1
|
Jain S, Murmu A, Chauhan A. Advancing Alzheimer's disease therapy through engineered exosomal Macromolecules. Brain Res 2025; 1855:149590. [PMID: 40120708 DOI: 10.1016/j.brainres.2025.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Exosomes are a subject of continuous investigation due to their function as extracellular vesicles (EVs) that significantly contribute to the pathophysiology of certain neurodegenerative disorders (NDD), including Alzheimer's disease (AD). Exosomes have shown the potential to carry both therapeutic and pathogenic materials; hence, researchers have used exosomes for medication delivery applications. Exosomes have reduced immunogenicity when used as natural drug delivery vehicles. This guarantees the efficient delivery of the medication without causing significant side reactions. Exosomes have lately enabled the potential for drug delivery in AD, along with promising future therapeutic uses for the detection of neurodegenerative disorders. Furthermore, exosomes have been examined for their prospective use in illness diagnosis and prediction before the manifestation of symptoms. This review will document prior studies and will concentrate on the rationale behind the substantial potential of exosomes in the treatment of AD and their prospective use as a diagnostic and predictive tool for this condition.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India.
| | - Ankita Murmu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| |
Collapse
|
2
|
Saaoud F, Liu L, Xu K, Lu Y, Shao Y, Ben Issa M, Jiang X, Wang X, Liu X, Autieri M, Wu S, Wei J, Yu J, Bouchareb R, Gillespie A, Luo JJ, Martinez L, Vazquez-Padron R, Sun J, Zhao H, Wang H, Pratico D, Yang X. Alzheimer's disease as an auto-innate immune pathology with potential cell trans-differentiation and enhanced trained immunity in 3xTg-AD mouse model. J Alzheimers Dis 2025:13872877251329583. [PMID: 40232249 DOI: 10.1177/13872877251329583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairment. Neuroinflammatory processes, mediated by glial and immune cells, contribute to neuronal damage. Emerging evidence implicates innate immune mechanisms, including trained immunity and cell trans-differentiation, in AD pathogenesis, though their roles remain unclear.ObjectiveTo investigate transcriptomic changes in the 3xTg-AD mouse model, focusing on trained immunity and cell trans-differentiation in disease mechanisms.MethodsRNA-sequencing was performed on brain tissue (cortex plus hippocampus) from 11-month-old female 3xTg-AD and wild-type mice (n = 3/group). Differentially expressed genes (fold change > 1.5, p < 0.05) were identified and followed by bioinformatics and knowledge-based transcriptomic profiling. Public AD datasets were also analyzed.Results3xTg-AD mice exhibited 316 upregulated and 412 downregulated genes. Downregulated genes included those for blood-brain barrier protein, while upregulated genes related to cerebrospinal fluid. Increased expression of proinflammatory markers, as well as genes related to cell differentiation, proliferation, activation, and adhesion. Upregulation of genes associated with cell migration and trans-differentiation suggests a potential role for inflammation and cellular plasticity. Additionally, genes involved in inflammasome pathways, immunometabolism, and trained immunity were upregulated. Mechanistically, these genes were modulated by knockdown of trained immunity promoter SET-7, overexpression of trained immunity inhibitor IL-37, and knockout of inflammasome genes IL-1 receptor, caspase-1, and pattern recognition receptor CD36.ConclusionsThe finding underscore the potential role of trained immunity and cell trans-differentiation in AD, revealing a mechanistic framework in which danger-associated molecular patterns drive innate immune responses, inflammasome activation, and cell plasticity contribute to AD, offering therapeutic targets for neuroinflammation and cellular reprograming.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Michael Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Juncheng Wei
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jun Yu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rihab Bouchareb
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jin Jun Luo
- Department of Neurology, Temple University, Philadelphia, PA, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huaqing Zhao
- Department of Biomedical Education and Data Sciences, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Domenico Pratico
- Alzheimer's Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Homkajorn B, Nilsu T, Suntararuks S, Saparpakorn P, Ingkaninan K, Limpeanchob N, Satayavivad J, Ruchirawat S, Thasana N. Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADME Predictions of Huperzine: A Derivative for the Novel Protective Application Against Neurodegenerations. Chem Asian J 2025:e202401950. [PMID: 40195677 DOI: 10.1002/asia.202401950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
To date, there has been no effective treatment available for the Alzheimer's disease (AD); hence, novel compounds with AD inhibitory effects are highly desirable. Huperzine A (HupA), a natural Lycopodium alkaloid, is a potent acetylcholinesterase (AChE) inhibitor for AD treatment. In this study, HupA derivatives, huperzil, N-hippurylhuperzine A, pyrrolhuperzine A, maleicamide-huperzine A and phthaleicamide-huperzine A, were synthesized and their in silico computation as the central nervous system (CNS) drug was performed. All derivatives exhibited lower anti-AChE activity than HupA. However, we found other non-cholinergic functions in AD-mimicking models using differentiated SH-SY5Y. HupA and derivatives significantly suppressed the Aβ25-35 cytotoxicity and showed recovery effects against arsenic- induced AD pathologies including reactive oxygen species generation, neurite outgrowth shortening, amyloid precursor protein suppression and the elevation of β-secretase, endogenous Aβ peptide, and Tau and neurofilament light proteins. In summary, we prepared three potential compounds with dual-AChE cholinergic and non-cholinergic functions. Further development of these compounds will be beneficial for the future use as an alternate compound against AD.
Collapse
Affiliation(s)
- Benjaporn Homkajorn
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Thanasan Nilsu
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Sumitra Suntararuks
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Nopporn Thasana
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| |
Collapse
|
4
|
Khan MS, Qureshi N, Khan R, Son YO, Maqbool T. CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer's disease: progress and prospects. Front Cell Neurosci 2025; 19:1578138. [PMID: 40260080 PMCID: PMC12009953 DOI: 10.3389/fncel.2025.1578138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
CRISPR/Cas9 technology has revolutionized genetic and biomedical research in recent years. It enables editing and modulation of gene function with an unparalleled precision and effectiveness. Among the various applications and prospects of this technology, the opportunities it offers in unraveling the molecular underpinnings of a myriad of central nervous system diseases, including neurodegenerative disorders, psychiatric conditions, and developmental abnormalities, are unprecedented. In this review, we highlight the applications of CRISPR/Cas9-based therapeutics as a promising strategy for management of Alzheimer's disease and transformative impact of this technology on AD research. Further, we emphasize the role of CRISPR/Cas9 in generating accurate AD models for identification of novel therapeutic targets, besides the role of CRISPR-based therapies aimed at correcting AD-associated mutations and modulating the neurodegenerative processes. Furthermore, various delivery systems are reviewed and potential of the non-viral nanotechnology-based carriers for overcoming the critical limitations of effective delivery systems for CRISPR/Cas9 is discussed. Overall, this review highlights the promise and prospects of CRISPR/Cas9 technology for unraveling the intricate molecular processes underlying the development of AD, discusses its limitations, ethical concerns and several challenges including efficient delivery across the BBB, ensuring specificity, avoiding off-target effects. This article can be helpful in better understanding the applications of CRISPR/Cas9 based therapeutic approaches and the way forward utilizing enormous potential of this technology in targeted, gene-specific treatments that could change the trajectory of this debilitating and incurable illness.
