1
|
Estevez I, Buckley BD, Lindman M, Panzera N, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. The kinase RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during central nervous system viral infection. Immunity 2025; 58:666-682.e6. [PMID: 39999836 PMCID: PMC11903149 DOI: 10.1016/j.immuni.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
While recent work has identified roles for immune mediators in regulating neural activity, how innate immune signaling within neurons influences neurotransmission remains poorly understood. Emerging evidence suggests that the modulation of neurotransmission may serve important roles in host protection during infection of the central nervous system. Here, we showed that receptor-interacting protein kinase-3 (RIPK3) preserved neuronal survival during flavivirus infection through the suppression of excitatory neurotransmission. These effects occurred independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promoted phosphorylation of the neuronal regulatory kinase calcium/calmodulin-dependent protein kinase II (CaMKII), which in turn activated the transcription factor cyclic AMP response element-binding protein (CREB) to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Yin P, Tian P, Zhang X, Zhang D, Yang X, Yang L, Wang Y, Lei G, Li B. Clinical and pathological risk factors for postencephalitic epilepsy after herpes simplex virus-1 encephalitis in children. Sci Rep 2025; 15:6471. [PMID: 39987356 PMCID: PMC11846938 DOI: 10.1038/s41598-025-91438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/20/2025] [Indexed: 02/24/2025] Open
Abstract
The high rate of postencephalitic epilepsy (PE) contributes to the unfavorable clinical outcome of herpes simplex virus-1 encephalitis (HSE). We aimed to identify the risk factors and explore possible mechanisms of PE in childhood following HSE. We conducted a retrospective review of children diagnosed with HSE and patients were categorized into two groups based on the presence or absence of PE. Multivariate logistic regression analysis was used to analyze factors associated with PE. Furthermore, cytokine and albumin levels in paired cerebrospinal fluid (CSF) and blood samples during acute HSE were also retrospectively reviewed. 97 HSE patients were included in the study and PE was diagnosed in 46. On multivariate analysis, the features predictive of PE (presented as odds ratio [OR] with confidence intervals [CIs]) were status epilepticus (OR 9.38, CI 1.71-10.37), focal seizures (7.41, 1.42-16.97), and restricted diffusion on MRI (6.15, 1.16-20.31). The median QAlb value (CSF to serum albumin ratio, a marker of blood-brain-barrier [BBB] integrity), levels of interleukin (IL)-6 and IL-6:IL-10 ratio in CSF were higher in children with PE during acute HSE. However, CSF levels of IL-10 were higher in non-PE patients. Furthermore, greater CSF IL-6 levels were associated with higher QAlb. These results demonstrated that enhanced BBB impairment and exaggerated proinflammatory response may play a role in the pathogenesis of PE following HSE.
Collapse
Affiliation(s)
- Ping Yin
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Pingping Tian
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Shandong, Jinan, China
| | - Xinyue Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Dongqing Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Lu Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yang Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Gefei Lei
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Tolou-Ghamari Z. A Review of the Association between Infections, Seizures, and Drugs. Cent Nerv Syst Agents Med Chem 2025; 25:49-55. [PMID: 38676494 DOI: 10.2174/0118715249288932240416071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Seizures are a common presenting symptom of the central nervous system (CNS) and could occur from infections (such as toxins) or drugs. OBJECTIVE The aim of this study was to present a systematic review of the association between infections, seizures, and drugs. METHODS From their inception to 18 February 2024 relevant in-depth consequent guide approach and the evidence-based choice were selected associated with a knowledgeable collection of current, high-quality manuscripts. RESULTS Imbalance between inhibitory and excitatory neurotransmitters due to infections, drugs such as ticarcillin, amoxicillin, oxacillin, penicillin G, ampicillin, tramadol, venlafaxine, cyclosporine, tacrolimus, acyclovir, cellcept, the old generation of antiepileptic drugs, such as carbamazepine, phenytoin, and many other drugs could cause different stages of CNS disturbances ranging from seizure to encephalopathy. Infections could cause life-threatening status epilepticus by continuous unremitting seizures lasting longer than 5 minutes or recurrent seizures. Meningitis, tuberculosis, herpes simplex, cerebral toxoplasmosis, and many others could lead to status epilepticus. In fact, confusion, encephalopathy, and myoclonus were reported with drugs, such as ticarcillin, amoxicillin, oxacillin, penicillin G, ampicillin, and others. Penicillin G was reported as having the greatest epileptogenic potential. A high dose, in addition to prolonged use of metronidazole, was reported with seizure infection. Meropenem could decrease the concentration of valproic acid. Due to the inhibition of cytochrome P450 3A4, the combination of clarithromycin and erythromycin with carbamazepine needs vigilant monitoring. CONCLUSION Due to changes in drug metabolism, co-administration of antiseizure drugs and antibiotics may lead to an enhanced risk of seizures. In patients with neurocysticercosis, cerebral malaria, viral encephalitis, bacterial meningitis, tuberculosis, and human immunodeficiency virus, the evidence-based study recommended different mechanisms mediating epileptogenic properties of toxins and drugs.
