optimization and characterization of miRNA-129-5p-encapsulated poly (lactic- co-glycolic acid) nanoparticles to reprogram activated microglia. NANOSCALE ADVANCES 2023; 5:3439-3452. [PMID: 37383067 PMCID: PMC10295030 DOI: 10.1039/d3na00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
Microglia have become a therapeutic target of many inflammation-mediated diseases in the central nervous system (CNS). Recently, microRNA (miRNA) has been proposed as an important regulator of immune responses. Specifically, miRNA-129-5p has been shown to play critical roles in the regulation of microglia activation. We have demonstrated that biodegradable poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) modulated innate immune cells and limited neuroinflammation after injury to the CNS. In this study, we optimized and characterized PLGA-based NPs for miRNA-129-5p delivery to utilize their synergistic immunomodulatory features for activated microglia modulation. A series of nanoformulations employing multiple excipients including epigallocatechin gallate (EGCG), spermidine (Sp), or polyethyleneimine (PEI) for miRNA-129-5p complexation and miRNA-129-5p conjugation to PLGA (PLGA-miR) were utilized. We characterized a total of six nanoformulations through physicochemical, biochemical, and molecular biological methods. In addition, we investigated the immunomodulatory effects of multiple nanoformulations. The data indicated that the immunomodulatory effects of nanoformulation, PLGA-miR with the excipient Sp (PLGA-miR+Sp) and PEI (PLGA-miR+PEI) were significant compared to other nanoformulations including naked PLGA-based NP. These nanoformulations promoted a sustained release of miRNA-129-5p and polarization of activated microglia into a more pro-regenerative phenotype. Moreover, they enhanced the expression of multiple regeneration-associated factors, while alleviating the expression of pro-inflammatory factors. Collectively, the proposed nanoformulations in this study highlight the promising therapeutic tools for synergistic immunomodulatory effects between PLGA-based NPs and miRNA-129-5p to modulate activated microglia which will have numerous applications for inflammation-derived diseases.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Heather Cambell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Daniel Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky Lexington KY USA
| |
Collapse
|
30
|
Walsh AD, Stone S, Freytag S, Aprico A, Kilpatrick TJ, Ansell BRE, Binder MD. Mouse microglia express unique miRNA-mRNA networks to facilitate age-specific functions in the developing central nervous system. Commun Biol 2023; 6:555. [PMID: 37217597 DOI: 10.1038/s42003-023-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Microglia regulate multiple processes in the central nervous system, exhibiting a considerable level of cellular plasticity which is facilitated by an equally dynamic transcriptional environment. While many gene networks that regulate microglial functions have been characterised, the influence of epigenetic regulators such as small non-coding microRNAs (miRNAs) is less well defined. We have sequenced the miRNAome and mRNAome of mouse microglia during brain development and adult homeostasis, identifying unique profiles of known and novel miRNAs. Microglia express both a consistently enriched miRNA signature as well as temporally distinctive subsets of miRNAs. We generated robust miRNA-mRNA networks related to fundamental developmental processes, in addition to networks associated with immune function and dysregulated disease states. There was no apparent influence of sex on miRNA expression. This study reveals a unique developmental trajectory of miRNA expression in microglia during critical stages of CNS development, establishing miRNAs as important modulators of microglial phenotype.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarrabeth Stone
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Brendan R E Ansell
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michele D Binder
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
31
|
Bonetto V, Grilli M. Neural stem cell-derived extracellular vesicles: mini players with key roles in neurogenesis, immunomodulation, neuroprotection and aging. Front Mol Biosci 2023; 10:1187263. [PMID: 37228583 PMCID: PMC10203560 DOI: 10.3389/fmolb.2023.1187263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) are self-renewing and multipotent cells of the central nervous system where they give rise to neurons, astrocytes and oligodendrocytes both during embryogenesis and throughout adulthood, although only in a few discrete niches. NSPC can integrate and send a plethora of signals not only within the local microenvironment but also at distance, including the systemic macroenvironment. Extracellular vesicles (EVs) are currently envisioned as main players in cell-cell communication in basic and translational neuroscience where they are emerging as an acellular alternative in regenerative medicine. At present NSPC-derived EVs represent a largely unexplored area compared to EVs from other neural sources and EVs from other stem cells, i.e., mesenchymal stem cells. On the other hand, available data suggest that NSPC-derived EVs can play key roles on neurodevelopmental and adult neurogenesis, and they are endowed with neuroprotective and immunomodulatory properties, and even endocrine functions. In this review we specifically highlight major neurogenic and "non-neurogenic" properties of NSPC-EVs, the current knowledge on their peculiar cargos and their potential translational value.