Collapse
Affiliation(s)
- Mohamad Sultan Khan
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Nousheen Qureshi
- Department of Higher Education, Government of Jammu and Kashmir, Srinagar, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
5
|
Norris C, Garimella HT, Carr W, Boutté AM, Gupta RK, Przekwas AJ. Modeling biomarker kinetics of Aβ levels in serum following blast. Front Neurol 2025; 16:1548589. [PMID: 40255887 PMCID: PMC12006977 DOI: 10.3389/fneur.2025.1548589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Elucidating the unique neuropathological response to blast exposure remains a barrier towards the development of diagnostic approaches for those with blast-induced traumatic brain injury (bTBI). Quantification of biomarker concentrations in the blood post-injury is typically used to inform brain injury severity. However, injury progression and associated changes in biomarker concentrations are sensitive to parameters such as the blast overpressure (BOP) magnitude and frequency of blast exposure. Through this work, a blast-dose biomarker kinetics (BxK) platform was developed and validated for Aβ42 as a promising predictor of injury post-blast. Blast-dose responses accounting for BOP magnitude and frequency were integrated into a mathematical model accounting for whole-body Aβ peptide kinetics. Validation of the developed model was performed through comparison with acute monomer levels in the blood serum of 15 service members exposed to repeated low-level blast while undergoing three-day weapons training. Amyloid precursor protein (APP) synthesis was assumed to be proportional to blast magnitude and additive effects within a window of recovery were applied to account for cumulative exposure. Aβ42 concentrations in the blood serum were predicted within 6.5 ± 5.2% on average, demonstrating model feasibility and biomarker sensitivity to blast. Outcomes discuss how modulation of patient-specific factors (age, weight, genetic factors, years of exposure, sleep) and pathophysiological factors (BBB permeability, amyloidogenic pathology, neuroinflammation) can reveal potential sources of variability in experimental data and be incorporated into the blast-dose BxK platform in future iterations. Advancements in model complexity accounting for sex-specific factors, weapon system, stress levels, risk of symptom onset, and pharmacological treatment strategies are anticipated to improve model calibration. Utilization of this blast-dose BxK model to identify drivers of pathophysiological mechanisms and predict chronic outcomes has the potential to transform bTBI diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Carly Norris
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| | - Harsha T. Garimella
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| | - Walter Carr
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Angela M. Boutté
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Raj K. Gupta
- US Army Medical Research and Development Command, DoD Blast Injury Research Coordinating Office (BIRCO), Fort Detrick, MD, United States
| | - Andrzej J. Przekwas
- Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States
| |
Collapse
|
6
|
Oh JM, Kim SH, Pandey BP, Shin WH, Son HJ, Kwon YJ, Kim H. A stilbenoid, rhapontigenin, isolated from the root of Rheum palmatum L. acts as a potent BACE1 inhibitor. Fitoterapia 2025; 182:106484. [PMID: 40107427 DOI: 10.1016/j.fitote.2025.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Seven compounds, comprising three anthraquinones and four stilbenoids, were isolated from the roots of Rheum palmatum L. These compounds include chrysophanol (1), aloe-emodin (2), aloe-emodin 8-O-β-D-glucopyranoside (3), desoxyrhapontigenin (4), rhapontigenin (5), desoxyrhaponticin (6), and piceatannol 3'-O-β-D-glucopyranoside (7). Among these, compound 5 showed potent β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitory activity with an IC50 value of 0.256 ± 0.008 μM, making it the most effective inhibitor obtained from herbal extracts to date, followed by compounds 3 (1.164 ± 0.108 μM), 6 (1.213 ± 0.193 μM), 7 (1.270 ± 0.130 μM), and 4 (2.028 ± 0.108 μM). Furthermore, kinetic analysis revealed that compound 5 acted as a mixed type-I inhibitor with an inhibition constant Ki value of 0.28 ± 0.07 μM. Notably, compound 2 exhibited potent Aβ aggregation inhibition with an IC50 value of 3.56 ± 0.19 μM, whereas compound 5 showed low Aβ aggregation inhibition with an IC50 value of >40 μM. The docking simulations revealed that compound 5 had a high binding affinity and interacted with TYR132, predicting it as a key residue for inhibition via hydrophobic interaction, and with THR133 via hydrogen bonding, in the flap region of BACE1. These results suggest that stilbenoids generally exhibit higher BACE1 inhibitory activity than that of anthraquinones, and that compound 5 (rhapontigenin) could be a promising candidate for the treatment of Alzheimer's disease as a potent BACE1 inhibitor.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Soo Hyun Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Bishnu Prasad Pandey
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Chemical Science and Engineering, Kathmandu University, PO Box No. 6250, Dhulikhel, Kavre, Nepal.
| | - Woong-Hee Shin
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Hyun Ju Son
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yun Ju Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
7
|
Ben Zaken K, Bouhnik R, Omer N, Bloch N, Samson AO. Polyoxometalates bind multiple targets involved in Alzheimer's disease. J Biol Inorg Chem 2025; 30:299-309. [PMID: 40119889 PMCID: PMC11965166 DOI: 10.1007/s00775-025-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by brain aggregates of amyloid-β (Aβ) plaques and Tau tangles. Despite extensive research, effective therapy for AD remains elusive. Polyoxometalates (POMs), a class of inorganic compounds with diverse chemical structures and properties, are emerging as potential candidates for AD treatment due to their ability to target key molecular players implicated in disease pathogenesis, such as Aβ, acetylcholinesterase (AChE) and butyryl acetylcholinesterase (BChE). Here, we use molecular docking to predict the binding pose and affinities of POMs to 10 top targets associated with AD. First, we validate our method by replicating experimentally known binding of POMs to Aβ (ΔG = - 9.67 kcal/mol), AChE (ΔG = - 9.39 kcal/mol) and BChE (ΔG = - 10.86 kcal/mol). Then, using this method, we show that POM can also bind β-secretase 1 (BACE1, ΔG = - 10.14 kcal/mol), presenilin 1 (PSEN1, ΔG = - 10.65 kcal/mol), presenilin 2 (PSEN2, ΔG = - 7.94 kcal/mol), Amyloid Precursor Protein (APP, ΔG = - 7.26 kcal/mol), Apolipoprotein E (APOE4, ΔG = - 10.05 kcal/mol), Microtubule-Associated Protein Tau (MAPT, ΔG = - 5.28 kcal/mol) depending on phosphorylation, and α-synuclein (SNCA, ΔG = - 7.64 kcal/mol). Through such binding, POMs offer the potential to mitigate APP cleavage, Aβ oligomer neurotoxicity, Aβ aggregation, thereby attenuating disease progression. Overall, our molecular docking study represents a powerful tool in the discovery of POM-based therapeutics for AD, facilitating the development of novel treatments for AD.
Collapse
Affiliation(s)
- Karin Ben Zaken
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Rivka Bouhnik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Naama Omer
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Naamah Bloch
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Abraham O Samson
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
8
|
Daksh R, Mathew MS, Bosco AM, Sojan C, Tom AA, Bojja SL, Nampoothiri M. The role of exosomes in diagnosis, pathophysiology, and management of Alzheimer's Disease. Biochem Biophys Res Commun 2025; 754:151526. [PMID: 40015072 DOI: 10.1016/j.bbrc.2025.151526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with impaired cognitive function and memory loss. Currently, available therapeutics can effectively alleviate the symptoms of AD, but there is a lack of treatment to halt the progression of the disease. In recent years, exosomes have gained much attention due to their involvement in various neurological disorders. Exosomes are small extracellular vesicles comprising lipids, proteins, DNA, non-coding RNA, and mRNAs, can carry various therapeutic molecules, and are potential drug delivery vehicles. Exosomes are known as a double-edged sword due to their involvement in both the pathogenesis and management of AD. This review explores the function of exosomes in the pathophysiology, treatment, and diagnosis of AD, also emphasizing their potential as a targeted drug delivery carrier to the brain. This review seeks to provide novel perspectives to understand better the onset, targeted treatment, and diagnosis of AD using exosomes.
Collapse
Affiliation(s)
- Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Meby Susan Mathew
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Aan Mery Bosco
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Christy Sojan
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Antriya Annie Tom
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
9
|
Hales CM. Alzheimer's Disease Diagnosis and Management in the Age of Amyloid Monoclonal Antibodies. Med Clin North Am 2025; 109:463-483. [PMID: 39893023 DOI: 10.1016/j.mcna.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and for providers the term AD is often avoided, favoring generic terms like memory loss or dementia. This is partly not only by limitations in using diagnostics and busy clinics but also by a sense that an AD diagnosis will not lead to a meaningful change in management. However, a turning point has occurred with advancements in diagnostics and disease-modifying therapies. Additionally, AD prevention therapies are not too far into the future. This review will cover AD clinical presentation and symptomatic management with focus on AD diagnostics and disease-modifying therapies.