Collapse
Affiliation(s)
- Zahra Tolou-Ghamari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Savoca G, Gianfredi A, Bartolini L. The Development of Epilepsy Following CNS Viral Infections: Mechanisms. Curr Neurol Neurosci Rep 2024; 25:2. [PMID: 39549124 DOI: 10.1007/s11910-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW This review examines the role of different viral infections in epileptogenesis, with a focus on Herpesviruses such as Human Herpesvirus 6 (HHV-6) and Epstein Barr Virus (EBV), Flaviviruses, Picornaviruses, Human Immunodeficiency Virus (HIV), Influenzavirus and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). RECENT FINDINGS A growing literature on animal models, such as the paradigmatic Theiler's murine encephalomyelitis virus (TMEV) model, and clinical investigations in patients with epilepsy have started to elucidate cellular mechanisms implicated in seizure initiation and development of epilepsy following viral infections. A central role of neuroinflammation has emerged, with evidence of activation of the innate and adaptive immunity, dysregulation of microglial and astrocytic activity and production of multiple cytokines and other inflammatory mediators. Several chronic downstream effects result in increased blood-brain barrier permeability, direct neuronal damage, and modifications of ion channels ultimately leading to altered neuronal excitability and seizure generation. Key findings underscore the complex interplay between initial viral infection, neuroinflammation, and later development of epilepsy. Further research is needed to elucidate these mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Giulia Savoca
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Arianna Gianfredi
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Luca Bartolini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy.
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
5
|
Kinsey N, Belanger JM, Oberbauer AM. Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes (Basel) 2024; 15:1474. [PMID: 39596674 PMCID: PMC11593353 DOI: 10.3390/genes15111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Idiopathic epilepsy (IE) disproportionately affects Belgian shepherd dogs and although genomic risk markers have been identified previously in the breed, causative variants have not been described. METHODS The current study analyzed differences in whole blood RNA expression associated with IE and with a previously identified IE risk haplotype on canine chromosome (CFA) 14 using a transcriptomics RNA-seq approach. RESULTS MFSD2A and a likely pseudogene of RPL19, both of which are genes implicated in seizure activity, were upregulated in dogs with IE. Genes in the interferon signaling pathway were downregulated in Belgian shepherds with IE. The CFA14 risk haplotype was associated with upregulation of CLIC1, ACE2, and PIGN and downregulation of EPDR1, all known to be involved with epilepsy or the Wnt/β-catenin signaling pathway. CONCLUSIONS These results highlight the value of assessing gene expression in canine IE research to uncover genomic contributory factors.
