1
|
Gupta S, Jash M, Khan J, Garg S, Roy R, Arshi MU, Nayak P, Ghosh S. Discovery of potential Leonurine-based therapeutic lead MJ210 attenuates Parkinson's disease pathogenesis via NF-κB and MAPK pathways: Mechanistic insights from in vitro and in vivo rotenone models. Eur J Med Chem 2025; 289:117471. [PMID: 40090295 DOI: 10.1016/j.ejmech.2025.117471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease affecting motor and non-motor functions, with no effective treatment yet discovered. Neuroprotective compounds, both natural and synthetic, show promise but face challenges such as crossing the blood-brain barrier, limited serum stability, and higher toxicity. To tackle these obstacles, we have devised an innovative design strategy inspired by the neuroprotective properties of Leonurine, widely utilized in managing neurological disorders. Through rigorous screening of our compound library, we have identified a potent therapeutic molecule (MJ210) that exhibited remarkable efficacy in bolstering neuroprotection against rotenone-induced PD models, both in vitro and in vivo. Our findings revealed that administering MJ210 significantly increased neuronal survival in the SH-SY5Y model of PD. This was achieved by preventing apoptosis, reducing reactive oxygen species, mitigating mitochondrial dysfunction, and dampening neuroinflammation via ERK1/2-P38-JNK and P65-NFκB signaling pathways. In addition, MJ210 demonstrated remarkable neuroprotective abilities in vivo by significantly enhancing dopamine biosynthesis, alleviating motor dysfunction, improving balance and coordination, and reversing depression in rotenone-induced PD rats, even outperforming L-DOPA, the current gold standard treatment for PD. Therefore, MJ210 emerges as a significantly promising therapeutic candidate for PD, offering the potential for managing both the severity and progression of this disease.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Moumita Jash
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Mohammad Umar Arshi
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
2
|
Gao H, Xing D, Wu M, Hu Y, He J, Chen S, Zhang G, Yao F, Ma P, Xue W. Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease. ACS Biomater Sci Eng 2025; 11:1171-1183. [PMID: 39804997 DOI: 10.1021/acsbiomaterials.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment. The experimental group demonstrated higher healing rates compared to surgical and DPMSCs groups, as evidenced by magnetic resonance imaging, multiplex immunohistochemical, and ELISA analyses. KEGG enrichment of differential genes suggested cellular senescence involvement in cell therapy efficacy, further confirmed by β-galactosidase staining and senescence markers (p21 and p53). Collectively, our research provides a novel therapy for PAFs and illuminates underlying mechanisms.
Collapse
Affiliation(s)
- Hanxu Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong 226001, China
| | - Danjie Xing
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong 226001, China
| | - Menglong Wu
- Department of General Surgery, Guangyuan First People's Hospital, Guangyuan 628017, China
| | - Yilin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong 226001, China
| | - Jiancheng He
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong 226001, China
| | - Shun Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong 226001, China
| | - Guangze Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong 226001, China
| | - Fangzhou Yao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong 226001, China
| |
Collapse
|
3
|
Garg S, Jana A, Gupta S, Arshi MU, Gharai PK, Khan J, Roy R, Ghosh S. Discovery of gallic acid-based mitochondriotropic antioxidant attenuates LPS-induced neuroinflammation. Free Radic Biol Med 2025; 226:302-329. [PMID: 39566749 DOI: 10.1016/j.freeradbiomed.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Mitochondria are complex organelle that plays a pivotal role in energy metabolism, regulation of stress responses, and also serve as a major hub for biosynthetic processes. In addition to their well-established function in cellular energetics, it also serves as the primary site for the origin of intracellular reactive oxygen species (ROS), which function as signaling molecules and can lead to oxidative stress when generated in excess. Moreover, mitochondrial dysfunction is one of the leading cause of neuroinflammation. In this regard, we have rationally designed a triazine derived mitochondriotropic antioxidants (Mito-TBA), based on gallic acid and triphenylphosphonium (TPP) cation to specifically target mitochondria to mitigate neuroinflammation. In vitro Mito-TBA-3 inhibits mitoautophagy, offers neuroprotection by inhibiting the LPS induced TLR-4 activation and activating the Nrf-2/ARE pathway in PC-12 derived neurons. In vivo Mito-TBA-3 rescue memory deficit, reversed depression like behavior, inhibited neuroinflammation, and decreased proinflammatory cytokines in LPS induced neuroinflammation rat model. Overall, based on biophysical, in vitro and in vivo analysis, Mito-TBA-3 offers valuable insights as a potent therapeutic lead molecule to combat neurodegeneration even outperforming a well-known non-steroidal anti-inflammatory drug (Aspirin), it also has the potential to use as a promising therapeutic candidate for other mitochondrial oxidative stress related disorders.