Collapse
Affiliation(s)
- Chadwick M Hales
- Department of Neurology, Center for Neurodegenerative Disease, Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, 6 Executive Park Drive, Atlanta, GA 30329, USA.
| |
Collapse
|
10
|
De Deyn L, Sleegers K. The impact of rare genetic variants on Alzheimer disease. Nat Rev Neurol 2025; 21:127-139. [PMID: 39905212 DOI: 10.1038/s41582-025-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease with a strong genetic component. Although autosomal dominant mutations and common risk variants in AD risk have been extensively studied, the genetic underpinning of polygenic AD remains incompletely understood. Rare variants could elucidate part of the missing heritability in AD. Rare variant research gained momentum with the discovery of a rare variant in TREM2, along with loss-of-function variants in ABCA7 and SORL1, and has come into full bloom in recent years. Not only has the number of rare variant discoveries increased through large-scale whole-exome and genome sequencing studies, improved imputation in genome-wide association studies and increased focus on understudied populations, the number of studies mapping the functional effects of several of these rare variants has also significantly increased, leading to insights in the pathogenesis of AD and drug development. Here we provide a comprehensive overview of the known and novel rare variants implicated in AD risk, highlighting how they shine new light on AD pathophysiology and provide new inroads for drug development. We will review their impact on individual, familial and population levels, and discuss the potential and challenges of rare variants in genetic risk prediction.
Collapse
Affiliation(s)
- Lara De Deyn
- Complex Genetics of Alzheimer's Disease group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
11
|
Guo H, Yang R, Cheng W, Li Q, Du M. An Update of Salivary Biomarkers for the Diagnosis of Alzheimer's Disease. Int J Mol Sci 2025; 26:2059. [PMID: 40076682 PMCID: PMC11900270 DOI: 10.3390/ijms26052059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognition and behavior impairments. Diagnosing AD early is important for clinicians to slow down AD progression and preserve brain function. Biomarkers such as tau protein and amyloid-β peptide (Aβ) are used to aid diagnosis as clinical diagnosis often lags. Additionally, biomarkers can be used to monitor AD status and evaluate AD treatment. Clinicians detect these AD biomarkers in the brain using positron emission tomography/computed tomography or in the cerebrospinal fluid using a lumbar puncture. However, these methods are expensive and invasive. In contrast, saliva collection is simple, inexpensive, non-invasive, stress-free, and repeatable. Moreover, damage to the brain parenchyma can impact the oral cavity and some pathogenic molecules could travel back and forth from the brain to the mouth. This has prompted researchers to explore biomarkers in the saliva. Therefore, this study provides an overview of the main finding of salivary biomarkers for AD diagnosis. Based on these available studies, Aβ, tau, cholinesterase enzyme activity, lactoferrin, melatonin, cortisol, proteomics, metabolomics, exosomes, and the microbiome were changed in AD patients' saliva when compared to controls. However, well-designed studies are essential to confirm the reliability and validity of these biomarkers in diagnosing and monitoring AD.
Collapse
Affiliation(s)
| | | | | | | | - Minquan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (R.Y.); (W.C.); (Q.L.)
| |
Collapse
|
12
|
AlHayani DA, Kubaev A, Uthirapathy S, Mandaliya V, Ballal S, Kalia R, Arya R, Gabble BC, Alasheqi MQ, Kadhim AJ. Insights Into the Therapeutic Potential of SIRT1-modifying Compounds for Alzheimer's Disease: A Focus on Molecular Mechanisms. J Mol Neurosci 2025; 75:29. [PMID: 40000535 DOI: 10.1007/s12031-025-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, significantly impacting patients' quality of life. Recent studies have highlighted the roles of sirtuin 1 (SIRT1), a NAD + -dependent deacetylase, in regulating various biological pathways associated with AD pathology, including amyloid-beta metabolism, tau hyperphosphorylation, and neuroinflammation. This review focuses on the therapeutic potential of synthetic and natural compounds that modulate SIRT1 levels, emphasizing their molecular mechanisms of action. We explore a range of SIRT1-modifying agents, including polyphenols such as resveratrol, as well as synthetic analogs and novel pharmaceuticals that aim to enhance SIRT1 activity. Additionally, we discuss emerging innovative therapies, including pharmacological agents that improve SIRT1 signaling through mechanisms like photobiomodulation and nutritional interventions. These compounds not only target SIRT1 but also integrate into broader metabolic and neuroprotective pathways, presenting a promising approach to ameliorating AD symptoms. By elucidating the intricate interactions between SIRT1-modifying compounds and their effects on AD pathology, this review aims to advance the understanding of potential therapeutic strategies that could delay or prevent the progression of AD.
Collapse
Affiliation(s)
- Dhyauldeen Aftan AlHayani
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, 31003, Ramadi, Al Anbar, Iraq
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering/Al, Nisour University College, Baghdad, Iraq
| |
Collapse
|
13
|
Medd MM, Yon JE, Dong H. RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer's Disease. Curr Issues Mol Biol 2025; 47:124. [PMID: 39996845 PMCID: PMC11854763 DOI: 10.3390/cimb47020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that plays a crucial role in the pathogenesis of AD. RhoA, a small GTPase, along with its downstream effector, ROCK, regulates various cellular processes, including actin cytoskeleton dynamics, apoptosis, and synaptic plasticity. GSK3β, a serine/threonine kinase, plays a key role in neuronal function and AD pathology, including the regulation of tau phosphorylation and amyloid-beta cleavage. Overactive GSK3β has been closely linked to tau hyperphosphorylation, neurodegeneration, and the progression of AD. Thus, GSK3β has been considered as a promising therapeutic target for treating AD and mitigating cognitive impairment. However, clinical trials of GSK3β in AD have faced considerable challenges due to the complexity of the specific neuronal inhibition of GSK3β. In this review, we summarize the literature regarding the relationship of RhoA/ROCK and GSK3β signaling pathways in AD pathogenesis. We further discuss recent findings of the sTREM2-transgelin-2 (TG2) axis as a potential mediator of this complex pathway and provide our review on a novel targeting strategy for AD.
Collapse
Affiliation(s)
- Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Jayden E. Yon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Hongxin Dong
- Stephen M. Stahl Center for Psychiatric Neuroscience, Departments of Psychiatry & Behavioral Sciences and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
15
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
16
|
Engelhardt E, Resende EDPF, Gomes KB. Physiopathological mechanisms underlying Alzheimer's disease: a narrative review. Dement Neuropsychol 2024; 18:e2024VR01. [PMID: 39697643 PMCID: PMC11654088 DOI: 10.1590/1980-5764-dn-2024-vr01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 12/20/2024] Open
Abstract
The neuropathological signature of Alzheimer's disease (AD) comprises mainly amyloid plaques, and neurofibrillary tangles, resulting in synaptic and neuronal loss. These pathological structures stem from amyloid dysfunctional metabolism according to the amyloid cascade hypothesis, leading to the formation of plaques, and apparently inducing the initiation of the abnormal tau pathway, with phosphorylation and aggregation of these proteins, ultimately causing the formation of tangles. In this narrative review, the existing hypothesis related to the pathophysiology of AD were compiled, and biological pathways were highlighted in order to identify the molecules that could represent biological markers of the disease, necessary to establish early diagnosis, as well as the selection of patients for therapeutical interventional strategies.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto, Rio de Janeiro RJ, Brazil
| | - Elisa de Paula França Resende
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil
| | - Karina Braga Gomes
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Belo Horizonte MG, Brazil
| |
Collapse
|
17
|
Joshi N, Alavala RR. Sulfonamido, amido heterocyclic adducts of tetrazole derivatives as BACE1 inhibitors: in silico exploration. Mol Divers 2024; 28:4017-4049. [PMID: 38267751 DOI: 10.1007/s11030-023-10792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder accounting for 60-80% of dementia cases and is accompanied by a high mortality rate in patients above 70 years of age. The formation of senile plaques composed of amyloid-β protein is a hallmark of Alzheimer's disease. Beta-site APP cleaving enzyme 1 (BACE1) is a proteolytic enzyme involved in the degradation of amyloid precursor protein, which further degrades to form toxic amyloid-β fragments. Hence, inhibition of BACE1 was stated to be an effective strategy for Alzheimer's therapeutics. Keeping in mind the structures of different BACE1 inhibitors that had reached the clinical trials, we designed a library of compounds (total 164) based on a substituted 5-amino tetrazole scaffold which was an isosteric replacement of the cyclic amidine moiety, a common component of the BACE1 inhibitors which reached the clinical trials. The scaffold was linked to different structural moieties with the aid of an amide or sulfonamide bond to design some novel molecules. Molecular docking was initially performed and the top 5 molecules were selected based on docking scores and protein-ligand interactions. Furthermore, molecular dynamic simulations were performed for these molecules (3g, 7k, 8n, 9d, 9g) for 100 ns and MM-GBSA calculations were performed for each of these complexes. After critical evaluation of the obtained results, three potential molecules (9d, 8n, and 7k) were forwarded for prolonged stability studies by performing molecular dynamic simulations for 250 ns and simultaneous MM-GBSA calculations. It was observed that the compounds (9d, 8n, and 7k) were forming good interactions with the amino acid residues of the catalytic site of the enzyme with multiple non-covalent interactions. In MD simulations, the compounds have shown better stability and better binding energy throughout the runtime.