Collapse
|
32
|
Wei H, Yu C, Zhang C, Ren Y, Guo L, Wang T, Chen F, Li Y, Zhang X, Wang H, Liu J. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis. Biomed Pharmacother 2023; 160:114308. [PMID: 36709599 DOI: 10.1016/j.biopha.2023.114308] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Alcohol abuse triggers neuroinflammation, leading to neuronal damage and further memory and cognitive impairment. Few satisfactory advances have been made in the management of alcoholic central nervous impairment. Therefore, novel and more practical treatment options are urgently needed. Butyrate, a crucial metabolite of short-chain fatty acids (SCFAs), has been increasingly demonstrated to protect against numerous metabolic diseases. However, the impact of butyrate on chronic alcohol consumption-induced central nervous system (CNS) lesions remains unknown. METHODS In this study, we assessed the possible effects and underlying mechanisms of butyrate on the attenuation of alcohol-induced CNS injury in mice. Firstly, sixty female C57BL/6 J mice were randomly divided into 4 groups: pair-fed (PF) group (PF/CON), alcohol-fed (AF) group (AF/CON), PF with sodium butyrate (NaB) group (PF/NaB) and AF with NaB group (AF/NaB). Each group was fed a modified Lieber-DeCarli liquid diet with or without alcohol. After six weeks of feeding, the mice were euthanized and the associated indicators were investigated. RESULTS As indicated by the behavioral tests and brain morphology, dietary NaB administration significantly ameliorated aberrant behaviors, including locomotor hypoactivity, anxiety disorder, depressive behavior, impaired learning, spatial recognition memory, and effectively reduced chronic alcoholic central nervous system damage. To further understand the underlying mechanisms, microglia-mediated inflammation and the associated M1/M2 polarization were measured separately. Firstly, pro-inflammatory TNF-α, IL-1β, and IL-6 in brain and peripheral blood circulation were decreased, but IL-10 were increased in the AF/NaB group compared with the AF/CON group. Consistently, the abnormal proportions of activated and resting microglial cells in the hippocampus and cortex regions after excessive alcohol consumption were significantly reduced with NaB treatment. Moreover, the rectification of microglia polarization (M1/M2) imbalance was found after NaB administration via binding GPR109A, up-regulating the expression of PPAR-γ and down-regulating TLR4/NF-κB activation. In addition to the direct suppression of neuroinflammation, intriguingly, dietary NaB intervention remarkably increased the levels of intestinal tight junction protein occludin and gut morphological barrier, attenuated the levels of serum lipopolysaccharide (LPS) and dysbiosis of gut microbiota, suggesting that NaB supplementation effectively improved the integrity and permeability of gut microecology. Finally, the neurotransmitters including differential Tryptophan (Trp) and Kynurenine (Kyn) were found with dietary NaB administration, which showed significantly altered and closely correlated with the gut microbiota composition, demonstrating the complex interactions in the microbiome-gut-brain axis involved in the efficacy of dietary NaB therapy for alcoholic CNS lesions. CONCLUSION Dietary microbial metabolite butyrate supplementation ameliorates chronic alcoholic central nervous damage and improves related memory and cognitive functions through suppressing microglia-mediated neuroinflammation by GPR109A/PPAR-γ/TLR4-NF-κB signaling pathway and modulating microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Huiling Wei
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Chunyang Yu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yi Ren
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Feifei Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
33
|