Collapse
Affiliation(s)
| | | | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
6
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
7
|
Estevez I, Buckley BD, Panzera N, Lindman M, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591333. [PMID: 38712188 PMCID: PMC11071512 DOI: 10.1101/2024.04.26.591333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D. Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
8
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
9
|
Zhang S, Xie S, Zheng Y, Chen Z, Xu C. Current advances in rodent drug-resistant temporal lobe epilepsy models: Hints from laboratory studies. Neurochem Int 2024; 174:105699. [PMID: 38382810 DOI: 10.1016/j.neuint.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Anti-seizure drugs (ASDs) are the first choice for the treatment of epilepsy, but there is still one-third of patients with epilepsy (PWEs) who are resistant to two or more appropriately chosen ASDs, named drug-resistant epilepsy (DRE). Temporal lobe epilepsy (TLE), a common type of epilepsy usually associated with hippocampal sclerosis (HS), shares the highest proportion of drug resistance (approximately 70%). In view of the key role of the temporal lobe in memory, emotion, and other physiological functions, patients with drug-resistant temporal lobe epilepsy (DR-TLE) are often accompanied by serious complications, and surgical procedures also yield extra considerations. The exact mechanisms for the genesis of DR-TLE remain unillustrated, which makes it hard to manage patients with DR-TLE in clinical practice. Animal models of DR-TLE play an irreplaceable role in both understanding the mechanism and searching for new therapeutic strategies or drugs. In this review article, we systematically summarized different types of current DR-TLE models, and then recent advances in mechanism investigations obtained in these models were presented, especially with the development of advanced experimental techniques and tools. We are deeply encouraged that novel strategies show great therapeutic potential in those DR-TLE models. Based on the big steps reached from the bench, a new light has been shed on the precise management of DR-TLE.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyang Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Brigo F, Zelano J, Abraira L, Bentes C, Ekdahl CT, Lattanzi S, Ingvar Lossius M, Redfors P, Rouhl RPW, Russo E, Sander JW, Vogrig A, Wickström R. Proceedings of the "International Congress on Structural Epilepsy & Symptomatic Seizures" (STESS, Gothenburg, Sweden, 29-31 March 2023). Epilepsy Behav 2024; 150:109538. [PMID: 38039602 DOI: 10.1016/j.yebeh.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy.
| | - Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden; Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Sweden
| | - Laura Abraira
- Neurology Department, Epilepsy Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Carla Bentes
- Neurophysiological Monitoring Unit - EEG/Sleep Laboratory, Refractory Epilepsy Reference Centre (member of EpiCARE), Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Centro de Estudos Egas Moniz, Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Morten Ingvar Lossius
- National Centre for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Member of the ERN EpiCARE, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petra Redfors
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Academic Centre for Epileptology Kempenhaeghe/MUMC+ Heeze and Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Italy
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Centre for Epilepsy, Chalfont St Peter, Bucks., SL9 0RJ, United Kingdom; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, The Netherlands; Neurology Department, West of China Hospital, Sichuan University, Chengdu 610041, China
| | - Alberto Vogrig
- Department of Medicine (DAME), University of Udine, Udine, Italy; Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Ronny Wickström
- Neuropediatric Unit, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
He Z, Li Y, Liu S, Li J. Mendelian randomization reveals no causal relationship between COVID-19 susceptibility, hospitalization, or severity and epilepsy. Epilepsia Open 2023; 8:1452-1459. [PMID: 37602490 PMCID: PMC10690698 DOI: 10.1002/epi4.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE Observational studies have shown an association between COVID-19 and epilepsy. However, causality remains unproven. This study aimed to investigate the causative effect of genetically predicted COVID-19 phenotypes on epilepsy risk using a two-sample Mendelian randomization (MR) analysis. METHODS We retrieved summary-level datasets for three COVID-19 phenotypes (COVID-19 susceptibility, COVID-19 hospitalization, and COVID-19 severity) and epilepsy from the genome-wide association studies conducted by the COVID-19 Host Genetics Initiative (COVID-19 HGI) and International League Against Epilepsy (ILAE) consortium, respectively. To analyze the final results, nine MR analytic methods were utilized. The inverse-variance weighted (IVW) method was chosen as the primary approach for data analysis to evaluate the potential causal effect. Other MR analytic methods (MR-Egger regression, weighted median estimator, mode based-estimator, and MR-PRESSO) were used as a supplement to IVW to ensure the robustness of the results. RESULTS The IVW approach demonstrated no causal association between any genetically predicted COVID-19 phenotype and the risk of epilepsy [COVID-19 susceptibility: odds ratio (OR) = 0.99, 95% confidence interval (CI) = 0.86-1.14, p = 0.92; COVID-19 hospitalization: OR = 1.00, 95% CI = 0.96-1.04, p = 0.95; COVID-19 severity: OR = 0.99, 95% CI = 0.96-1.01, p = 0.25]. Other MR complementary methods revealed consistent results. Additionally, no evidence for heterogeneity and horizontal pleiotropy was found. SIGNIFICANCE This MR study revealed no genetically predicted causal relationship between COVID-19 phenotypes and epilepsy.