Collapse
Affiliation(s)
- Nachiket Joshi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V L Mehta Road, Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Rajasekhar Reddy Alavala
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V L Mehta Road, Vile Parle West, Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
18
|
Kokkali M, Karali K, Thanou E, Papadopoulou MA, Zota I, Tsimpolis A, Efstathopoulos P, Calogeropoulou T, Li KW, Sidiropoulou K, Gravanis A, Charalampopoulos I. Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer's disease. Mol Psychiatry 2024:10.1038/s41380-024-02833-w. [PMID: 39587294 DOI: 10.1038/s41380-024-02833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's Disease (AD) is an incurable and debilitating progressive, neurodegenerative disorder which is the leading cause of dementia worldwide. Neuropathologically, AD is characterized by the accumulation of Aβ amyloid plaques in the microenvironment of brain cells and neurovascular walls, chronic neuroinflammation, resulting in neuronal and synaptic loss, myelin and axonal failure, as well as significant reduction in adult hippocampal neurogenesis. The hippocampal formation is particularly vulnerable to this degenerative process, due to early dysfunction of the cholinergic circuit. Neurotrophic factors consist major regulatory molecules and their decline in AD is considered as an important cause of disease onset and progression. Novel pharmacological approaches are targeting the downstream pathways controlled by neurotrophins, such as nerve growth factor (NGF) receptors, TrkA and p75NTR, which enhance hippocampal neurogenic capacity and neuroprotective mechanisms, and potentially counteract the neurotoxic effects of amyloid deposition. BNN27 is a non-toxic, newly developed 17-spiro-steroid analog, penetrating the blood-brain-barrier (BBB) and mimicking the neuroprotective effects of NGF, acting as selective activator of its receptors, both TrkA and p75NTR, thus promoting survival of various neuronal cell types. Our present research aims at determining whether and which aspects of the AD-related pathology, BNN27 is able to alleviate, exploring the cellular and molecular AD components and link these changes with improvements in the cognitive performance of an animal AD model, the 5xFAD mice. Our results clearly indicate that BNN27 administration significantly reduced amyloid-β load in whole brain of the animals, enhanced adult hippocampal neurogenesis, restored cholinergic function and synaptogenesis, reducing inflammatory activation and leading to significant restoration of cognitive functions. BNN27 may represent a new lead multimodal molecule with neuroprotective, neurogenic and anti-neuroinflammatory actions for developing druggable anti-Alzheimeric agents. Proteomics data are available via ProteomeXchange with the identifier PXD044699.
Collapse
Affiliation(s)
- Maria Kokkali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Evangelia Thanou
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Maria Anna Papadopoulou
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioanna Zota
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | | | | | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, 71003, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece.
| |
Collapse
|
19
|
Netzer WJ, Sinha A, Ghias M, Chang E, Gindinova K, Mui E, Seo JS, Sinha SC. Stretching the structural envelope of imatinib to reduce β-amyloid production by modulating both β- and γ-secretase cleavages of APP. Front Chem 2024; 12:1381205. [PMID: 39439934 PMCID: PMC11493595 DOI: 10.3389/fchem.2024.1381205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
We previously showed that the anticancer drug imatinib mesylate (IMT, trade name: Gleevec) and a chemically distinct compound, DV2-103 (a kinase-inactive derivative of the potent Abl and Src kinase inhibitor, PD173955) lower Aβ levels at low micromolar concentrations primarily through a lysosome-dependent mechanism that renders APP less susceptible to proteolysis by BACE1 without directly inhibiting BACE1 enzymatic activity, or broadly inhibiting the processing of other BACE1 substrates. Additionally, IMT indirectly inhibits γ-secretase and stimulates autophagy, and thus may decrease Aβ levels through multiple pathways. In two recent studies we demonstrated similar effects on APP metabolism caused by derivatives of IMT and DV2-103. In the present study, we synthesized and tested radically altered IMT isomers (IMTi's) that possess medium structural similarity to IMT. Independent of structural similarity, these isomers manifest widely differing potencies in altering APP metabolism. These will enable us to choose the most potent isomers for further derivatization.
Collapse
Affiliation(s)
- William J. Netzer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Mondana Ghias
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Emily Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Katherina Gindinova
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Emily Mui
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Ji-Seon Seo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
20
|
Baumann HM, Mobley DL. Impact of protein conformations on binding free energy calculations in the beta-secretase 1 system. J Comput Chem 2024; 45:2024-2033. [PMID: 38725239 PMCID: PMC11236511 DOI: 10.1002/jcc.27365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/13/2024] [Accepted: 03/24/2024] [Indexed: 07/11/2024]
Abstract
In binding free energy calculations, simulations must sample all relevant conformations of the system in order to obtain unbiased results. For instance, different ligands can bind to different metastable states of a protein, and if these protein conformational changes are not sampled in relative binding free energy calculations, the contribution of these states to binding is not accounted for and thus calculated binding free energies are inaccurate. In this work, we investigate the impact of different beta-sectretase 1 (BACE1) protein conformations obtained from x-ray crystallography on the binding of BACE1 inhibitors. We highlight how these conformational changes are not adequately sampled in typical molecular dynamics simulations. Furthermore, we show that insufficient sampling of relevant conformations induces substantial error in relative binding free energy calculations, as judged by a variation in calculated relative binding free energies up to 2 kcal/mol depending on the starting protein conformation. These results emphasize the importance of protein conformational sampling and pose this BACE1 system as a challenge case for further method development in the area of enhanced protein conformational sampling, either in combination with binding calculations or as an endpoint correction.
Collapse
Affiliation(s)
- Hannah M Baumann
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - David L Mobley
- Department of Chemistry, University of California, Irvine, California, USA
| |
Collapse
|
21
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
22
|
Shin KC, Ali Moussa HY, Park Y. Cholesterol imbalance and neurotransmission defects in neurodegeneration. Exp Mol Med 2024; 56:1685-1690. [PMID: 39085348 PMCID: PMC11371908 DOI: 10.1038/s12276-024-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation.
Collapse
Affiliation(s)
- Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
23
|
Wongjaikam S, Nopparat C, Boontem P, Panmanee J, Thasana N, Shukla M, Govitrapong P. Huperzine A Regulates the Physiological Homeostasis of Amyloid Precursor Protein Proteolysis and Tau Protein Conformation-A Computational and Experimental Investigation. BIOLOGY 2024; 13:518. [PMID: 39056711 PMCID: PMC11273828 DOI: 10.3390/biology13070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The beneficial actions of the natural compound Huperzine A (Hup A) against age-associated learning and memory deficits promote this compound as a nootropic agent. Alzheimer's disease (AD) pathophysiology is characterized by the accumulation of amyloid beta (Aβ). Toxic Aβ oligomers account for the cognitive dysfunctions much before the pathological lesions are manifested in the brain. In the present study, we investigated the effects of Hup A on amyloid precursor protein (APP) proteolysis in SH-SY5Y neuroblastoma cells. Hup A downregulated the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) levels but augmented the levels of A disintegrin and metalloproteinase 10 (ADAM10) with significant decrement in the Aβ levels. We herein report for the first time an in silico molecular docking analysis that revealed that Hup A binds to the functionally active site of BACE1. We further analyzed the effect of Hup A on glycogen synthase kinase-3 β (GSK3β) and phosphorylation status of tau. In this scenario, based on the current observations, we propose that Hup A is a potent regulator of APP processing and capable of modulating tau homeostasis under physiological conditions holding immense potential in preventing and treating AD like disorders.