Yuechen Z, Shaosong X, Zhouxing Z, Fuli G, Wei H. A summary of the current diagnostic methods for, and exploration of the value of microRNAs as biomarkers in, sepsis-associated encephalopathy. Front Neurosci 2023; 17:1125888. [PMID: 37008225 PMCID: PMC10060640 DOI: 10.3389/fnins.2023.1125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an acute neurological deficit caused by severe sepsis without signs of direct brain infection, characterized by the systemic inflammation and disturbance of the blood-brain barrier. SAE is associated with a poor prognosis and high mortality in patients with sepsis. Survivors may exhibit long-term or permanent sequelae, including behavioral changes, cognitive impairment, and decreased quality of life. Early detection of SAE can help ameliorate long-term sequelae and reduce mortality. Half of the patients with sepsis suffer from SAE in the intensive care unit, but its physiopathological mechanism remains unknown. Therefore, the diagnosis of SAE remains a challenge. The current clinical diagnosis of SAE is a diagnosis of exclusion; this makes the process complex and time-consuming and delays early intervention by clinicians. Furthermore, the scoring scales and laboratory indicators involved have many problems, including insufficient specificity or sensitivity. Thus, a new biomarker with excellent sensitivity and specificity is urgently needed to guide the diagnosis of SAE. MicroRNAs have attracted attention as putative diagnostic and therapeutic targets for neurodegenerative diseases. They exist in various body fluids and are highly stable. Based on the outstanding performance of microRNAs as biomarkers for other neurodegenerative diseases, it is reasonable to infer that microRNAs will be excellent biomarkers for SAE. This review explores the current diagnostic methods for sepsis-associated encephalopathy (SAE). We also explore the role that microRNAs could play in SAE diagnosis and if they can be used to make the SAE diagnosis faster and more specific. We believe that our review makes a significant contribution to the literature because it summarizes some of the important diagnostic methods for SAE, highlighting their advantages and disadvantages in clinical use, and could benefit the field as it highlights the potential of miRNAs as SAE diagnostic markers.
Collapse
Affiliation(s)
| | - Xi Shaosong
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Hu Wei
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Estévez-Cabrera MM, Sánchez-Muñoz F, Pérez-Sánchez G, Pavón L, Hernández-Díazcouder A, Córtes Altamirano JL, Soria-Fregoso C, Alfaro-Rodríguez A, Bonilla-Jaime H. Therapeutic treatment with fluoxetine using the chronic unpredictable stress model induces changes in neurotransmitters and circulating miRNAs in extracellular vesicles. Heliyon 2023; 9:e13442. [PMID: 36852042 PMCID: PMC9958461 DOI: 10.1016/j.heliyon.2023.e13442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The most widely prescribed antidepressant, fluoxetine (FLX), is known for its antioxidant and anti-inflammatory effects when administered post-stress. Few studies have evaluated the effects of FLX treatment when chronic stress has induced deleterious effects in patients. Our objective was to evaluate FLX treatment (20 mg/kg/day, i.v.) once these effects are manifested, and the drug's relation to extracellular circulating microRNAs associated with inflammation, a hedonic response (sucrose intake), the forced swim test (FST), and corticosterone levels (CORT) and monoamine concentrations in limbic areas. A group of Wistar rats was divided into groups: Control; FLX; CUMS (for six weeks of exposure to chronic, unpredictable mild stress); and CUMS + FLX, a mixed group. After CUMS, the rats performed the FST, and serum levels of CORT and six microRNAs (miR-16, -21, -144, -155, -146a, -223) were analyzed, as were levels of dopamine, noradrenaline, and serotonin in the prefrontal cortex, hippocampus, and hypothalamus. CUMS reduced body weight, sucrose intake, and hippocampal noradrenaline levels, but increased CORT, immobility behavior on the FST, dopamine concentrations in the prefrontal cortex, and all miRNAs except miR-146a expression. Administering FLX during CUMS reduced CORT levels and immobility behavior on the FST and increased the expression of miR-16, -21, -146a, -223, and dopamine. FLX protects against the deleterious effects of stress by reducing CORT and has an antidepressant effect on the FST, with minimally-modified neurotransmitter levels. FLX increased the expression of miRNAs as part of the antidepressant effect. It also regulates both neuroinflammation and serotoninergic neurotransmission through miRNAs, such as the miR-16.