Collapse
Affiliation(s)
- Zihua He
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Yinghong Li
- The Department of NeurologyInstitute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M)ChengduChina
| | - Shengyi Liu
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Jinmei Li
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
13
|
Nogueira CO, Rocha T, Messor DF, Souza INO, Clarke JR. Fundamental neurochemistry review: Glutamatergic dysfunction as a central mechanism underlying flavivirus-induced neurological damage. J Neurochem 2023; 166:915-927. [PMID: 37603368 DOI: 10.1111/jnc.15935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
The Flaviviridae family comprises positive-sense single-strand RNA viruses mainly transmitted by arthropods. Many of these pathogens are especially deleterious to the nervous system, and a myriad of neurological symptoms have been associated with infections by Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) in humans. Studies suggest that viral replication in neural cells and the massive release of pro-inflammatory mediators lead to morphological alterations of synaptic spine structure and changes in the balance of excitatory/inhibitory neurotransmitters and receptors. Glutamate is the predominant excitatory neurotransmitter in the brain, and studies propose that either enhanced release or impaired uptake of this amino acid contributes to brain damage in several conditions. Here, we review existing evidence suggesting that glutamatergic dysfunction-induced by flaviviruses is a central mechanism for neurological damage and clinical outcomes of infection. We also discuss current data suggesting that pharmacological approaches that counteract glutamatergic dysfunction show benefits in animal models of such viral diseases.
Collapse
Affiliation(s)
- Clara O Nogueira
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamires Rocha
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel F Messor
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis N O Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia R Clarke
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
15
|
Howe CL, Johnson RK, Overlee BL, Sagen JA, Mehta N, Farias‐Moeller R. Drug-resistant seizures associated with hyperinflammatory monocytes in FIRES. Ann Clin Transl Neurol 2023; 10:719-731. [PMID: 36924141 PMCID: PMC10187718 DOI: 10.1002/acn3.51755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
OBJECTIVE Therapeutic strategies for patients with febrile infection-related epilepsy syndrome (FIRES) are limited, ad hoc, and frequently ineffective. Based on evidence that inflammation drives pathogenesis in FIRES, we used ex vivo stimulation of peripheral blood mononuclear cells (PBMCs) to characterize the monocytic response profile before and after therapy in a child successfully treated with dexamethasone delivered intrathecally six times between hospital Day 23 and 40 at 0.25 mg/kg/dose. METHODS PBMCs were isolated from serial blood draws acquired during refractory status epilepticus (RSE) and following resolution associated with intrathecal dexamethasone therapy in a previously healthy 9-year-old male that presented with seizures following Streptococcal pharyngitis. Cells were stimulated with bacterial or viral ligands and cytokine release was measured and compared to responses in age-matched healthy control PBMCs. Levels of inflammatory factors in the blood and CSF were also measured and compared to pediatric healthy control ranges. RESULTS During RSE, serum levels of IL6, CXCL8, HMGB1, S100A8/A9, and CRP were significantly elevated. IL6 was elevated in CSF. Ex vivo stimulation of PBMCs collected during RSE revealed hyperinflammatory release of IL6 and CXCL8 in response to bacterial stimulation. Following intrathecal dexamethasone, RSE resolved, inflammatory levels normalized in serum and CSF, and the PBMC hyperinflammatory response renormalized. SIGNIFICANCE FIRES may be associated with a hyperinflammatory monocytic response to normally banal bacterial pathogens. This hyperinflammatory response may induce a profound neutrophil burden and the consequent release of factors that further exacerbate inflammation and drive neuroinflammation. Intrathecal dexamethasone may resolve RSE by resetting this inflammatory feedback loop.