Collapse
Affiliation(s)
- Suwakon Wongjaikam
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (S.W.)
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Nakhonpathom 73170, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (S.W.)
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom 73170, Thailand
| | - Nopporn Thasana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (S.W.)
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (S.W.)
| |
Collapse
|
24
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
25
|
Meshref M, Ghaith HS, Hammad MA, Shalaby MMM, Ayasra F, Monib FA, Attia MS, Ebada MA, Elsayed H, Shalash A, Bahbah EI. The Role of RIN3 Gene in Alzheimer's Disease Pathogenesis: a Comprehensive Review. Mol Neurobiol 2024; 61:3528-3544. [PMID: 37995081 PMCID: PMC11087354 DOI: 10.1007/s12035-023-03802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Alzheimer's disease (AD) is a globally prevalent form of dementia that impacts diverse populations and is characterized by progressive neurodegeneration and impairments in executive memory. Although the exact mechanisms underlying AD pathogenesis remain unclear, it is commonly accepted that the aggregation of misfolded proteins, such as amyloid plaques and neurofibrillary tau tangles, plays a critical role. Additionally, AD is a multifactorial condition influenced by various genetic factors and can manifest as either early-onset AD (EOAD) or late-onset AD (LOAD), each associated with specific gene variants. One gene of particular interest in both EOAD and LOAD is RIN3, a guanine nucleotide exchange factor. This gene plays a multifaceted role in AD pathogenesis. Firstly, upregulation of RIN3 can result in endosomal enlargement and dysfunction, thereby facilitating the accumulation of beta-amyloid (Aβ) peptides in the brain. Secondly, RIN3 has been shown to impact the PICLAM pathway, affecting transcytosis across the blood-brain barrier. Lastly, RIN3 has implications for immune-mediated responses, notably through its influence on the PTK2B gene. This review aims to provide a concise overview of AD and delve into the role of the RIN3 gene in its pathogenesis.
Collapse
Affiliation(s)
- Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Faris Ayasra
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Hanaa Elsayed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| |
Collapse
|
26
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
27
|
Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM. Blood-based therapies to combat neurodegenerative diseases. Metab Brain Dis 2024; 39:985-1004. [PMID: 38842660 DOI: 10.1007/s11011-024-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mervyn Chen Xi Lim
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Min Tze Tsen
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Raduly FM, Raditoiu V, Raditoiu A, Nicolae CA, Grapin M, Stan MS, Voinea IC, Vlasceanu RI, Nitu CD, Mihailescu DF, Avram S, Mernea M. Half-Curcuminoids Encapsulated in Alginate-Glucosamine Hydrogel Matrices as Bioactive Delivery Systems. Gels 2024; 10:376. [PMID: 38920923 PMCID: PMC11203298 DOI: 10.3390/gels10060376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The therapeutic effects of curcumin and its derivatives, based on research in recent years, are limited by their low bioavailability. To improve bioavailability and develop the medical field of application, different delivery systems have been developed that are adapted to certain environments or the proposed target type. This study presents some half-curcuminoids prepared by the condensation of acetylacetone with 4-hydroxybenzaldehyde (C1), 4-hydroxy-3-methoxybenzaldehyde (C2), 4-acetamidobenzaldehyde (C3), or 4-diethylaminobenzaldehyde (C4), at microwaves as a simple, solvent-free, and eco-friendly method. The four compounds obtained were characterized in terms of morphostructural and photophysical properties. Following the predictions of theoretical studies on the biological activities related to the molecular structure, in vitro tests were performed for compounds C1-C3 to evaluate the antitumor properties and for C4's possible applications in the treatment of neurological diseases. The four compounds were encapsulated in two types of hydrogel matrices. First, the alginate-glucosamine network was generated and then the curcumin analogs were loaded (G1, G3, G5-G7, and G9). The second type of hydrogels was obtained by loading the active compound together with the generation of the hydrogel carrier matrices, by simply dissolving (G4 and G10) or by chemically binding half-curcuminoid derivatives to glucosamine (G2 and G8). Thus, two types of curcumin analog delivery systems were obtained, which could be applied in various types of medical treatments.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Valentin Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Alina Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Cristian Andi Nicolae
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Maria Grapin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Ionela Cristina Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Raluca-Ioana Vlasceanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Cristina Doina Nitu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
- Institute of Oncology “Prof. dr. Al. Trestioreanu”, 252, Fundeni, 022328 Bucharest, Romania
| | - Dan F. Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| |
Collapse
|
29
|
Deng J, Liu B, Tao Q, Luo Y, Zhu Y, Huang X, Yue F. The Co-oligomers of Aβ42 and Human Islet Amyloid Polypeptide Exacerbate Neurotoxicity and Alzheimer-like Pathology at Cellular Level. Neuroscience 2024; 547:37-55. [PMID: 38604526 DOI: 10.1016/j.neuroscience.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The Aβ hypothesis has long been central to Alzheimer's disease (AD) theory, with a recent surge in attention following drug approvals targeting Aβ plaque clearance. Aβ42 oligomers (AβO) are key neurotoxins. While β-amyloid (Aβ) buildup is a hallmark of AD, postmortem brain analyses have unveiled human islet amyloid polypeptide (hIAPP) deposition in AD patients, suggesting a potential role in Alzheimer's pathology. This study investigates the neurotoxic effects of co-aggregates of Aβ42 and hIAPP, specifically focusing on their impact on cell survival, apoptosis, and AD-like pathology. We analyzed and compared the impact of AβO and Aβ42-hIAPP on cell survival in SH-SY5Y cells, apoptosis and inducing AD-like pathology in glutamatergic neurons. Aβ42-hIAPP co-oligomers exhibited significantly greater toxicity, causing 2.3-3.5 times higher cell death compared to AβO alone. Furthermore, apoptosis rates were significantly exacerbated in glutamatergic neurons when exposed to Aβ42-hIAPP co-oligomers. The study also revealed that Aβ42-hIAPP co-oligomers induced typical AD-like pathology in glutamatergic neurons, including the presence of Aβ deposits (detected by 6E10 and 4G8 immunofluorescence) and alterations in tau protein (changes in total tau HT7, phosphorylated tau AT8, AT180). Notably, Aβ42-hIAPP co-oligomers induced a more severe AD pathology compared to AβO alone. These findings provide compelling evidence for the heightened toxicity of Aβ42-hIAPP co-oligomers on neurons and their role in exacerbating AD pathology. The study contributes novel insights into the pathogenesis of Alzheimer's disease, highlighting the potential involvement of hIAPP in AD pathology. Together, these findings offer novel insights into AD pathogenesis and routes for constructing animal models.