Collapse
Affiliation(s)
- M. Maetzi Estévez-Cabrera
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, UAM, Av. San Rafael Atlixco 186, Leyes de Reforma, C.P. 09340, Ciudad de México, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1. Col. Belisario Domínguez - Sección XVI, Tlalpan, Ciudad de México, C.P. 14080, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Adrian Hernández-Díazcouder
- Posgrado en Biologia Experimental, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Av. San Rafael Atlixco 186, Leyes de Reforma, C.P. 09340, Ciudad de México, Mexico
| | - J. Luis Córtes Altamirano
- Departamento de Neurociencias Basicas, Instituto Nacional de Rehabilitación, “Luis Guillermo Ibarra”. Calzada México Xochimilco No. 289, Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, Mexico
- Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos, Estado de México, Mexico
| | - C. Soria-Fregoso
- Laboratorio de Ciencias Biomédicas/Área de Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, 47460, Jalisco, Mexico
| | - Alfonso Alfaro-Rodríguez
- Departamento de Neurociencias Basicas, Instituto Nacional de Rehabilitación, “Luis Guillermo Ibarra”. Calzada México Xochimilco No. 289, Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Ciudad de México, Mexico
| |
Collapse
|
35
|
Microglial Activation in Metal Neurotoxicity: Impact in Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7389508. [PMID: 36760476 PMCID: PMC9904912 DOI: 10.1155/2023/7389508] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical features, such as Alzheimer's and Parkinson's diseases. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration. Neurotoxicity of metals has been demonstrated by several in vitro and in vivo experimental studies, and most probably, each metal has its specific pathway to trigger cell death. As a result, exposure to essential metals, such as manganese, iron, copper, zinc, and cobalt, and nonessential metals, including lead, aluminum, and cadmium, perturbs metal homeostasis at the cellular and organism levels leading to neurodegeneration. In this contribution, a comprehensive review of the molecular mechanisms by which metals affect microglia physiology and signaling properties is presented. Furthermore, studies that validate the disruption of microglia activation pathways as an essential mechanism of metal toxicity that can contribute to neurodegenerative disease are also presented and discussed.
Collapse
|
36
|
Li RY, Hu Q, Shi X, Luo ZY, Shao DH. Crosstalk between exosomes and autophagy in spinal cord injury: fresh positive target for therapeutic application. Cell Tissue Res 2023; 391:1-17. [PMID: 36380098 PMCID: PMC9839811 DOI: 10.1007/s00441-022-03699-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord injury (SCI) is a very serious clinical traumatic illness with a very high disability rate. It not only causes serious functional disorders below the injured segment, but also causes unimaginable economic burden to social development. Exosomes are nano-sized cellular communication carriers that exist stably in almost all organisms and cell types. Because of their capacity to transport proteins, lipids, and nucleic acids, they affect various physiological and pathological functions of recipient cells and parental cells. Autophagy is a process that relies on the lysosomal pathway to degrade cytoplasmic proteins and organelles and involves a variety of pathophysiological processes. Exosomes and autophagy play critical roles in cellular homeostasis following spinal cord injury. Presently, the coordination mechanism of exosomes and autophagy has attracted much attention in the early efficacy of spinal cord injury. In this review, we discussed the interaction of autophagy and exosomes from the perspective of molecular mechanisms, which might provide novel insights for the early therapeutic application of spinal cord injury.
Collapse
Affiliation(s)
- Rui-yu Li
- Anqing First People’s Hospital of Anhui Medical University, Anqing, 246000 Anhui Province, China
| | - Qi Hu
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Xu Shi
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Zhen-yu Luo
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Dong-hua Shao
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| |
Collapse
|
37
|
Al-Awsi GRL, Jasim SA, Fakri Mustafa Y, Alhachami FR, Ziyadullaev S, Kandeel M, Abulkassim R, Sivaraman R, M Hameed N, Mireya Romero Parra R, Karampoor S, Mirzaei R. The role of miRNA-128 in the development and progression of gastrointestinal and urogenital cancer. Future Oncol 2022; 18:4209-4231. [PMID: 36519554 DOI: 10.2217/fon-2022-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Department of Medical Laboratory Techniques, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Firas Rahi Alhachami
- Department of Radiology, College of Health & Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Shukhrat Ziyadullaev
