1
|
Ma R, Kim US, Chung Y, Kang HR, Zhang Y, Han K. Recent advances in CYFIP2-associated neurodevelopmental disorders: From human genetics to molecular mechanisms and mouse models. Brain Dev 2025; 47:104302. [PMID: 39603202 DOI: 10.1016/j.braindev.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Cytoplasmic FMR1-interacting protein 2 (CYFIP2) is an evolutionarily conserved protein with a critical role in brain development and function. As a key component of the WAVE regulatory complex, CYFIP2 regulates actin cytoskeleton dynamics, essential for maintaining proper neuronal morphology and circuit formation. Recent studies have also shown that CYFIP2 interacts with various RNA-binding proteins, suggesting its involvement in mRNA processing and translation in neurons. Since 2018, de novo CYFIP2 variants have been identified in patients with neurodevelopmental disorders, particularly developmental and epileptic encephalopathy and West syndrome, characterized by early-onset intractable seizures, intellectual disability, microcephaly, and developmental delay. This review summarizes these CYFIP2 variants and examines their potential impact on the molecular functions of CYFIP2, focusing on its roles in regulating actin dynamics and mRNA processing/translation. Additionally, we review various Cyfip2 mouse models, highlighting the insights they offer into CYFIP2 function, dysfunction, and clinical relevance. Finally, we discuss future research directions aimed at better understanding CYFIP2-associated neurodevelopmental disorders and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - U Suk Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Zhang Y, Kang HR, Jun Y, Kang H, Bang G, Ma R, Ju S, Yoon DE, Kim Y, Kim K, Kim JY, Han K. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton. Hum Mol Genet 2024; 33:1671-1687. [PMID: 38981622 DOI: 10.1093/hmg/ddae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
Collapse
Affiliation(s)
- Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yukyung Jun
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Kim YJ, Kim K, Lee Y, Min HW, Ko YH, Lee BR, Hur KH, Kim SK, Lee SY, Jang CG. The mutated cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2 S968F) regulates cocaine-induced reward behaviour and plasticity in the nucleus accumbens. Br J Pharmacol 2024; 181:3327-3345. [PMID: 38751203 DOI: 10.1111/bph.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2), as a component of the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) regulatory complex, is involved in actin polymerization, contributing to neuronal development and structural plasticity. Mutating serine-968 to phenylalanine (S968F) in CYFIP2 causes an altered cocaine response in mice. The neuronal mechanisms underlying this response remain unknown. EXPERIMENTAL APPROACH We performed cocaine reward-related behavioural tests and examined changes in synaptic protein phenotypes and neuronal morphology in the nucleus accumbens (NAc), using CYFIP2 S968F knock-in mice to investigate the role of CYFIP2 in regulating cocaine reward. KEY RESULTS CYFIP2 S968F mutation attenuated cocaine-induced behavioural sensitization and conditioned place preference. Cocaine-induced c-Fos was not observed in the NAc of CYFIP2 S968F knock-in mice. However, c-Fos induction was still evident in the medial prefrontal cortex (mPFC). CYFIP2 S968F mutation altered cocaine-associated CYFIP2 signalling, glutamatergic protein expression and synaptic density in the NAc following cocaine exposure. To further determine the role of CYFIP2 in NAc neuronal activity and the mPFC projecting to the NAc activity-mediating reward response, we used optogenetic tools to stimulate the NAc or mPFC-NAc pathway and observed that optogenetic activation of the NAc or mPFC-NAc pathway induced reward-related behaviours. This effect was not observed in the S968F mutation in CYFIP2. CONCLUSION AND IMPLICATIONS These results suggest that CYFIP2 plays a role in controlling cocaine-mediated neuronal function and structural plasticity in the NAc, and that CYFIP2 could serve as a target for regulating cocaine reward.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyungin Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hee-Won Min