Collapse
Affiliation(s)
- Jiajun Deng
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health Institute, Hainan University. Haikou 570228, China
| | - Bin Liu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health Institute, Hainan University. Haikou 570228, China
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650000, China
| | - Yanyu Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health Institute, Hainan University. Haikou 570228, China
| | - Yi Zhu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health Institute, Hainan University. Haikou 570228, China
| | - Xinxin Huang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health Institute, Hainan University. Haikou 570228, China
| | - Feng Yue
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health Institute, Hainan University. Haikou 570228, China.
| |
Collapse
|
30
|
Schreiner TG, Croitoru CG, Hodorog DN, Cuciureanu DI. Passive Anti-Amyloid Beta Immunotherapies in Alzheimer's Disease: From Mechanisms to Therapeutic Impact. Biomedicines 2024; 12:1096. [PMID: 38791059 PMCID: PMC11117736 DOI: 10.3390/biomedicines12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease, the most common type of dementia worldwide, lacks effective disease-modifying therapies despite significant research efforts. Passive anti-amyloid immunotherapies represent a promising avenue for Alzheimer's disease treatment by targeting the amyloid-beta peptide, a key pathological hallmark of the disease. This approach utilizes monoclonal antibodies designed to specifically bind amyloid beta, facilitating its clearance from the brain. This review offers an original and critical analysis of anti-amyloid immunotherapies by exploring several aspects. Firstly, the mechanisms of action of these therapies are reviewed, focusing on their ability to promote Aβ degradation and enhance its efflux from the central nervous system. Subsequently, the extensive history of clinical trials involving anti-amyloid antibodies is presented, from initial efforts using first-generation molecules leading to mixed results to recent clinically approved drugs. Along with undeniable progress, the authors also highlight the pitfalls of this approach to offer a balanced perspective on this topic. Finally, based on its potential and limitations, the future directions of this promising therapeutic strategy for Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Cristina Georgiana Croitoru
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Immunology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Nicoleta Hodorog
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| | - Dan Iulian Cuciureanu
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
31
|
Ye G. De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning. J Comput Aided Mol Des 2024; 38:20. [PMID: 38647700 PMCID: PMC11035455 DOI: 10.1007/s10822-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
In recent years, generative machine learning algorithms have been successful in designing innovative drug-like molecules. SMILES is a sequence-like language used in most effective drug design models. Due to data's sequential structure, models such as recurrent neural networks and transformers can design pharmacological compounds with optimized efficacy. Large language models have advanced recently, but their implications on drug design have not yet been explored. Although one study successfully pre-trained a large chemistry model (LCM), its application to specific tasks in drug discovery is unknown. In this study, the drug design task is modeled as a causal language modeling problem. Thus, the procedure of reward modeling, supervised fine-tuning, and proximal policy optimization was used to transfer the LCM to drug design, similar to Open AI's ChatGPT and InstructGPT procedures. By combining the SMILES sequence with chemical descriptors, the novel efficacy evaluation model exceeded its performance compared to previous studies. After proximal policy optimization, the drug design model generated molecules with 99.2% having efficacy pIC50 > 7 towards the amyloid precursor protein, with 100% of the generated molecules being valid and novel. This demonstrated the applicability of LCMs in drug discovery, with benefits including less data consumption while fine-tuning. The applicability of LCMs to drug discovery opens the door for larger studies involving reinforcement-learning with human feedback, where chemists provide feedback to LCMs and generate higher-quality molecules. LCMs' ability to design similar molecules from datasets paves the way for more accessible, non-patented alternatives to drug molecules.
Collapse
Affiliation(s)
- Gavin Ye
- Columbia Grammar & Preparatory School, New York, NY, USA.
| |
Collapse
|
32
|
Abdallah AE. Review on anti-alzheimer drug development: approaches, challenges and perspectives. RSC Adv 2024; 14:11057-11088. [PMID: 38586442 PMCID: PMC10995770 DOI: 10.1039/d3ra08333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Alzheimer is an irreversible progressive neurodegenerative disease that causes failure of cerebral neurons and disability of the affected person to practice normal daily life activities. There is no concrete evidence to identify the exact reason behind the disease, so several relevant hypotheses emerged, highlighting many possible therapeutic targets, such as acetylcholinesterase, cholinergic receptors, N-methyl d-aspartate receptors, phosphodiesterase, amyloid β protein, protein phosphatase 2A, glycogen synthase kinase-3 beta, β-secretase, γ-secretase, α-secretase, serotonergic receptors, glutaminyl cyclase, tumor necrosis factor-α, γ-aminobutyric acid receptors, and mitochondria. All of these targets have been involved in the design of new potential drugs. An extensive number of these drugs have been studied in clinical trials. However, only galantamine, donepezil, and rivastigmine (ChEIs), memantine (NMDA antagonist), and aducanumab and lecanemab (selective anti-Aβ monoclonal antibodies) have been approved for AD treatment. Many drugs failed in the clinical trials to such an extent that questions have been posed about the significance of some of the aforementioned targets. On the contrary, the data of other drugs were promising and shed light on the significance of their targets for the development of new potent anti-alzheimer drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University 11884 Cairo Egypt
| |
Collapse
|
33
|
Maccioni R, Travisan C, Badman J, Zerial S, Wagener A, Andrade-Talavera Y, Picciau F, Grassi C, Chen G, Lemoine L, Fisahn A, Jiang R, Fluhrer R, Mentrup T, Schröder B, Nilsson P, Tambaro S. Signal peptide peptidase-like 2b modulates the amyloidogenic pathway and exhibits an Aβ-dependent expression in Alzheimer's disease. Prog Neurobiol 2024; 235:102585. [PMID: 38367747 DOI: 10.1016/j.pneurobio.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder driven by abnormal amyloid β-peptide (Aβ) levels. In this study, we investigated the role of presenilin-like signal peptide peptidase-like 2b (SPPL2b) in AD pathophysiology and its potential as a druggable target within the Aβ cascade. Exogenous Aβ42 influenced SPPL2b expression in human cell lines and acute mouse brain slices. SPPL2b and its AD-related substrate BRI2 were evaluated in the brains of AppNL-G-F knock-in AD mice and human postmortem AD brains. An early high cortical expression of SPPL2b was observed, followed by a downregulation in late AD pathology in AppNL-G-F mice, correlating with synaptic loss. To understand the consequences of pathophysiological SPPL2b dysregulation, we found that SPPL2b overexpression significantly increased APP cleavage, while genetic deletion reduced APP cleavage and Aβ production. Notably, postmortem AD brains showed higher levels of SPPL2b's BRI2 substrate compared to healthy control samples. These results strongly support the involvement of SPPL2b in AD pathology. The early Aβ-induced upregulation of SPPL2b may enhance Aβ production in a vicious cycle, further aggravating Aβ pathology. Therefore, SPPL2b emerges as a potential anti-Aβ drug target.
Collapse
Affiliation(s)
- Riccardo Maccioni
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States.
| | - Caterina Travisan
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; VIB-KU Leuven Center for Brain and Disease Research, Leuven 3001, Belgium.
| | - Jack Badman
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Stefania Zerial
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of life science, University of Trieste, Trieste 34127, Italy.
| | - Annika Wagener
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, 69117 Germany.
| | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Federico Picciau
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Biomedical Sciences, Cytomorphology, University of Cagliari, Cagliari 09042, Italy.
| | - Caterina Grassi
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - Laetitia Lemoine
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159, Germany.
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| |
Collapse
|
34
|
Guo X, Yan L, Zhang D, Zhao Y. Passive immunotherapy for Alzheimer's disease. Ageing Res Rev 2024; 94:102192. [PMID: 38219962 DOI: 10.1016/j.arr.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/03/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by cognitive impairment with few therapeutic options. Despite many failures in developing AD treatment during the past 20 years, significant advances have been achieved in passive immunotherapy of AD very recently. Here, we review characteristics, clinical trial data, and mechanisms of action for monoclonal antibodies (mAbs) targeting key players in AD pathogenesis, including amyloid-β (Aβ), tau and neuroinflammation modulators. We emphasized the efficacy of lecanemab and donanemab on cognition and amyloid clearance in AD patients in phase III clinical trials and discussed factors that may contribute to the efficacy and side effects of anti-Aβ mAbs. In addition, we provided important information on mAbs targeting tau or inflammatory regulators in clinical trials, and indicated that mAbs against the mid-region of tau or pathogenic tau have therapeutic potential for AD. In conclusion, passive immunotherapy targeting key players in AD pathogenesis offers a promising strategy for effective AD treatment.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Li Yan
- School of Traditional Chinese Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Denghong Zhang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingjun Zhao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
35
|
Samy MVG, Perumal S. Systems pharmacology and multi-scale mechanism of Enicostema axillare bioactives in treating Alzheimer disease. Inflammopharmacology 2024; 32:575-593. [PMID: 37845599 DOI: 10.1007/s10787-023-01348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
As a progressive neurological disease with increased morbidity and mortality, Alzheimer Disease (AD) is characterized by neuron damage that controls memory and mental functions. Enicostema axillare (EA), an herb with a history of combativeness and effectiveness in treating Rheumatoid Arthritis, Cancer, and Diabetes, is used in Indian folk medicine from a holistic point of view. Though the herb is used for many illnesses, the molecular mechanism of its bioactive on AD has not been deciphered by intricate research. A unique pharmacology approach based on ADME drug screening and targeting, pathway enrichment (GO and KEGG), and network pharmacology, was established to explore the molecular mechanisms of E. axillare (EA) bioactive compounds for the treatment of AD. In brief, we bring to light the three active compounds of EA and seven potential molecular targets of AD, which are mainly implicated in four signaling pathways, i.e., MAPK, Apoptosis, neurodegeneration, and the TNF pathway. Moreover, the network analysis of the active compounds, molecular targets, and their pathways reveals the pharmacological nature of the compounds. Further, molecular docking studies were carried out to explore the interactions between the EA bioactive compounds and the targets and examine the binding affinity. The outcome of the work reflects the potential therapeutic effects of the compounds for treating AD through the modulation of the key proteins, which further corroborates the reliability of our network pharmacology analysis. This study not only helps in understanding the molecular mechanism of the drugs but also helps in finding and sorting new drugs for the treatment of AD, and other complex diseases through modern medicine.