- No. 1 Department of Internal Diseases, Vice-rector for Scientific Affairs & Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516, Egypt
| | | | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Medical Biotechnology, Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
38
|
Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan K, Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (Beijing) 2022; 3:e173. [PMID: 36176733 PMCID: PMC9477794 DOI: 10.1002/mco2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Emerging evidence indicates that resolution of inflammation is a critical and dynamic endogenous process for host tissues defending against external invasive pathogens or internal tissue injury. It has long been known that autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses, leading to excessive and uncontrol tissue inflammation. The dysregulation of epigenetic alterations including DNA methylation, posttranslational modifications to histone proteins, and noncoding RNA expression has been implicated in a host of inflammatory disorders and the immune system. The inflammatory response is considered as a critical trigger of epigenetic alterations that in turn intercede inflammatory actions. Thus, understanding the molecular mechanism that dictates the outcome of targeting epigenetic regulators for inflammatory disease is required for inflammation resolution. In this article, we elucidate the critical role of the nuclear factor-κB signaling pathway, JAK/STAT signaling pathway, and the NLRP3 inflammasome in chronic inflammatory diseases. And we formulate the relationship between inflammation, coronavirus disease 2019, and human cancers. Additionally, we review the mechanism of epigenetic modifications involved in inflammation and innate immune cells. All that matters is that we propose and discuss the rejuvenation potential of interventions that target epigenetic regulators and regulatory mechanisms for chronic inflammation-associated diseases to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Su Zhang
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lian Zhou
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Heping Wang
- Department of NeurosurgeryTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Su
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Laboratory of Cancer Epigenetics and GenomicsDepartment of Gastrointestinal SurgeryFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Kui‐Ming Chan
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Junhong Han
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
39
|
Jiang H, Sun Z, Li F, Chen Q. Prognostic value of γ‐aminobutyric acidergic synapse-associated signature for lower-grade gliomas. Front Immunol 2022; 13:983569. [PMID: 36405708 PMCID: PMC9668880 DOI: 10.3389/fimmu.2022.983569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Synapse-associated proteins (SAPs) play important roles in central nervous system (CNS) tumors. Recent studies have reported that γ-aminobutyric acidergic (GABAergic) synapses also play critical roles in the development of gliomas. However, biomarkers of GABAergic synapses in low-grade gliomas (LGGs) have not yet been reported. Methods mRNA data from normal brain tissue and gliomas were obtained from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases, respectively. A validation dataset was also obtained from the Chinese Glioma Genome Atlas (CGGA) database. The expression patterns of GABAergic synapse-related genes (GSRGs) were evaluated with difference analysis in LGGs. Then, a GABAergic synapse-related risk signature (GSRS) was constructed with least absolute shrinkage and selection operator (LASSO) Cox regression analysis. According to the expression value and coefficients of identified GSRGs, the risk scores of all LGG samples were calculated. Univariate and multivariate Cox regression analyses were conducted to evaluate related risk scores for prognostic ability. Correlations between characteristics of the tumor microenvironment (TME) and risk scores were explored with single-sample gene set enrichment analysis (ssGSEA) and immunity profiles in LGGs. The GSRS-related pathways were investigated by gene set variation analysis (GSVA). Real-time PCR and the Human Protein Atlas (HPA) database were applied to explore related expression of hub genes selected in the GSRS. Results Compared with normal brain samples, 25 genes of 31 GSRGs were differentially expressed in LGG samples. A constructed five-gene GSRS was related to clinicopathological features and prognosis of LGGs by the LASSO algorithm. It was shown that the risk score level was positively related to the infiltrating level of native CD4 T cells and activated dendritic cells. GSVA identified several cancer-related pathways associated with the GSRS, such as P53 pathways and the JAK-STAT signaling pathway. Additionally, CA2, PTEN, OXTR, and SLC6A1 (hub genes identified in the GSRS) were regarded as the potential predictors in LGGs. Conclusion A new five-gene GSRS was identified and verified by bioinformatics methods. The GSRS provides a new perspective in LGG that may contribute to more accurate prediction of prognosis of LGGs.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Fei Li, ; Qianxue Chen,