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Kim Y, Ma R, Zhang Y, Kang HR, Kim US, Han K. Cell-autonomous reduction of CYFIP2 changes dendrite length, dendritic protrusion morphology, and inhibitory synapse density in the hippocampal CA1 pyramidal neurons of 17-month-old mice. Anim Cells Syst (Seoul) 2024; 28:294-302. [PMID: 38832126 PMCID: PMC11146249 DOI: 10.1080/19768354.2024.2360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the CYFIP2 gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old Cyfip2 heterozygous mice but not of age-matched CA1 pyramidal neuron-specific Cyfip2 conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in Cyfip2 cKO mice is merely delayed compared to Cyfip2 heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old Cyfip2 cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of Cyfip2 cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of Cyfip2 cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of Cyfip2 cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - U Suk Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Deslauriers JC, Ghotkar RP, Russ LA, Jarman JA, Martin RM, Tippett RG, Sumathipala SH, Burton DF, Cole DC, Marsden KC. Cyfip2 controls the acoustic startle threshold through FMRP, actin polymerization, and GABA B receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573054. [PMID: 38187577 PMCID: PMC10769380 DOI: 10.1101/2023.12.22.573054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Animals process a constant stream of sensory input, and to survive they must detect and respond to dangerous stimuli while ignoring innocuous or irrelevant ones. Behavioral responses are elicited when certain properties of a stimulus such as its intensity or size reach a critical value, and such behavioral thresholds can be a simple and effective mechanism to filter sensory information. For example, the acoustic startle response is a conserved and stereotyped defensive behavior induced by sudden loud sounds, but dysregulation of the threshold to initiate this behavior can result in startle hypersensitivity that is associated with sensory processing disorders including schizophrenia and autism. Through a previous forward genetic screen for regulators of the startle threshold a nonsense mutation in Cytoplasmic Fragile X Messenger Ribonucleoprotein (FMRP)-interacting protein 2 (cyfip2) was found that causes startle hypersensitivity in zebrafish larvae, but the molecular mechanisms by which Cyfip2 establishes the acoustic startle threshold are unknown. Here we used conditional transgenic rescue and CRISPR/Cas9 to determine that Cyfip2 acts though both Rac1 and FMRP pathways, but not the closely related FXR1 or FXR2, to establish the acoustic startle threshold during early neurodevelopment. To identify proteins and pathways that may be downstream effectors of Rac1 and FMRP, we performed a candidate-based drug screen that indicated that Cyfip2 can also act acutely to maintain the startle threshold branched actin polymerization and N-methyl D-aspartate receptors (NMDARs). To complement this approach, we used unbiased discovery proteomics to determine that loss of Cyfip2 alters cytoskeletal and extracellular matrix components while also disrupting oxidative phosphorylation and GABA receptor signaling. Finally, we functionally validated our proteomics findings by showing that activating GABAB receptors, which like NMDARs are also FMRP targets, restores normal startle sensitivity in cyfip2 mutants. Together, these data reveal multiple mechanisms by which Cyfip2 regulates excitatory/inhibitory balance in the startle circuit to control the processing of acoustic information.
Collapse
Affiliation(s)
- Jacob C. Deslauriers
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rohit P. Ghotkar
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Putnam Associates, Boston, Massachusetts, USA
| | - Lindsey A. Russ
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Department of Pharmacology & Physiology, Georgetown University, Washington D.C., USA
| | - Jordan A. Jarman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Rubia M. Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: U.S. Environmental Protection Agency, Raleigh-Durham-Chapel Hill, North Carolina, USA
| | - Rachel G. Tippett
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Sureni H. Sumathipala
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Derek F. Burton
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - D. Chris Cole
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kurt C. Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Hao M, Qin Y, Li Y, Tang Y, Ma Z, Tan J, Jin L, Wang F, Gong X. Metabolome subtyping reveals multi-omics characteristics and biological heterogeneity in major psychiatric disorders. Psychiatry Res 2023; 330:115605. [PMID: 38006718 DOI: 10.1016/j.psychres.2023.115605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Growing evidence suggests that major psychiatric disorders (MPDs) share common etiologies and pathological processes. However, the diagnosis is currently based on descriptive symptoms, which ignores the underlying pathogenesis and hinders the development of clinical treatments. This highlights the urgency of characterizing molecular biomarkers and establishing objective diagnoses of MPDs. Here, we collected untargeted metabolomics, proteomics and DNA methylation data of 327 patients with MPDs, 131 individuals with genetic high risk and 146 healthy controls to