1
|
Della Marina A, Koutsoulidou A, Natera-de Benito D, Tykocinski LO, Tomazou M, Georgiou K, Laner A, Kölbel H, Nascimento A, Ortez C, Abicht A, Thakur BK, Lochmüller H, Phylactou LA, Ruck T, Schara-Schmidt U, Kale D, Hentschel A, Roos A. Blood biomarker fingerprints in a cohort of patients with CHRNE-related congenital myasthenic syndrome. Acta Neuropathol Commun 2025; 13:29. [PMID: 39948634 PMCID: PMC11823195 DOI: 10.1186/s40478-025-01946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Mutations in CHRNE encoding the epsilon subunit of acetylcholine receptor result in impaired neuromuscular transmission and congenital myasthenic syndrome (CMS) with variying severity of symptoms. Although the pathophysiology is well-known, blood biomarker signatures enabling a patient-stratification are lacking. This retrospective two-center-study includes 19 recessive CHRNE-patients (AChR deficiency; mean age 14.8 years) from 13 families which were clinically characterized according to disease severity. 15 patients were classified as mildly and 4 patients as moderate to severely affected. Seven known pathogenic and one unreported variant (c.1032 + 2_1032 + 3delinsGT) were identified. Biomarker discovery was carried out on blood samples: proteomics was performed on white blood cells (WBC; n = 12) and on extracellular vesicles (EV) purified from serum samples (n = 7) in addition to amino acid profiling (n = 9) and miRNA screening (n = 18). For miRNA studies, 7 patients with other CMS-subtypes were moreover included. WBC-proteomics unveiled a significant increase of 7 and a decrease of 36 proteins. In silico studies of these proteins indicated affection of secretory granules and the extracellular space. Comparison across patients unveiled increase of two vesicular transport proteins (SCAMP2 and SNX2) in severely affected patients and indeed EV-proteomics revealed increase of 7 and decrease of 13 proteins. Three of these proteins (TARSH, ATRN & PLEC) are known to be important for synaptogenesis and synaptic function. Metabolomics showed decrease of seven amino acids/ amino acid metabolites (aspartic and glutamic acids, phosphoserine, amino adipate, citrulline, ornithine, and 1-methyhistidine). miRNA-profiling showed increase miR - 483 - 3p, miR-365a-3p, miR - 365b - 3p and miR-99a, and decrease of miR-4433b-3p, miR-6873-3p, miR-182-5p and let-7b-5p in CHRNE-patients whereas a comparison with other CMS subtypes showed increase of miR - 205 - 5p, miR - 10b - 5p, miR-125a-5p, miR-499-5p, miR-3120-5p and miR - 483 - 5p and decrease of miR - 1290. Our combined data introduce a molecular fingerprint on protein, metabolic and miRNA level with some of those playing different roles along the neuromuscular axis.