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Fei Li, ; Qianxue Chen,
| |
Collapse
|
40
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
41
|
黄 珍, 沈 浩, 邓 红, 孙 丽, 屈 斌. [MiR-125b-5 suppresses ovarian cancer cell migration and invasion by targeted downregulation of CD147]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1389-1396. [PMID: 36210713 PMCID: PMC9550539 DOI: 10.12122/j.issn.1673-4254.2022.09.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether miR-125b-5p regulates biological behaviors of ovarian cancer cells by targeted regulation of CD147 expression. METHODS RT-qPCR was used to detect the expression of miR-125b-5p and CD147 mRNA in ovarian cancer tissues and cancer cell lines. SKOV3 cells transfected with miR-125b-5p mimic and HO8910 cells transfected with miR-125b-5p inhibitor were examined for changes in proliferation, migration and invasion using CCK-8 assay, colonyforming assay and Transwell assay. Starbase was used to predict the potential binding sites between miR-125b-5p and CD147, and double luciferase reporter gene assay was used to verify the targeting relationship. In SKOV3 cells, the effects of cotransfection with miR-125b-5p mimic and pcDNA3.1-CD147 (or pcDNA3.1) plasmid on cell proliferation, migration and invasion were assessed with CCK-8 assay and Transwell assay. RESULTS The expression of miR-125b-5p was significantly lowered and that of CD147 was increased in both ovarian cancer tissues and ovarian cancer cell lines (P < 0.05). Overexpression of miR-125b-5p in SKOV3 cells resulted in significantly suppressed cell proliferation, migration and invasion, while downregulation of miR-125b-5p in HO8910 cells promoted cell proliferation, migration and invasion. Bioinformatic analysis predicted that miR-125b-5p binds to CD147, which was confirmed by luciferase reporter gene assay. RT-qPCR and Western blotting showed that miR-125b-5p negatively regulated CD147 expression (P < 0.05). In SKOV3 cells, the inhibitory effects of miR-125b-5p mimic on cell proliferation, invasion and migration were significantly attenuated by co-transfection of the cells with pcDNA3.1-CD147 plasmid. CONCLUSION miR-125b-5p inhibits the migration and invasion of ovarian cancer cells by negatively regulating the expression of CD147.
Collapse
Affiliation(s)
- 珍 黄
- 湖南省人民医院血液科,湖南 长沙 410005Department of Hematology, Hunan Provincial People's Hospital, Changsha 410005, China
| | - 浩明 沈
- 湖南省肿瘤医院检验科,湖南 长沙 410009Clinical Laboratory, Hunan Cancer Hospital, Changsha 410009, China
| | - 红玉 邓
- 湖南省肿瘤医院检验科,湖南 长沙 410009Clinical Laboratory, Hunan Cancer Hospital, Changsha 410009, China
| | - 丽莎 孙
- 湖南省肿瘤医院输血科,湖南 长沙 410009Department of Blood Transfusion, Hunan Cancer Hospital, Changsha 410009, China
| | - 斌 屈
- 湖南省肿瘤医院检验科,湖南 长沙 410009Clinical Laboratory, Hunan Cancer Hospital, Changsha 410009, China
| |
Collapse
|
42
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
43
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
44
|
Choi HR, Ha JS, Kim EA, Cho SW, Yang SJ. MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1. BMB Rep 2022; 55:447-452. [PMID: 35651331 PMCID: PMC9537026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 03/08/2024] Open
Abstract
Neurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)- induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes. In LPS-induced microglia, miR-30a-5p and miR-153-3p suppressed pro-inflammatory cytokines, reactive oxygen species, the phosphorylation of c-Jun N-terminal kinase, extracellular-signal-regulated kinase (ERK), and p38, and the expression of cyclooxygenase and inducible nitric oxide synthase (iNOS) via the NF-κB pathway. Moreover, miR-30a-5p and miR-153-3p inhibited the expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, NLRP3, cleaved caspase-1, and IL-1β, which are involved in the innate immune response. In LPS-induced astrocytes, miR-30a-5p and miR-153-3p reduced ERK phosphorylation and iNOS expression via the STAT-3 pathway. Notably, miR-30a-5p exerted greater anti-inflammatory effects than miR-153-3p. Together, these results indicate that miR-30a-5p and miR-153-3p inhibit MAPK/NF-κB pathway in microglia as well as ERK/STAT-3 pathway in astrocytes to reduce LPS-induced neuronal apoptosis. This study highlights the importance of NeuroD1 in microglia and astrocytes neuroinflammation and suggests that it can be regulated by miR-30a-5p and miR-153-3p. [BMB Reports 2022; 55(9): 447-452].
