1
|
Hanauske T, Koretz CC, Jungenitz T, Roeper J, Drakew A, Deller T. Electrophysiologically calibrated optogenetic stimulation of dentate granule cells mitigates dendritic spine loss in denervated organotypic entorhino-hippocampal slice cultures. Sci Rep 2025; 15:4563. [PMID: 39915664 PMCID: PMC11802742 DOI: 10.1038/s41598-025-88536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Organotypic slice cultures (OTCs) are versatile tools for studying long-term structure-function relationships of neurons within a defined network (e.g. hippocampus). We developed a method for repeated experimenter-controlled activation of hippocampal granule cells (GCs) in OTCs within the incubator. After several days of contact-free photonic stimulation, we were able to ameliorate entorhinal denervation-induced structural damage in GCs. To achieve this outcome, we had to calibrate the intensity and duration of optogenetic (light) pulses using whole-cell electrophysiological recordings and multi-cell calcium imaging. Our findings showed that ChR2-expressing cells generated action potentials (APs) or calcium transients in response to illumination but were otherwise functionally indistinguishable from non-transduced GCs within the same neural circuit. However, the threshold for AP firing in single GCs varied based on the stimulus light intensity and the expression levels of ChR2. This information allowed us to calibrate light intensity for chronic stimulations. Denervated GCs exhibited significant spine loss four days post-denervation, but this detrimental effect was mitigated when AP firing was induced at a physiological GC bursting rate. Phototoxic damage caused by chronic light exposure was significantly reduced if illuminated with longer wavelength and by adding antioxidants to the culture medium. Our study presents a versatile approach for concurrent non-invasive manipulation and observation of neural circuit activity and remodeling in vitro.
Collapse
Affiliation(s)
- Tijana Hanauske
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Carolin Christina Koretz
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Institute for Neurophysiology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Jochen Roeper
- Institute for Neurophysiology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Alexander Drakew
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
2
|
Jones TA, Nemchek V, Fracassi M. Experience-driven competition in neural reorganization after stroke. J Physiol 2025; 603:737-757. [PMID: 39476290 PMCID: PMC11785499 DOI: 10.1113/jp285565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/27/2024] [Indexed: 02/01/2025] Open
Abstract
Behavioural experiences interact with regenerative responses to shape patterns of neural reorganization after stroke. This review is focused on the competitive nature of these behavioural experience effects. Interactions between learning-related plasticity and regenerative reactions have been found to underlie the establishment of new compensatory behaviours and the efficacy of motor rehabilitative training in rodent stroke models. Learning in intact brains depends on competitive and cooperative mechanisms of synaptic plasticity. Synapses are added in response to learning and selectively maintained and strengthened via activity-dependent competition. Long-term memories for experiences that occur closely in time can be weakened or enhanced by competitive or cooperative interactions in the time-dependent process of stabilizing synaptic changes. Rodent stroke model findings suggest that compensatory reliance on the non-paretic hand after stroke can shape and stabilize synaptic reorganization patterns in both hemispheres, to compete with the capacity for experiences of the paretic side to do so. However, the competitive edge of the non-paretic side can be countered by overlapping experiences of the paretic hand, and might even be shifted in a cooperative direction with skilfully coordinated bimanual experience. Advances in the basic understanding of learning-related synaptic competition are helping to inform the basis of experience-dependent variations in stroke outcome.
Collapse
Affiliation(s)
- Theresa A. Jones
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Victoria Nemchek
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Michela Fracassi
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| |
Collapse
|
3
|
Greco D, Drakew A, Rößler N, Jungenitz T, Jedlicka P, Deller T. Time-lapse imaging of identified granule cells in the mouse dentate gyrus after entorhinal lesion in vitro reveals heterogeneous cellular responses to denervation. Front Neuroanat 2025; 18:1513511. [PMID: 39906761 PMCID: PMC11790675 DOI: 10.3389/fnana.2024.1513511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/11/2024] [Indexed: 02/06/2025] Open
Abstract
Denervation of neurons is a network consequence of brain injury. The effects of denervation on neurons can be readily studied in vitro using organotypic slice cultures of entorhinal cortex and hippocampus. Following transection of the entorhino-dentate projection, granule cells (GCs) are denervated and show on average a transient loss of spines on their denervated distal dendrites but not on their non-denervated proximal dendrites. In the present study, we addressed the question how single GCs and their denervated and non-denervated segments react to entorhinal denervation. Local adeno-associated virus (AAV)-injections were employed to transduce dentate GCs with tdTomato and entorhinal projection neurons with EGFP. This made it possible to visualize both innervating entorhinal fibers and their target neurons and to identify dendritic segments located in the "entorhinal" and the "hippocampal" zone of the dentate gyrus. Confocal time-lapse imaging was used to image distal and proximal segments of single GCs after entorhinal denervation. Time-matched non-denervated cultures served as controls. In line with previous reports, average dendritic spine loss was ~30% (2-4 days post-lesion) in the denervated zone. However, individual GCs showed considerable variability in their response to denervation in both layers, and both decreases as well as increases in spine density were observed at the single cell level. Based on the standard deviations and the effect sizes observed in this study, a computer simulation yielded recommendations for the minimum number of neurons that should be analyzed in future studies using the entorhinal in vitro denervation model.