explore the multi-omics characteristics of MPDs. First, differential metabolites (DMs) were identified and we classified MPD patients into 3 subtypes based on DMs. The subtypes showed distinct metabolomics, proteomics and DNA methylation signatures. Specifically, one subtype showed dysregulation of complement and coagulation proteins, while the DNA methylation showed abnormalities in chemical synapses and autophagy. Integrative analysis in metabolic pathways identified the important roles of the citrate cycle, sphingolipid metabolism and amino acid metabolism. Finally, we constructed prediction models based on the metabolites and proteomics that successfully captured the risks of MPD patients. Our study established molecular subtypes of MPDs and elucidated their biological heterogeneity through a multi-omics investigation. These results facilitate the understanding of pathological mechanisms and promote the diagnosis and prevention of MPDs.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Vera-Montecinos A, Rodríguez-Mias R, Vila È, Villén J, Ramos B. Analysis of networks in the dorsolateral prefrontal cortex in chronic schizophrenia: Relevance of altered immune response. Front Pharmacol 2023; 14:1003557. [PMID: 37033658 PMCID: PMC10076656 DOI: 10.3389/fphar.2023.1003557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) has a crucial role in cognitive functioning and negative symptoms in schizophrenia. However, limited information of altered protein networks is available in this region in schizophrenia. We performed a proteomic analysis using single-shot liquid chromatography-tandem mass spectrometry of grey matter of postmortem DLPFC in chronic schizophrenia subjects (n = 20) and unaffected subjects (n = 20) followed by bioinformatic analysis to identify altered protein networks in schizophrenia (PXD024939 identifier in ProteomeXchange repository). Our results displayed a proteome profile in the DLPFC of 1989 proteins. 43 proteins were found significantly altered in schizophrenia. Analysis of this panel showed an enrichment of biological processes implicated in vesicle-mediated transport, processing and antigen presentation via MHC class II, intracellular transport and selenium metabolism. The enriched identified pathways were MHC class II antigen presentation, vesicle-mediated transport, Golgi ER retrograde transport, Nef mediated CD8 downregulation and the immune system. All these enriched categories were found to be downregulated. Furthermore, our network analyses showed crosstalk between proteins involved in MHC class II antigen presentation, membrane trafficking, Golgi-to-ER retrograde transport, Nef-mediated CD8 downregulation and the immune system with only one module built by 13 proteins. RAB7A showed eight interactions with proteins of all these pathways. Our results provide an altered molecular network involved in immune response in the DLPFC in schizophrenia with a central role of RAB7A. These results suggest that RAB7A or other proteins of this network could be potential targets for novel pharmacological strategies in schizophrenia for improving cognitive and negative symptoms.
Collapse
Affiliation(s)
- América Vera-Montecinos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Ricard Rodríguez-Mias
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | - Èlia Vila
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Judit Villén
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | - Belén Ramos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Sant Boi de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Ministry of Economy, Industry and Competitiveness, Institute of Health Carlos III, Madrid, Spain
- Department de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
9
|
Kang M, Zhang Y, Kang HR, Kim S, Ma R, Yi Y, Lee S, Kim Y, Li H, Jin C, Lee D, Kim E, Han K. CYFIP2 p.Arg87Cys Causes Neurological Defects and Degradation of CYFIP2. Ann Neurol 2023; 93:155-163. [PMID: 36251395 DOI: 10.1002/ana.26535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
Here, we report the generation and comprehensive characterization of a knockin mouse model for the hotspot p.Arg87Cys variant of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) gene, which was recently identified in individuals diagnosed with West syndrome, a developmental and epileptic encephalopathy. The Cyfip2+/R87C mice recapitulated many neurological and neurobehavioral phenotypes of the patients, including spasmlike movements, microcephaly, and impaired social communication. Age-progressive cytoarchitectural disorganization and gliosis were also identified in the hippocampus of Cyfip2+/R87C mice. Beyond identifying a decrease in CYFIP2 protein levels in the Cyfip2+/R87C brains, we demonstrated that the p.Arg87Cys variant enhances ubiquitination and proteasomal degradation of CYFIP2. ANN NEUROL 2023;93:155-163.