Collapse
Affiliation(s)
- Hye-Rim Choi
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Ji Sun Ha
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
45
|
Hong Y, Lyu J, Zhu L, Wang X, Peng M, Chen X, Deng Q, Gao J, Yuan Z, Wang D, Xu G, Xu M. High-frequency repetitive transcranial magnetic stimulation (rTMS) protects against ischemic stroke by inhibiting M1 microglia polarization through let-7b-5p/HMGA2/NF-κB signaling pathway. BMC Neurosci 2022; 23:49. [PMID: 35927640 PMCID: PMC9351069 DOI: 10.1186/s12868-022-00735-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Microglia assume opposite phenotypes in response to ischemic brain injury, exerting neurotoxic and neuroprotective effects under different ischemic stages. Modulating M1/M2 polarization is a potential therapy for treating ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS) held the capacity to regulate neuroinflammation and astrocytic polarization, but little is known about rTMS effects on microglia. Therefore, the present study aimed to examine the rTMS influence on microglia polarization and the underlying possible molecular mechanisms in ischemic stroke models. Methods Previously reported 10 Hz rTMS protocol that regulated astrocytic polarization was used to stimulate transient middle cerebral artery occlusion (MCAO) rats and oxygen and glucose deprivation/reoxygenation (OGD/R) injured BV2 cells. Specific expression levels of M1 marker iNOS and M2 marker CD206 were measured by western blotting and immunofluorescence. MicroRNA expression changes detected by high-throughput second-generation sequencing were validated by RT-PCR and fluorescence in situ hybridization (FISH) analysis. Dual-luciferase report assay and miRNA knock-down were applied to verify the possible mechanisms regulated by rTMS. Microglia culture medium (MCM) from different groups were collected to measure the TNF-α and IL-10 concentrations, and detect the influence on neuronal survival. Finally, TTC staining and modified Neurological Severity Score (mNSS) were used to determine the effects of MCM on ischemic stroke volume and neurological functions. Results The 10 Hz rTMS inhibited ischemia/reperfusion induced M1 microglia and significantly increased let-7b-5p level in microglia. HMGA2 was predicted and proved to be the target protein of let-7b-5p. HMGA2 and its downstream NF-κB signaling pathway were inhibited by rTMS. Microglia culture medium (MCM) collected from rTMS treated microglia contained lower TNF-α concentration but higher IL-10 concentration than no rTMS treated MCM, reducing ischemic volumes and neurological deficits of MCAO mice. However, knockdown of let-7b-5p by antagomir reversed rTMS effects on microglia phenotype and associated HMGA/NF-κB activation and neurological recovery. Conclusion High-frequency rTMS could alleviate ischemic stroke injury through inhibiting M1 microglia polarization via regulating let-7b-5p/HMGA2/NF-κB signaling pathway in MCAO models. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00735-7.
Collapse
Affiliation(s)
- Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Jinfeng Lyu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Xixi Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Mengna Peng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Jie Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Zhenhua Yuan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China
| | - Di Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengyi Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
46
|
Wang YH, Chen YW, Xiao WL, Li XL, Feng L, Liu YL, Duan XX. MiR-214-3p Prevents the Development of Perioperative Neurocognitive Disorders in Elderly Rats. Curr Med Sci 2022; 42:871-884. [PMID: 35451808 DOI: 10.1007/s11596-022-2572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/01/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This study aimed to identify microRNAs (miRNAs) involved in the development of perioperative neurocognitive disorders (PND). METHODS Plasma exosomal miRNA expression was examined in patients before and after cardiopulmonary bypass (CPB) using microarray and qRT-PCR and these patients were diagnosed as PND later. Elderly rats were subjected to CPB, and the cognitive functions were examined. Bioinformatics analysis was conducted to predict the targets of miR-214-3p. Rats were administered rno-miR-214-3p agomir before or after CPB to investigate the role of miR-214-3p in PND development. RESULTS We identified 76 differentially expressed plasma exosomal miRNAs in PND patients after surgery (P<0.05, ∣log2FC∣>0.58), including the upregulated hsa-miR-214-3p (P=0.002399392). Prostaglandin-endoperoxide synthase 2 (PTGS2) was predicted as a miR-214-3p target. In rats, CPB reduced the platform crossing numbers and target quadrant stay time, accompanied with hippocampal neuronal necrosis. The rno-miR-214-3p level was significantly increased in plasma exosomes but decreased in rat hippocampus after surgery, exhibiting a negative correlation (P<0.001, r=-0.762). A negative correlation between miR-214-3p and PTGS2 protein expression was also observed in the hippocampus after surgery. Importantly, rno-miR-214-3p agomir treatment, before or after surgery, significantly increased the platform crossing numbers (P=0.035) and target quadrant stay time (P=0.029) compared with negative control. Hippocampal PTGS2 protein level was increased in the untreated surgery group and decreased in response to rno-miR-214-3p agomir treatment before or after surgery (both P<0.05 vs. negative control). CONCLUSION These data suggest that miR-214-3p/PTGS2 signaling contributes to the development of PND, serving as a potential therapeutic target for PND.