Collapse
Affiliation(s)
- Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sanju Gupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| | - Mohammad Umar Arshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| | - Prabir Kumar Gharai
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India; Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, West Bengal, India
| | - Juhee Khan
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India; Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, West Bengal, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India; Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India; Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, West Bengal, India.
| |
Collapse
|
4
|
Jana A, Garg S, Ghosh S, Khan J, Roy R, Mukherjee N, Jash M, Gupta V, Nayak P, Ghosh S. Generation of Functional Neurons from Mesenchymal Stem Cells Using Neural Differentiator and Engineered Peptide Hydrogel: Potential Therapeutic Lead for Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64476-64493. [PMID: 39556765 DOI: 10.1021/acsami.4c12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Traumatic brain injuries (TBIs) cause multifaceted disruption in the neural network, initiate huge inflammation processes, and form glial scars that result in severe damage to the brain. Thus, the treatment of TBI is a challenging task. To address this challenge, a newer and innovative approach is extremely important to develop a successful therapeutic strategy. Toward this aim, we hereby report an extremely effective therapeutic strategy. This interesting approach showcased the development and validation of a combination therapy comprising a neuro-regenerative protective peptide hydrogel (SLNAP) and a potent neuro-regenerative chemical modulator (NCM). It is noteworthy to mention that this hydrogel formulation has injectable nature, which allows it to be applied at focal injury site of brain. Remarkably, our results reveal excellent transdifferentiation of human umbilical cord-derived mesenchymal stem cells (hMSCs) into functional neuron upon treatment with this combination therapeutic formulation. The functionality of regenerated neurons was thoroughly checked through observation of active signals generated from those neurons in electrophysiology recording using patch clamp. Further, we also observed that this strategy not only successfully converts hMSCs into neuron but also spontaneously formed neural stem cells (NSCs) like neurosphere. This work also showcased that this multidomain self-assembling peptide hydrogel emerges as an attractive soft-biomaterial due to its capability of slow and sustained release of the drug at the injury site upon topical application. This resulted in significant regeneration of functional neuron at the injury site. Fascinatingly, we found that this combination therapeutic strategy is highly effective in in vivo brain injury model establishing that this could be a potential and highly effective therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
| | - Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
| | - Moumita Jash
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Science (AIIMS), Jodhpur 342005, India
| | - Surajit Ghosh
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur 342030, Rajasthan, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| |
Collapse
|
5
|
Garg S, Jana A, Khan J, Gupta S, Roy R, Gupta V, Ghosh S. Logic "AND Gate Circuit" Based Mussel Inspired Polydopamine Nanocomposite as Bioactive Antioxidant for Management of Oxidative Stress and Neurogenesis in Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36168-36193. [PMID: 38954488 DOI: 10.1021/acsami.4c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3β inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.