Collapse
Affiliation(s)
- Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yunho Yi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Huiling Li
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chunmei Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dongmin Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ma R, Zhang Y, Li H, Kang HR, Kim Y, Han K. Cell-autonomous reduction of CYFIP2 is insufficient to induce Alzheimer's disease-like pathologies in the hippocampal CA1 pyramidal neurons of aged mice. Anim Cells Syst (Seoul) 2023; 27:93-101. [PMID: 36999135 PMCID: PMC10044167 DOI: 10.1080/19768354.2023.2192263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Cytoplasmic FMR1-interacting protein 2 (CYFIP2) is an evolutionarily conserved multifunctional protein that regulates the neuronal actin cytoskeleton, mRNA translation and transport, and mitochondrial morphology and function. Supporting its critical roles in proper neuronal development and function, human genetic studies have repeatedly identified variants of the CYFIP2 gene in individuals diagnosed with neurodevelopmental disorders. Notably, a few recent studies have also suggested a mechanistic link between reduced CYFIP2 level and Alzheimer's disease (AD). Specifically, in the hippocampus of 12-month-old Cyfip2 heterozygous mice, several AD-like pathologies were identified, including increased levels of Tau phosphorylation and gliosis, and loss of dendritic spines in CA1 pyramidal neurons. However, detailed pathogenic mechanisms, such as cell types and their circuits where the pathologies originate, remain unknown for AD-like pathologies caused by CYFIP2 reduction. In this study, we aimed to address this issue by examining whether the cell-autonomous reduction of CYFIP2 in CA1 excitatory pyramidal neurons is sufficient to induce AD-like phenotypes in the hippocampus. We performed immunohistochemical, morphological, and biochemical analyses in 12-month-old Cyfip2 conditional knock-out mice, which have postnatally reduced CYFIP2 expression level in CA1, but not in CA3, excitatory pyramidal neurons of the hippocampus. Unexpectedly, we could not find any significant AD-like phenotype, suggesting that the CA1 excitatory neuron-specific reduction of CYFIP2 level is insufficient to lead to AD-like pathologies in the hippocampus. Therefore, we propose that CYFIP2 reduction in other neurons and/or their synaptic connections with CA1 pyramidal neurons may be critically involved in the hippocampal AD-like phenotypes of Cyfip2 heterozygous mice.
Collapse
Affiliation(s)
- Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Huiling Li
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Kihoon Han
| |
Collapse
|
11
|
Ma R, Pang K, Kang H, Zhang Y, Bang G, Park S, Hwang E, Ryu JR, Kwon Y, Kang HR, Jin C, Kim Y, Kim SY, Kwon SK, Kim D, Sun W, Kim JY, Han K. Protein interactome and cell-type expression analyses reveal that cytoplasmic FMR1-interacting protein 1 (CYFIP1), but not CYFIP2, associates with astrocytic focal adhesion. J Neurochem 2022; 162:190-206. [PMID: 35567753 DOI: 10.1111/jnc.15622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/24/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
The two members of the cytoplasmic FMR1-interacting protein family, CYFIP1 and CYFIP2, are evolutionarily conserved multifunctional proteins whose defects are associated with distinct types of brain disorders. Even with high sequence homology between CYFIP1 and CYFIP2, several lines of evidence indicate their different functions in the brain; however, the underlying mechanisms remain largely unknown. Here, we performed reciprocal immunoprecipitation experiments using CYFIP1-2×Myc and CYFIP2-3×Flag knock-in mice and found that CYFIP1 and CYFIP2 are not significantly co-immunoprecipitated with each other in the knock-in brains compared to negative control wild-type brains. Moreover, CYFIP1 and CYFIP2 showed different size distributions by size-exclusion chromatography of wild-type mouse brains. Specifically, mass spectrometry-based analysis of CYFIP1-2×Myc knock-in brains identified 131 proteins in the CYFIP1 interactome. Comparison of the CYFIP1 interactome with the previously identified brain region- and age-matched CYFIP2 interactome, consisting of 140 proteins, revealed only eight common proteins. Investigations using single-cell RNA-sequencing databases suggested non-neuronal cell- and neuron-enriched expression of Cyfip1 and Cyfip2, respectively. At the protein level, CYFIP1 was detected in both neurons and astrocytes, while CYFIP2 was detected only in neurons, suggesting the predominant expression of CYFIP1 in astrocytes. Bioinformatic characterization of the CYFIP1 interactome, and co-expression analysis of Cyfip1 with astrocytic genes, commonly linked CYFIP1 with focal adhesion proteins. Immunocytochemical analysis and proximity ligation assay suggested partial co-localization of CYFIP1 and focal adhesion proteins in cultured astrocytes. Together, these results suggest a CYFIP1-specific association with astrocytic focal adhesion, which may contribute to the different brain functions and dysfunctions of CYFIP1 and CYFIP2.