Collapse
Affiliation(s)
- Adela Della Marina
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Sant Joan de Deu Hospital, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Lars-Oliver Tykocinski
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, Medical Faculty, University Hospital Heidelberg, Heidelberg, Germany
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kristia Georgiou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Heike Kölbel
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andres Nascimento
- Neuromuscular Unit, Department of Neurology, Sant Joan de Deu Hospital, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Sant Joan de Deu Hospital, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Angela Abicht
- Medical Genetics Center, Munich, Germany
- Friedrich-Baur Institute, Ludwig Maximilian University, Munich, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, BG & Heimer Institute for Muscle Research, University-Hospital Bergmannsheil Bochum, Ruhr-University, Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dipali Kale
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V, Dortmund, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V, Dortmund, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Ng SY, Mikhail AI, Mattina SR, Mohammed SA, Khan SK, Desjardins EM, Lim C, Phillips SM, Steinberg GR, Ljubicic V. AMPK regulates the maintenance and remodelling of the neuromuscular junction. Mol Metab 2025; 91:102066. [PMID: 39571900 PMCID: PMC11646796 DOI: 10.1016/j.molmet.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE The molecular mechanisms underlying the maintenance and adaptability of the neuromuscular junction (NMJ) remain poorly understood. This study aimed to investigate the role of AMP-activated protein kinase (AMPK) as a key regulator of NMJ stability and plasticity. METHOD A comprehensive, multifaceted approach was employed, integrating genetic, physiological, and pharmacological methodologies to elucidate the role of skeletal muscle AMPK in modulating the neuromuscular synapse. RESULTS Our findings reveal an increased abundance of AMPK transcripts within the NMJ and an age-associated decline in AMPK activity and synapse-specific mitochondrial gene expression. Young mice null for skeletal muscle AMPK displayed a neuromuscular phenotype akin to aged animals. Pharmacological AMPK stimulation facilitated its localization in subsynaptic myonuclei, preceded the induction of several NMJ-related transcripts, and enhanced myotube acetylcholine receptor clustering. Exercise-induced AMPK activation in mouse muscle elicited a broad NMJ-related gene response, consistent with human exercise data. CONCLUSIONS These findings highlight a critical role for AMPK in the maintenance and remodeling of the NMJ, highlighting its potential as a therapeutic target for age-related and neuromuscular disorders.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Stephanie R Mattina
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Salah A Mohammed
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Shahzeb K Khan
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada.
| |
Collapse
|
3
|
Yeh CY, Chini LCS, Davidson JW, Garcia GG, Gallagher MS, Freichels IT, Calubag MF, Rodgers AC, Green CL, Babygirija R, Sonsalla MM, Pak HH, Trautman ME, Hacker TA, Miller RA, Simcox JA, Lamming DW. Late-life protein or isoleucine restriction impacts physiological and molecular signatures of aging. NATURE AGING 2024; 4:1760-1771. [PMID: 39604703 PMCID: PMC11672203 DOI: 10.1038/s43587-024-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Restricting the intake of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan in young or adult mice. However, their effects when initiated in aged animals are unknown. Here we investigate the consequences of consuming a diet with 67% reduction of all amino acids (low AA) or of isoleucine alone (low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. Both dietary regimens effectively promote overall metabolic health without reducing calorie intake. Both low AA and low Ile diets improve aspects of frailty and slow multiple molecular indicators of aging rate; however, the low Ile diet reduces grip strength in both sexes and has mixed, sexually dimorphic effects on the heart. These results demonstrate that low AA and low Ile diets can promote aspects of healthy aging in aged mice and suggest that similar interventions might promote healthy aging in older adults.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lucas C S Chini
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jessica W Davidson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Meredith S Gallagher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac T Freichels
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison C Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin-Madison Comprehensive Diabetes Center, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
4