Collapse
Affiliation(s)
- Davide Greco
- Institute for Clinical Neuroanatomy, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Alexander Drakew
- Institute for Clinical Neuroanatomy, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Nina Rößler
- Institute for Clinical Neuroanatomy, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus-Liebig-University, Giessen, Germany
| | - Tassilo Jungenitz
- Institute for Clinical Neuroanatomy, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Peter Jedlicka
- Institute for Clinical Neuroanatomy, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus-Liebig-University, Giessen, Germany
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| |
Collapse
|
4
|
Jeong M, Won J, Lim KS, Jeon CY, Choe Y, Jang JH, Ha CM, Yoon JH, Lee Y, Oh YS. Comparative Anatomy of the Dentate Mossy Cells in Nonhuman Primates: Their Spatial Distributions and Axonal Projections Compared With Mouse Mossy Cells. eNeuro 2024; 11:ENEURO.0151-24.2024. [PMID: 38688719 DOI: 10.1523/eneuro.0151-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Glutamatergic mossy cells (MCs) mediate associational and commissural connectivity, exhibiting significant heterogeneity along the septotemporal axis of the mouse dentate gyrus (DG). However, it remains unclear whether the neuronal features of MCs are conserved across mammals. This study compares the neuroanatomy of MCs in the DG of mice and monkeys. The MC marker, calretinin, distinguishes two subpopulations: septal and temporal. Dual-colored fluorescence labeling is utilized to compare the axonal projection patterns of these subpopulations. In both mice and monkeys, septal and temporal MCs project axons across the longitudinal axis of the ipsilateral DG, indicating conserved associational projections. However, unlike in mice, no MC subpopulations in monkeys make commissural projections to the contralateral DG. In monkeys, temporal MCs send associational fibers exclusively to the inner molecular layer, while septal MCs give rise to wide axonal projections spanning multiple molecular layers, akin to equivalent MC subpopulations in mice. Despite conserved septotemporal heterogeneity, interspecies differences are observed in the topological organization of septal MCs, particularly in the relative axonal density in each molecular layer along the septotemporal axis of the DG. In summary, this comparative analysis sheds light on both conserved and divergent features of MCs in the DG of mice and monkeys. These findings have implications for understanding functional differentiation along the septotemporal axis of the DG and contribute to our knowledge of the anatomical evolution of the DG circuit in mammals.
Collapse
Affiliation(s)
- Minseok Jeong
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Youngshik Choe
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Yongjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| |
Collapse
|
5
|
Paul MH, Hildebrandt-Einfeldt L, Beeg Moreno VJ, Del Turco D, Deller T. Maturation-Dependent Differences in the Re-innervation of the Denervated Dentate Gyrus by Sprouting Associational and Commissural Mossy Cell Axons in Organotypic Tissue Cultures of Entorhinal Cortex and Hippocampus. Front Neuroanat 2021; 15:682383. [PMID: 34122019 PMCID: PMC8194403 DOI: 10.3389/fnana.2021.682383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Sprouting of surviving axons is one of the major reorganization mechanisms of the injured brain contributing to a partial restoration of function. Of note, sprouting is maturation as well as age-dependent and strong in juvenile brains, moderate in adult and weak in aged brains. We have established a model system of complex organotypic tissue cultures to study sprouting in the dentate gyrus following entorhinal denervation. Entorhinal denervation performed after 2 weeks postnatally resulted in a robust, rapid, and very extensive sprouting response of commissural/associational fibers, which could be visualized using calretinin as an axonal marker. In the present study, we analyzed the effect of maturation on this form of sprouting and compared cultures denervated at 2 weeks postnatally with cultures denervated at 4 weeks postnatally. Calretinin immunofluorescence labeling as well as time-lapse imaging of virally-labeled (AAV2-hSyn1-GFP) commissural axons was employed to study the sprouting response in aged cultures. Compared to the young cultures commissural/associational sprouting was attenuated and showed a pattern similar to the one following entorhinal denervation in adult animals in vivo. We conclude that a maturation-dependent attenuation of sprouting occurs also in vitro, which now offers the chance to study, understand and influence maturation-dependent differences in brain repair in these culture preparations.