Collapse
Affiliation(s)
| | - Sasidharan Perumal
- Cell and Molecular Biology Division, Biome Live Analytical Center, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
36
|
Cha Y, Kagalwala MN, Ross J. Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics. Pharmaceuticals (Basel) 2024; 17:158. [PMID: 38399373 PMCID: PMC10891920 DOI: 10.3390/ph17020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Recent advances in machine learning hold tremendous potential for enhancing the way we develop new medicines. Over the years, machine learning has been adopted in nearly all facets of drug discovery, including patient stratification, lead discovery, biomarker development, and clinical trial design. In this review, we will discuss the latest developments linking machine learning and CNS drug discovery. While machine learning has aided our understanding of chronic diseases like Alzheimer's disease and Parkinson's disease, only modest effective therapies currently exist. We highlight promising new efforts led by academia and emerging biotech companies to leverage machine learning for exploring new therapies. These approaches aim to not only accelerate drug development but to improve the detection and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Jermaine Ross
- Alleo Labs, San Francisco, CA 94105, USA; (Y.C.); (M.N.K.)
| |
Collapse
|
37
|
Fatima S, Qaiser A, Andleeb S, Hashmi AH, Manzoor S. Navigating the brain: the role of exosomal shuttles in precision therapeutics. Front Neurol 2024; 14:1324216. [PMID: 38304326 PMCID: PMC10831691 DOI: 10.3389/fneur.2023.1324216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/28/2023] [Indexed: 02/03/2024] Open
Abstract
Brain diseases have become one of the leading roots of mortality and disability worldwide, contributing a significant part of the disease burden on healthcare systems. The blood-brain barrier (BBB) is a primary physical and biological obstacle that allows only small molecules to pass through it. Its selective permeability is a significant challenge in delivering therapeutics into the brain for treating brain dysfunction. It is estimated that only 2% of the new central nervous system (CNS) therapeutic compounds can cross the BBB and achieve their therapeutic targets. Scientists are exploring various approaches to develop effective cargo delivery vehicles to promote better therapeutics targeting the brain with minimal off-target side effects. Despite different synthetic carriers, one of the natural brain cargo delivery systems, "exosomes," are now employed to transport drugs through the BBB. Exosomes are naturally occurring small extracellular vesicles (EVs) with unique advantages as a therapeutic delivery system for treating brain disorders. They have beneficial innate aspects of biocompatibility, higher stability, ability to cross BBB, low cytotoxicity, low immunogenicity, homing potential, targeted delivery, and reducing off-site target effects. In this review, we will discuss the limitations of synthetic carriers and the utilization of naturally occurring exosomes as brain-targeted cargo delivery vehicles and highlight the methods for modifying exosome surfaces and drug loading into exosomes. We will also enlist neurodegenerative disorders targeted with genetically modified exosomes for their treatment.
Collapse
Affiliation(s)
- Shaheera Fatima
- Atta-ur-Rehman School of Applied Biosciences, Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Atta-ur-Rehman School of Applied Biosciences, Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rehman School of Applied Biosciences, Industrial Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | | | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Biosciences, Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
38
|
Rathee S, Sen D, Pandey V, Jain SK. Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies. Curr Drug Targets 2024; 25:752-774. [PMID: 39039673 DOI: 10.2174/0113894501320096240627071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
39
|
Morroni F, Caccamo A. Advances and Challenges in Gene Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S417-S431. [PMID: 39422937 DOI: 10.3233/jad-230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and behavioral impairments. Despite extensive research efforts, effective treatment options for AD remain limited. Recently, gene therapy has emerged as a promising avenue for targeted intervention in the pathogenesis of AD. This review will provide an overview of clinical and preclinical studies where gene therapy techniques have been utilized in the context of AD, highlighting their potential as novel therapeutic strategies. While challenges remain, ongoing research and technological advancement continue to enhance the potential of gene therapy as a targeted and personalized therapeutic approach for AD.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
40
|
Narayanan AP, Jayan J, Sudevan ST, Dhyani A, Zachariah SM, Mathew B. Flavonoid and Chalcone Scaffolds as Inhibitors of BACE1: Recent Updates. Comb Chem High Throughput Screen 2024; 27:1243-1256. [PMID: 37519205 DOI: 10.2174/1386207326666230731092409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 08/01/2023]
Abstract
Flavonoids and chalcones are two major classes of chemical moieties that have a vast background of pharmacological activities. Chalcone is a subclass of flavonoids whose therapeutic potential has been implicated due to an array of bioactivities. A lot of research works have shown interest in investigating the neuroprotective effect of these molecules, and have revealed them to be much more potent molecules that can be used to treat neurodegenerative disorders. Beta-site APP cleaving enzyme (BACE1), which is majorly found in the brain, is one of the reasons behind the development of Alzheimer's disease (AD). Flavonoids and chalcones have proven clinical data that they inhibit the production of Aβ plaques that are involved in the progression of AD. In this article, we have provided a detailed chronological review of the research work on the BACE1 inhibiting potency of both flavonoids and chalcones. Almost all the flavonoids and chalcones mentioned in this article have shown very good in vitro and in vivo BACE1 inhibiting activity. The docking studies and the structural importance of some BACE1-inhibiting flavonoids, as well as chalcones, are also mentioned here.
Collapse
Affiliation(s)
- Anishma Payyappilliparambil Narayanan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Archana Dhyani
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, Uttarakhand, India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| |
Collapse
|
41
|
Miao J, Liu X, Lan J. 40 Hz Electroacupuncture relieves the memory dysfunction of 5xFAD mice by regulating neuronal electrical activity. Brain Res 2023; 1821:148576. [PMID: 37714422 DOI: 10.1016/j.brainres.2023.148576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this investigation, we probed the impacts of 40 Hz Electroacupuncture (EA) on the cognitive function and brain activity in 5xFAD mice. Three groups of mice were constituted: the Model group of 5xFAD mice, the Wild Type (WT) group of littermate controls, and the EA group of 5xFAD mice subjected to EA treatment. Behavioral tests were conducted to evaluate memory function and anxiety levels, while the presence of Aβ plaques were detected via immunostaining, and neuronal activity was measured using multichannel recordings. Our results indicated that EA therapy enhanced memory function and anxiety-like behavior in 5xFAD mice, as well as diminishing the abundance and dimensions of Aβ plaques in the hippocampus and mPFC regions. Notably, the suppression of astrocyte activation was observed, which was potentially associated with alterations in gamma oscillation. Furthermore, the synaptic transmission of neurons was amplified, suggesting a possible modulation in neural activity. These findings indicate that 40 Hz EA could influence cognitive performance and potentially affect neuronal activity in 5xFAD mice, while the direct connection between EA and neuronal electrical activity regulation requires further exploration. The potential frequency-specific effects of EA on protective mechanisms in the brain was not addressed in this study and thus presents a direction for future research.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital. Shenzhen, China
| | - Xiaoming Liu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital. Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital. Shenzhen, China.