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Tracing ALS Degeneration: Insights from Spinal Cord and Cortex Transcriptomes. Genes (Basel) 2024; 15:1431. [PMID: 39596631 PMCID: PMC11593627 DOI: 10.3390/genes15111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disorder characterized by the loss of upper and lower motor neurons. Key factors contributing to neuronal death include mitochondrial energy damage, oxidative stress, and excitotoxicity. The frontal cortex is crucial for action initiation, planning, and voluntary movements whereas the spinal cord facilitates communication with the brain, walking, and reflexes. By investigating transcriptome data from the frontal cortex and spinal cord, we aim to elucidate common pathological mechanisms and pathways involved in ALS for understanding the disease progression and identifying potential therapeutic targets. METHODS In this study, we quantified gene and transcript expression patterns, predicted variants, and assessed their functional effects using computational tools. It also includes predicting variant-associated regulatory effects, constructing functional interaction networks, and performing a gene enrichment analysis. RESULTS We found novel genes for the upregulation of immune response, and the downregulation of metabolic-related and defective degradation processes in both the spinal cord and frontal cortex. Additionally, we observed the dysregulation of histone regulation and blood pressure-related genes specifically in the frontal cortex. CONCLUSIONS These results highlight the distinct and shared molecular disruptions in ALS, emphasizing the critical roles of immune response and metabolic dysfunction in neuronal degeneration. Targeting these pathways may provide new therapeutic avenues to combat neurodegeneration and preserve neuronal health.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
5
|
Cescon M, Gambarotta G, Calabrò S, Cicconetti C, Anselmi F, Kankowski S, Lang L, Basic M, Bleich A, Bolsega S, Steglich M, Oliviero S, Raimondo S, Bizzotto D, Haastert-Talini K, Ronchi G. Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation. Gut Microbes 2024; 16:2363015. [PMID: 38845453 PMCID: PMC11164225 DOI: 10.1080/19490976.2024.2363015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Luisa Lang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Matthias Steglich
- Research Core Unit Genomics, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
6
|
Ishihara H, Otani Y, Tanaka K, Miyajima H, Ngo HX, Fujitani M. Blocking insulin-like growth factor 1 receptor signaling pathway inhibits neuromuscular junction regeneration after botulinum toxin-A treatment. Cell Death Dis 2023; 14:609. [PMID: 37717026 PMCID: PMC10505167 DOI: 10.1038/s41419-023-06128-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Botulinum toxin-A (BTX) administration into muscle is an established treatment for conditions with excessive muscle contraction. However, botulinum therapy has short-term effectiveness, and high-dose injection of BTX could induce neutralizing antibodies against BTX. Therefore, prolonging its effects could be beneficial in a clinical situation. Insulin-like growth factor-1 receptor (IGF1R) and its ligands, insulin-like growth factor (IGF) -I and II, regulate the physiological and pathological processes of the nervous system. It has been suggested that IGF1R is involved in the process after BTX administration, but the specific regeneration mechanism remains unclear. Therefore, this study aimed to determine how inhibition of IGF1R signaling pathway affects BTX-induced muscle paralysis. The results showed that anti-IGF1R antibody administration inhibited the recovery from BTX-induced neurogenic paralysis, and the synaptic components at the neuromuscular junction (NMJ), mainly post-synaptic components, were significantly affected by the antibody. In addition, the wet weight or frequency distribution of the cross-sectional area of the muscle fibers was regulated by IGF1R, and sequential antibody administration following BTX treatment increased the number of Pax7+-satellite cells in the gastrocnemius (GC) muscle, independent of NMJ recovery. Moreover, BTX treatment upregulated mammalian target of rapamycin (mTOR)/S6 kinase signaling pathway, HDAC4, Myog, Fbxo32/MAFbx/Atrogin-1 pathway, and transcription of synaptic components, but not autophagy. Finally, IGF1R inhibition affected only mTOR/S6 kinase translational signaling in the GC muscle. In conclusion, the IGF1R signaling pathway is critical for NMJ regeneration via specific translational signals. IGF1R inhibition could be highly beneficial in clinical practice by decreasing the number of injections and total dose of BTX due to the prolonged duration of the effect.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Kazuki Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Hisao Miyajima
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Huy Xuan Ngo
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan.
| |
Collapse
|
7
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
8
|
Barone C, Qi X. Altered Metabolism in Motor Neuron Diseases: Mechanism and Potential Therapeutic Target. Cells 2023; 12:1536. [PMID: 37296656 PMCID: PMC10252517 DOI: 10.3390/cells12111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine Case Western Reserve University, Cleveland, OH 44106-4970, USA;
| |
Collapse
|
9
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
10
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
11
|
Wu J, Ding P, Wu H, Yang P, Guo H, Tian Y, Meng L, Zhao Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr 2023; 10:1037200. [PMID: 36819699 PMCID: PMC9932270 DOI: 10.3389/fnut.2023.1037200] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the foundation of human function and plays a key role in producing exercise, bone protection, and energy metabolism. Sarcopenia is a systemic disease, which is characterized by degenerative changes in skeletal muscle mass, strength, and function. Therefore, sarcopenia often causes weakness, prolonged hospitalization, falls and other adverse consequences that reduce the quality of life, and even lead to death. In recent years, sarcopenia has become the focus of in-depth research. Researchers have suggested some molecular mechanisms for sarcopenia according to different muscle physiology. These mechanisms cover neuromuscular junction lesion, imbalance of protein synthesis and breakdown, satellite cells dysfunction, etc. We summarize the latest research progress on the molecular mechanism of sarcopenia in this review in order to provide new ideas for future researchers to find valuable therapeutic targets and develop relevant prevention strategies.