Collapse
Affiliation(s)
- Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
6
|
Ghosh S, Arshi MU, Ghosh S, Jash M, Sen S, Mamchaoui K, Bhattacharyya S, Rana NK, Ghosh S. Discovery of Quinazoline and Quinoline-Based Small Molecules as Utrophin Upregulators via AhR Antagonism for the Treatment of Duchenne Muscular Dystrophy. J Med Chem 2024; 67:9260-9276. [PMID: 38771158 DOI: 10.1021/acs.jmedchem.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease caused by the absence of a dystrophin protein. Elevating utrophin, a dystrophin paralogue, offers an alternative therapeutic strategy for treating DMD, irrespective of the mutation type. Herein, we report the design and synthesis of novel quinazoline and quinoline-based small molecules as potent utrophin modulators screened via high throughput In-Cell ELISA in C2C12 cells. Remarkably, lead molecule SG-02, identified from a library of 70 molecules, upregulates utrophin 2.7-fold at 800 nM in a dose-dependent manner, marking the highest upregulation within the nanomolar range. SG-02's efficacy was further validated through DMD patient-derived cells, demonstrating a significant 2.3-fold utrophin expression. Mechanistically, SG-02 functions as an AhR antagonist, with excellent binding affinity (Kd = 41.68 nM). SG-02 also enhances myogenesis, as indicated by an increased MyHC expression. ADME evaluation supports SG-02's oral bioavailability. Overall, SG-02 holds promise for addressing the global DMD population.
Collapse
Affiliation(s)
- Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Mohammad Umar Arshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Kamel Mamchaoui
- Inserm, Institut de Myologie, Centre de Recherche en Myologie,Sorbonne Université, F-75013 Paris, France
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nirmal Kumar Rana
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
7
|
Gupta V, Gharai PK, Kar C, Garg S, Ghosh S. Ratiometric Fluorescent Probe Promotes Trans-differentiation of Human Mesenchymal Stem Cells to Neurons. ACS Chem Neurosci 2024; 15:222-229. [PMID: 38164894 DOI: 10.1021/acschemneuro.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Development of multifunctional theranostics is challenging and crucial for deciphering complex biological phenomena and subsequently treating critical disease. In particular, development of theranostics for traumatic brain injury (TBI) and understanding its repair mechanism are challenging and highly complex areas of research. Recently, there have been interesting pieces of research work demonstrated that a small molecule-based neuroregenerative approach using stem cells has potential for future therapeutic lead development for TBI. However, these works demonstrated the application of a mixture of multiple molecules as a "chemical cocktail", which may have serious toxic effects in the differentiated cells. Therefore, development of a single-molecule-based potential differentiating agent for human mesenchymal stem cells (hMSCs) into functional neurons is vital for the upcoming neuro-regenerative therapeutics. This lead could be further extraploted for the design of theranostics for TBI. In this study, we have developed a multifunctional single-molecule-based fluorescent probe, which can image the transdifferentiated neurons as well as promote the differentiation process. We demonstrated a promising class of fluorescent probes (CP-4) that can be employed to convert hMSCs into neurons in the presence of fibroblast growth factor (FGF). This fluorescent probe was used in cellular imaging as its fluorescence intensity remained unaltered for up to 7 days of trans-differentiation. We envision that this imaging probe can have an important application in the study of neuropathological and neurodegenerative studies.
Collapse
Affiliation(s)
- Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Chirantan Kar
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
- Amity Institute of Applied Sciences, Amity University, Kolkata 700135, West Bengal, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
8
|
Bayraktar G, Alptüzün V. Recent Molecular Targets and their Ligands for the Treatment of Alzheimer Disease. Curr Top Med Chem 2024; 24:2447-2464. [PMID: 39171472 DOI: 10.2174/0115680266318722240809050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Alzheimer's disease is a multifaceted neurodegenerative disease. Cholinergic dysfunction, amyloid β toxicity, tauopathies, oxidative stress, neuroinflammation are among the main pathologies of the disease. Ligands targeting more than one pathology, multi-target directed ligands, attract attention in the recent years to tackle Alzheimer's disease. In this review, we aimed to cover different biochemical pathways, that are revealed in recent years for the pathology of the disease, as druggable targets such as cannabinoid receptors, matrix metalloproteinases, histone deacetylase and various kinases including, glycogen synthase kinase-3, mitogen-activated protein kinase and c-Jun N-terminal kinase, and their ligands for the treatment of Alzheimer's disease in the hope of providing more realistic insights into the field.
Collapse
Affiliation(s)
- Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| |
Collapse
|