| |
Collapse
|
42
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
43
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Baek H, Sanjay, Park M, Lee HJ. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model. J Neuroinflammation 2023; 20:268. [PMID: 37978414 PMCID: PMC10655395 DOI: 10.1186/s12974-023-02950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin with antioxidant, anti-inflammatory, and antitumor properties. However, as the effects of C3G on the amyloidogenic pathway, autophagy, tau phosphorylation, neuronal cell death, and synaptic plasticity in Alzheimer's disease models have not been reported, we attempted to investigate the same in the brains of APPswe/PS1ΔE9 mice were analyzed. After oral administration of C3G (30 mg/kg/day) for 16 weeks, the cortical and hippocampal regions in the brains of APPswe/PS1ΔE9 mice were analyzed. C3G treatment reduced the levels of soluble and insoluble Aβ (Aβ40 and Aβ42) peptides and reduced the protein expression of the amyloid precursor protein, presenilin-1, and β-secretase in the cortical and hippocampal regions. And C3G treatment upregulated the expression of autophagy-related markers, LC3B-II, LAMP-1, TFEB, and PPAR-α and downregulated that of SQSTM1/p62, improving the autophagy of Aβ plaques and neurofibrillary tangles. In addition, C3G increased the protein expression of phosphorylated-AMPK/AMPK and Sirtuin 1 and decreased that of mitogen-activated protein kinases, such as phosphorylated-Akt/Akt and phosphorylated-ERK/ERK, thus demonstrating its neuroprotective effects. Furthermore, C3G regulated the PI3K/Akt/GSK3β signaling by upregulating phosphorylated-Akt/Akt and phosphorylated-GSK3β/GSK3β expression. C3G administration mitigated tau phosphorylation and improved synaptic function and plasticity by upregulating the expression of synapse-associated proteins synaptophysin and postsynaptic density protein-95. Although the potential of C3G in the APPswe/PS1ΔE9 mouse models has not yet been reported, oral administration of the C3G is shown to protect the brain and improve cognitive behavior.
Collapse
Affiliation(s)
- Hana Baek
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
45
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
46
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
47
|
Dunot J, Ribera A, Pousinha PA, Marie H. Spatiotemporal insights of APP function. Curr Opin Neurobiol 2023; 82:102754. [PMID: 37542943 DOI: 10.1016/j.conb.2023.102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/07/2023]
Abstract
The amyloid-β precursor protein (APP) is a ubiquitous protein with a strong genetic link to Alzheimer's disease. Although the protein was identified more than forty years ago, its physiological function is still unclear. In recent years, advances in technology have allowed researchers to tackle APP functions in greater depth. In this review, we discuss the latest research pertaining to APP functions from development to aging. We also address the different roles that APP could play in specific types of cells of the central and peripheral nervous system and in other organs of the body. We argue that, until we fully identify the functions of APP in space and time, we will be missing important pieces of the puzzle to solve its pathological implication in Alzheimer's disease and beyond.
Collapse
Affiliation(s)
- Jade Dunot
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France. https://twitter.com/DunotJade
| | - Aurore Ribera
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France. https://twitter.com/aurore_et_al_
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France.
| | - Hélène Marie
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France.
| |
Collapse
|
48
|
Lin LL, Song GJ, Zhang H, Yin Y, Xin SM, Ding L, Li Y. GPR34 Knockdown Relieves Cognitive Deficits and Suppresses Neuroinflammation in Alzheimer's Disease via the ERK/NF-κB Signal. Neuroscience 2023; 528:129-139. [PMID: 37557947 DOI: 10.1016/j.neuroscience.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease characterized by amyloid-β (Aβ) aggregation and neuroinflammation. G-protein-coupled receptor 34 (Gpr34) was found highly expressed in the hippocampus of APP/PS1 mice. However, its role in AD remains unclear. Herein, the role of Gpr34 as well as its molecular mechanism was explored. Data in GSE85162 were analyzed and the differently expressed genes in the hippocampus tissues of APP/PS1 mouse model of AD were subjected to GO, KEGG and GSEA enrichment analyses. APP/PS1 mice were used as an animal model of AD and the cognitive impairment was evaluated by a water maze test. The level of Gpr34 in hippocampus and BV-2 cells as well as the activation of ERK/NF-κB signal was determined by quantitative real-time PCR, western blot or immunofluorescence. Our results showed that, in BV-2 cells exposed to Aβ1-42, Gpr34 knockdown decreased the levels of TNF-α, IL-1β, IL-6 and iNOS and suppressed the activation of ERK/NF-κB signal. Moreover, the Gpr34-overexpression-induced activation of ERK/NF-κB signal and up-regulated levels of TNF-α, IL-1β, IL-6 and iNOS were abolished by FR180204, an ERK inhibitor. On the other hand, the in vivo study showed that Gpr34 knockdown ameliorated the cognitive impairment in APP/PS1 mice, decreased the levels of TNF-α, IL-1β and IL-6, the activation of microglia and ERK/NF-κB signal. In conclusion, Gpr34 knockdown relieved cognitive deficits in APP/PS1 mice and suppressed neuroinflammation and microglial activation, maybe via the ERK/NF-κB signal. It is indicated that the high level of Grp34 in hippocampus may contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Lu-Lu Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Gui-Jun Song
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Hui Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shi-Meng Xin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Li Ding
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yu Li
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
49
|
T P, Katta B, Lulu S S, Sundararajan V. Gene expression analysis reveals GRIN1, SYT1, and SYN2 as significant therapeutic targets and drug repurposing reveals lorazepam and lorediplon as potent inhibitors to manage Alzheimer's disease. J Biomol Struct Dyn 2023; 42:10352-10373. [PMID: 37691428 DOI: 10.1080/07391102.2023.2256878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a slowly progressive neurodegenerative disease and a leading cause of dementia. We aim to identify key genes for the development of therapeutic targets and biomarkers for potential treatments for AD. Meta-analysis was performed on six microarray datasets and identified the differentially expressed genes between healthy and Alzheimer's disease samples. Thereafter, we filtered out the common genes which were present in at least four microarray datasets for downstream analysis. We have constructed a gene-gene network for the common genes and identified six hub genes. Furthermore, we investigated the regulatory mechanisms of these hub genes by analysing their interaction with miRNAs and transcription factors. The gene ontology analysis results highlighted the enriched terms significantly associated with hub genes. Through an extensive literature survey, we found that three of the hub genes including GRIN1, SYN2, and SYT1 were critically involved in disease development. To leverage existing drugs for potential repurposing, we predicted drug-gene interaction using the drug-gene interaction database, and performed molecular docking studies. The docking results revealed that the drug compounds had strong interactions and favorable binding with selected hub genes. Lorazepam exhibits a binding energy of -7.3 kcal/mol with GRIN1, Lorediplon exhibits binding energies of -7.7 kcal/mol and -6.3 kcal/mol with the SYT1, and SYN2 respectively. In addition, 100 ns molecular dynamics simulations were carried out for the top complexes and apo protein as well. Furthermore, the MM-PBSA free energy calculations also revealed that these complexes are stable and had favorable energies. According to our study, the identified hub gene could serve as a biomarker as well as a therapeutic target for AD, and the proposed repurposed drug molecules appear to have promising efficacy in treating the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Premkumar T
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bhavana Katta
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sajitha Lulu S
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
50
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0 for Alzheimer's Disease and Aging-Associated Cognitive Decline: From Molecular Basis to Effective Therapy. Int J Mol Sci 2023; 24:12246. [PMID: 37569624 PMCID: PMC10419172 DOI: 10.3390/ijms241512246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-β (Aβ) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aβ. Yet, even this narrow commonality is superficial since AD-causing Aβ of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aβ, in the latter, it is triggered by Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ) and driven by iAβ generated independently of AβPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AβPP-derived iAβ, which occurs via internalization of secreted Aβ and through intracellular retention of a fraction of Aβ produced by AβPP proteolysis. When AβPP-derived iAβ reaches critical levels, it activates a self-perpetuating AβPP-independent production of iAβ that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAβ accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AβPP-independent generation of iAβ, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AβPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AβPP-derived iAβ can be effective only protectively for AD, the targeted degradation of iAβ is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAβ-degrading drugs.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|