Collapse
Affiliation(s)
- Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Ping’an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Lingjiao Meng,
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,*Correspondence: Qun Zhao,
| |
Collapse
|
12
|
Pérez-Villegas EM, Ruiz R, Bachiller S, Ventura F, Armengol JA, Rosa JL. The HERC proteins and the nervous system. Semin Cell Dev Biol 2022; 132:5-15. [PMID: 34848147 DOI: 10.1016/j.semcdb.2021.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
The HERC protein family is one of three subfamilies of Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases. Six HERC genes have been described in humans, two of which encode Large HERC proteins -HERC1 and HERC2- with molecular weights above 520 kDa that are constitutively expressed in the brain. There is a large body of evidence that mutations in these Large HERC genes produce clinical syndromes in which key neurodevelopmental events are altered, resulting in intellectual disability and other neurological disorders like epileptic seizures, dementia and/or signs of autism. In line with these consequences in humans, two mice carrying mutations in the Large HERC genes have been studied quite intensely: the tambaleante mutant for Herc1 and the Herc2+/530 mutant for Herc2. In both these mutant mice there are clear signs that autophagy is dysregulated, eliciting cerebellar Purkinje cell death and impairing motor control. The tambaleante mouse was the first of these mice to appear and is the best studied, in which the Herc1 mutation elicits: (i) delayed neural transmission in the peripheral nervous system; (ii) impaired learning, memory and motor control; and (iii) altered presynaptic membrane dynamics. In this review, we discuss the information currently available on HERC proteins in the nervous system and their biological activity, the dysregulation of which could explain certain neurodevelopmental syndromes and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Sevilla, Virgen del Rocío University Hospital, CSIC, University of Sevilla, Sevilla, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
13
|
Abstract
Skeletal muscle mass is a very plastic characteristic of skeletal muscle and is regulated by signaling pathways that control the balance between anabolic and catabolic processes. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR) has been shown to be critically important in the regulation of skeletal muscle mass through its regulation of protein synthesis and degradation pathways. In this commentary, recent advances in the understanding of the role of mTORC1 in the regulation of muscle mass under conditions that induce hypertrophy and atrophy will be highlighted.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Chen Y, Zhan Y, Wang H, Zhang H, Cai Y, Wang L, Zhu W, Shen H, Pei J. Mediating effect of lower extremity muscle strength on the relationship between mobility and cognitive function in Chinese older adults: A cross-sectional study. Front Aging Neurosci 2022; 14:984075. [PMID: 36408099 PMCID: PMC9669366 DOI: 10.3389/fnagi.2022.984075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 12/27/2024] Open
Abstract
Aging is a multifactorial process associated with irreversible decline in mobility and cognitive function. However, the mechanisms underlying the relationship between mobility and cognitive function remain elusive. In specific, the mediating effect of muscle strength, which is essential to maintain mobility, on this relationship has yet to be clarified. Accordingly, we performed a cross-sectional study involving Chinese older adults to understand the role of muscle strength in the relationship between mobility and cognitive function. The cognitive function and physical performance of 657 community-dwelling participants aged over 65 years old were observed. Cognitive function was assessed using the Mini-Mental State Examination, whereas physical performance, including mobility and muscle strength, was measured via Timed Up-and-Go Test and knee extension strength measurement. Data were statistically analyzed using PROCESS Model 4 developed by Hayes, and 595 complete data were finally included. Physical performance (mobility and muscle strength) was significantly correlated with cognitive function (p < 0.01). Muscle strength was negatively correlated with mobility (r = -0.273, p < 0.001) and positively correlated with cognitive function (r = 0.145, p < 0.001). Muscle strength accounted for 20.1% of the total mediating effects on the relationship between mobility and cognitive function, which revealed the partial mediating role of lower extremity muscle strength in this relationship.