Collapse
Affiliation(s)
- Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Kaifang Pang
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Republic of Korea.,Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Sangwoo Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Republic of Korea
| | - Eunha Hwang
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Ochang 28119, Republic of Korea
| | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yujin Kwon
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Chunmei Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Su Yeon Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,Korea Institute of Science and Technology (KIST), Brain Science Institute, Seoul, 02792, Republic of Korea
| | - Seok-Kyu Kwon
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Seoul, 02792, Republic of Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.,Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Woong Sun
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Wang T, Xu J, Xu Y, Xiao J, Bi N, Gu X, Wang HL. Gut microbiota shapes social dominance through modulating HDAC2 in the medial prefrontal cortex. Cell Rep 2022; 38:110478. [PMID: 35263606 DOI: 10.1016/j.celrep.2022.110478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Social dominance is a ubiquitous phenomenon among social animals, including humans. To date, individual attributes leading to dominance (after a contest) remain largely elusive. Here, we report that socially dominant rats can be distinguished from subordinates based on their intestinal microbiota. When dysbiosis is induced, rats are predisposed to a subordinate state, while dysbiotic rats reclaim social dominance following microbiota transplantation. Winning hosts are characterized by core microbes, a majority of which are associated with butyrate production, and the sole colonization of Clostridium butyricum is sufficient to restore dominance. Regarding molecular aspects, a histone deacetylase, HDAC2, is responsive to microbial status and mediates competition outcome; however, this occurs only in a restricted population of cells in the medial prefrontal cortex (mPFC). Furthermore, HDAC2 acts by modulating synaptic activity in mPFC. Together, these findings uncover a link between commensals and host dominance, providing insight into the gut-brain mechanisms underlying dominance determination.
Collapse
Affiliation(s)
- Tian Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Jinchun Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| | - Jie Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Nanxi Bi
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| |
Collapse
|
13
|
Biembengut ÍV, Silva ILZ, Souza TDACBD, Shigunov P. Cytoplasmic FMR1 interacting protein (CYFIP) family members and their function in neural development and disorders. Mol Biol Rep 2021; 48:6131-6143. [PMID: 34327661 DOI: 10.1007/s11033-021-06585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022]
Abstract
In humans, the cytoplasmic FMR1 interacting protein (CYFIP) family is composed of CYFIP1 and CYFIP2. Despite their high similarity and shared interaction with many partners, CYFIP1 and CYFIP2 act at different points in cellular processes. CYFIP1 and CYFIP2 have different expression levels in human tissues, and knockout animals die at different time points of development. CYFIP1, similar to CYFIP2, acts in the WAVE regulatory complex (WRC) and plays a role in actin dynamics through the activation of the Arp2/3 complex and in a posttranscriptional regulatory complex with the fragile X mental retardation protein (FMRP). Previous reports have shown that CYFIP1 and CYFIP2 may play roles in posttranscriptional regulation in different ways. While CYFIP1 is involved in translation initiation via the 5'UTR, CYFIP2 may regulate mRNA expression via the 3'UTR. In addition, this CYFIP protein family is involved in neural development and maturation as well as in different neural disorders, such as intellectual disabilities, autistic spectrum disorders, and Alzheimer's disease. In this review, we map diverse studies regarding the functions, regulation, and implications of CYFIP proteins in a series of molecular pathways. We also highlight mutations and their structural effects both in functional studies and in neural diseases.
Collapse
Affiliation(s)
- Ísis Venturi Biembengut
- Carlos Chagas Institute-FIOCRUZ-PR, Rua Prof. Algacyr Munhoz Mader, 3775, CIC, Curitiba, Paraná, 81830-010, Brazil
| | | | | | - Patrícia Shigunov
- Carlos Chagas Institute-FIOCRUZ-PR, Rua Prof. Algacyr Munhoz Mader, 3775, CIC, Curitiba, Paraná, 81830-010, Brazil.
| |
Collapse
|