Collapse
Affiliation(s)
- Mandy H Paul
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Lars Hildebrandt-Einfeldt
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Viktor J Beeg Moreno
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Hildebrandt-Einfeldt L, Yap K, Paul MH, Stoffer C, Zahn N, Drakew A, Lenz M, Vlachos A, Deller T. Crossed Entorhino-Dentate Projections Form and Terminate With Correct Layer-Specificity in Organotypic Slice Cultures of the Mouse Hippocampus. Front Neuroanat 2021; 15:637036. [PMID: 33643001 PMCID: PMC7904698 DOI: 10.3389/fnana.2021.637036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhino-dentate projection, i.e., the perforant pathway, terminates in a highly ordered and laminated fashion in the rodent dentate gyrus (DG): fibers arising from the medial entorhinal cortex (MEC) terminate in the middle molecular layer, whereas fibers arising from the lateral entorhinal cortex (LEC) terminate in the outer molecular layer of the DG. In rats and rabbits, a crossed entorhino-dentate projection exists, which originates from the entorhinal cortex (EC) and terminates in the contralateral DG. In contrast, in mice, such a crossed projection is reportedly absent. Using single and double mouse organotypic entorhino-hippocampal slice cultures, we studied the ipsi- and crossed entorhino-dentate projections. Viral tracing revealed that entorhino-dentate projections terminate with a high degree of lamina-specificity in single as well as in double cultures. Furthermore, in double cultures, entorhinal axons arising from one slice freely intermingled with entorhinal axons originating from the other slice. In single as well as in double cultures, entorhinal axons exhibited a correct topographical projection to the DG: medial entorhinal axons terminated in the middle and lateral entorhinal axons terminated in the outer molecular layer. Finally, entorhinal neurons were virally transduced with Channelrhodopsin2-YFP and stimulated with light, revealing functional connections between the EC and dentate granule cells. We conclude from our findings that entorhino-dentate projections form bilaterally in the mouse hippocampus in vitro and that the mouse DG provides a permissive environment for crossed entorhinal fibers.
Collapse
Affiliation(s)
- Lars Hildebrandt-Einfeldt
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Kenrick Yap
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mandy H Paul
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Carolin Stoffer
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nadine Zahn
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Alexander Drakew
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuro Modulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Yap K, Drakew A, Smilovic D, Rietsche M, Paul MH, Vuksic M, Del Turco D, Deller T. The actin-modulating protein synaptopodin mediates long-term survival of dendritic spines. eLife 2020; 9:e62944. [PMID: 33275099 PMCID: PMC7717903 DOI: 10.7554/elife.62944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022] Open
Abstract
Large spines are stable and important for memory trace formation. The majority of large spines also contains synaptopodin (SP), an actin-modulating and plasticity-related protein. Since SP stabilizes F-actin, we speculated that the presence of SP within large spines could explain their long lifetime. Indeed, using 2-photon time-lapse imaging of SP-transgenic granule cells in mouse organotypic tissue cultures we found that spines containing SP survived considerably longer than spines of equal size without SP. Of note, SP-positive (SP+) spines that underwent pruning first lost SP before disappearing. Whereas the survival time courses of SP+ spines followed conditional two-stage decay functions, SP-negative (SP-) spines and all spines of SP-deficient animals showed single-phase exponential decays. This was also the case following afferent denervation. These results implicate SP as a major regulator of long-term spine stability: SP clusters stabilize spines, and the presence of SP indicates spines of high stability.
Collapse
Affiliation(s)
- Kenrick Yap
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Alexander Drakew
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Dinko Smilovic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
- Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagrebCroatia
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Mandy H Paul
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Mario Vuksic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
- Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagrebCroatia
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| |
Collapse
|