Collapse
Affiliation(s)
- Yaoxin Chen
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijun Zhan
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Zhang
- Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Yiwen Cai
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liaoyao Wang
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyan Zhu
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyue Shen
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Geremia A, Sartori R, Baraldo M, Nogara L, Balmaceda V, Dumitras GA, Ciciliot S, Scalabrin M, Nolte H, Blaauw B. Activation of Akt-mTORC1 signalling reverts cancer-dependent muscle wasting. J Cachexia Sarcopenia Muscle 2022; 13:648-661. [PMID: 34741441 PMCID: PMC8818597 DOI: 10.1002/jcsm.12854] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cancer-related muscle wasting occurs in most cancer patients. An important regulator of adult muscle mass and function is the Akt-mTORC1 pathway. While Akt-mTORC1 signalling is important for adult muscle homeostasis, it is also a major target of numerous cancer treatments. Which role Akt-mTORC1 signalling plays during cancer cachexia in muscle is currently not known. Here, we aimed to determine how activation or inactivation of the pathway affects skeletal muscle during cancer cachexia. METHODS We used inducible, muscle-specific Raptor ko (mTORC1) mice to determine the effect of reduced mTOR signalling during cancer cachexia. On the contrary, in order to understand if skeletal muscles maintain their anabolic capacity and if activation of Akt-mTORC1 signalling can reverse cancer cachexia, we generated mice in which we can inducibly activate Akt specifically in skeletal muscles. RESULTS We found that mTORC1 signalling is impaired during cancer cachexia, using the Lewis lung carcinoma and C26 colon cancer model, and is accompanied by a reduction in protein synthesis rates of 57% (P < 0.01). Further reduction of mTOR signalling, as seen in Raptor ko animals, leads to a 1.5-fold increase in autophagic flux (P > 0.001), but does not further increase muscle wasting. On the other hand, activation of Akt-mTORC1 signalling in already cachectic animals completely reverses the 15-20% loss in muscle mass and force (P < 0.001). Interestingly, Akt activation only in skeletal muscle completely normalizes the transcriptional deregulation observed in cachectic muscle, despite having no effect on tumour size or spleen mass. In addition to stimulating muscle growth, it is also sufficient to prevent the increase in protein degradation normally observed in muscles from tumour-bearing animals. CONCLUSIONS Here, we show that activation of Akt-mTORC1 signalling is sufficient to completely revert cancer-dependent muscle wasting. Intriguingly, these results show that skeletal muscle maintains its anabolic capacities also during cancer cachexia, possibly giving a rationale behind some of the beneficial effects observed in exercise in cancer patients.