Collapse
Affiliation(s)
- Yu-Hao Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Yong-Wang Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Wan-Li Xiao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Xue-Lian Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Lan Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Yu-Lin Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Xia Duan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China.
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
47
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
48
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
49
|
Ahmed MM, Wang ACJ, Elos M, Chial HJ, Sillau S, Solano DA, Coughlan C, Aghili L, Anton P, Markham N, Adame V, Gardiner KJ, Boyd TD, Potter H. The innate immune system stimulating cytokine GM-CSF improves learning/memory and interneuron and astrocyte brain pathology in Dp16 Down syndrome mice and improves learning/memory in wild-type mice. Neurobiol Dis 2022; 168:105694. [PMID: 35307513 PMCID: PMC9045510 DOI: 10.1016/j.nbd.2022.105694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) is characterized by chronic neuroinflammation, peripheral inflammation, astrogliosis, imbalanced excitatory/inhibitory neuronal function, and cognitive deficits in both humans and mouse models. Suppression of inflammation has been proposed as a therapeutic approach to treating DS co-morbidities, including intellectual disability (DS/ID). Conversely, we discovered previously that treatment with the innate immune system stimulating cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), which has both pro- and anti-inflammatory activities, improved cognition and reduced brain pathology in a mouse model of Alzheimer's disease (AD), another inflammatory disorder, and improved cognition and reduced biomarkers of brain pathology in a phase II trial of humans with mild-to-moderate AD. To investigate the effects of GM-CSF treatment on DS/ID in the absence of AD, we assessed behavior and brain pathology in 12-14 month-old DS mice (Dp[16]1Yey) and their wild-type (WT) littermates, neither of which develop amyloid, and found that subcutaneous GM-CSF treatment (5 μg/day, five days/week, for five weeks) improved performance in the radial arm water maze in both Dp16 and WT mice compared to placebo. Dp16 mice also showed abnormal astrocyte morphology, increased percent area of GFAP staining in the hippocampus, clustering of astrocytes in the hippocampus, and reduced numbers of calretinin-positive interneurons in the entorhinal cortex and subiculum, and all of these brain pathologies were improved by GM-CSF treatment. These findings suggest that stimulating and/or modulating inflammation and the innate immune system with GM-CSF treatment may enhance cognition in both people with DS/ID and in the typical aging population.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Athena Ching-Jung Wang
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mihret Elos
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heidi J Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leila Aghili
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paige Anton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neil Markham
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanesa Adame
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy D Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Deng Y, Huang P, Zhang F, Chen T. Association of MicroRNAs With Risk of Stroke: A Meta-Analysis. Front Neurol 2022; 13:865265. [PMID: 35665049 PMCID: PMC9160310 DOI: 10.3389/fneur.2022.865265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Altered expression of microRNAs (miRNAs) may contribute to disease vulnerability. Studies have reported the involvement of miRNA in the pathophysiology of ischemic stroke. Methods We performed a meta-analysis of data from 6 studies that used a panel of miRNAs with altered expressions to diagnose ischemic stroke with the Bayesian framework. The I2 test and Cochran's Q-statistic were used to assess heterogeneity. Funnel plots were generated and publication bias was assessed using Begg and Egger tests. Results On summary receiver operating characteristics (SROC) curve analysis, the pooled sensitivity and specificity of altered miRNA expressions for diagnosis of ischemic stroke was 0.92 (95% confidence interval [CI] 0.80–0.97) and 0.83 (95% CI 0.71–0.90), respectively; the diagnostic odds ratio was 54.35 (95% CI 20.39–144.92), and the area under the SROC curve was 0.93 (95% CI 0.90–0.95). Conclusions Our results showed a link between dysregulation of miRNAs and the occurrence of ischemic stroke. Abnormal miRNA expression may be a potential biomarker for ischemic stroke.
Collapse
|