Collapse
Affiliation(s)
- Alessia Geremia
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Martina Baraldo
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Nogara
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Georgia Ana Dumitras
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Marco Scalabrin
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Bert Blaauw
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Sansa A, Hidalgo I, Miralles MP, de la Fuente S, Perez-Garcia MJ, Munell F, Soler RM, Garcera A. Spinal Muscular Atrophy autophagy profile is tissue-dependent: differential regulation between muscle and motoneurons. Acta Neuropathol Commun 2021; 9:122. [PMID: 34217376 PMCID: PMC8254901 DOI: 10.1186/s40478-021-01223-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular genetic disease caused by reduced survival motor neuron (SMN) protein. SMN is ubiquitous and deficient levels cause spinal cord motoneurons (MNs) degeneration and muscle atrophy. Nevertheless, the mechanism by which SMN reduction in muscle contributes to SMA disease is not fully understood. Therefore, studies evaluating atrophy mechanisms in SMA muscles will contribute to strengthening current knowledge of the pathology. Here we propose to evaluate autophagy in SMA muscle, a pathway altered in myotube atrophy. We analized autophagy proteins and mTOR in muscle biopsies, fibroblasts, and lymphoblast cell lines from SMA patients and in gastrocnemius muscles from a severe SMA mouse model. Human MNs differentiated from SMA and unaffected control iPSCs were also included in the analysis of the autophagy. Muscle biopsies, fibroblasts, and lymphoblast cell lines from SMA patients showed reduction of the autophagy marker LC3-II. In SMA mouse gastrocnemius, we observed lower levels of LC3-II, Beclin 1, and p62/SQSTM1 proteins at pre-symptomatic stage. mTOR phosphorylation at Ser2448 was decreased in SMA muscle cells. However, in mouse and human cultured SMA MNs mTOR phosphorylation and LC3-II levels were increased. These results suggest a differential regulation in SMA of the autophagy process in muscle cells and MNs. Opposite changes in autophagy proteins and mTOR phosphorylation between muscle cells and neurons were observed. These differences may reflect a specific response to SMN reduction, which could imply diverse tissue-dependent reactions to therapies that should be taken into account when treating SMA patients.
Collapse
|
18
|
Padilla CJ, Harrigan ME, Harris H, Schwab JM, Rutkove SB, Rich MM, Clark BC, Arnold WD. Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline. GeroScience 2021; 43:1265-1281. [PMID: 33895959 PMCID: PMC8190265 DOI: 10.1007/s11357-021-00369-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pathological age-related loss of skeletal muscle strength and mass contribute to impaired physical function in older adults. Factors that promote the development of these conditions remain incompletely understood, impeding development of effective and specific diagnostic and therapeutic approaches. Inconclusive evidence across species suggests disruption of action potential signal transmission at the neuromuscular junction (NMJ), the crucial connection between the nervous and muscular systems, as a possible contributor to age-related muscle dysfunction. Here we investigated age-related loss of NMJ function using clinically relevant, electrophysiological measures (single-fiber electromyography (SFEMG) and repetitive nerve stimulation (RNS)) in aged (26 months) versus young (6 months) F344 rats. Measures of muscle function (e.g., grip strength, peak plantarflexion contractility torque) and mass were assessed for correlations with physiological measures (e.g., indices of NMJ transmission). Other outcomes also included plantarflexion muscle contractility tetanic torque fade during 1-s trains of stimulation as well as gastrocnemius motor unit size and number. Profiling NMJ function in aged rats identified significant declines in NMJ transmission stability and reliability. Further, NMJ deficits were tightly correlated with hindlimb grip strength, gastrocnemius muscle weight, loss of peak contractility torque, degree of tetanic fade, and motor unit loss. Thus, these findings provide direct evidence for NMJ dysfunction as a potential mechanism of age-related muscle dysfunction pathogenesis and severity. These findings also suggest that NMJ transmission modulation may serve as a target for therapeutic development for age-related loss of physical function.
Collapse
Affiliation(s)
- Carlos J Padilla
- Division of Neuromuscular Diseases, Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Room 207, Columbus, OH, 43210, USA
| | - Markus E Harrigan
- Division of Neuromuscular Diseases, Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Room 207, Columbus, OH, 43210, USA
| | - Hallie Harris
- Division of Neuromuscular Diseases, Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Room 207, Columbus, OH, 43210, USA
| | - Jan M Schwab
- Division of Neuromuscular Diseases, Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Room 207, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Brian C Clark
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute, Athens, OH, 45701, USA
| | - W David Arnold
- Division of Neuromuscular Diseases, Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Room 207, Columbus, OH, 43210, USA.
- Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Ohkawara B, Ito M, Ohno K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22052455. [PMID: 33671084 PMCID: PMC7957818 DOI: 10.3390/ijms22052455] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Correspondence: ; Tel.: +81-52-744-2447; Fax: +81-52-744-2449
| | | | | |
Collapse
|