Collapse
Affiliation(s)
- Charles L. Howe
- Translational Neuroimmunology LabMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for MS and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
- Division of Experimental NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Renee K. Johnson
- Translational Neuroimmunology LabMayo ClinicRochesterMinnesotaUSA
| | | | - Jessica A. Sagen
- Translational Neuroimmunology LabMayo ClinicRochesterMinnesotaUSA
- Center for MS and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Niyati Mehta
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Division of Child NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Raquel Farias‐Moeller
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Division of Child NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
16
|
Löscher W, White HS. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023; 12:cells12091233. [PMID: 37174633 PMCID: PMC10177106 DOI: 10.3390/cells12091233] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In the last 30 years, over 20 new anti-seizure medicines (ASMs) have been introduced into the market for the treatment of epilepsy using well-established preclinical seizure and epilepsy models. Despite this success, approximately 20-30% of patients with epilepsy have drug-resistant epilepsy (DRE). The current approach to ASM discovery for DRE relies largely on drug testing in various preclinical model systems that display varying degrees of ASM drug resistance. In recent years, attempts have been made to include more etiologically relevant models in the preclinical evaluation of a new investigational drug. Such models have played an important role in advancing a greater understanding of DRE at a mechanistic level and for hypothesis testing as new experimental evidence becomes available. This review provides a critical discussion of the pharmacology of models of adult focal epilepsy that allow for the selection of ASM responders and nonresponders and those models that display a pharmacoresistance per se to two or more ASMs. In addition, the pharmacology of animal models of major genetic epilepsies is discussed. Importantly, in addition to testing chemical compounds, several of the models discussed here can be used to evaluate other potential therapies for epilepsy such as neurostimulation, dietary treatments, gene therapy, or cell transplantation. This review also discusses the challenges associated with identifying novel therapies in the absence of a greater understanding of the mechanisms that contribute to DRE. Finally, this review discusses the lessons learned from the profile of the recently approved highly efficacious and broad-spectrum ASM cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Löscher W. Is the antiparasitic drug ivermectin a suitable candidate for the treatment of epilepsy? Epilepsia 2023; 64:553-566. [PMID: 36645121 DOI: 10.1111/epi.17511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
There are only a few drugs that can seriously lay claim to the title of "wonder drug," and ivermectin, the world's first endectocide and forerunner of a completely new class of antiparasitic agents, is among them. Ivermectin, a mixture of two macrolytic lactone derivatives (avermectin B1a and B1b in a ratio of 80:20), exerts its highly potent antiparasitic effect by activating the glutamate-gated chloride channel, which is absent in vertebrate species. However, in mammals, ivermectin activates several other Cys-loop receptors, including the inhibitory γ-aminobutyric acid type A and glycine receptors and the excitatory nicotinic acetylcholine receptor of brain neurons. Based on these effects on vertebrate receptors, ivermectin has recently been proposed to constitute a multifaceted wonder drug for various novel neurological indications, including alcohol use disorders, motor neuron diseases, and epilepsy. This review critically discusses the preclinical and clinical evidence of antiseizure effects of ivermectin and provides several arguments supporting that ivermectin is not a suitable candidate drug for the treatment of epilepsy. First, ivermectin penetrates the mammalian brain poorly, so it does not exert any pharmacological effects via mammalian ligand-gated ion channels in the brain unless it is used at high, potentially toxic doses or the blood-brain barrier is functionally impaired. Second, ivermectin is not selective but activates numerous inhibitory and excitatory receptors. Third, the preclinical evidence for antiseizure effects of ivermectin is equivocal, and at least in part, median effective doses in seizure models are in the range of the median lethal dose. Fourth, the only robust clinical evidence of antiseizure effects stems from the treatment of patients with onchocerciasis, in which the reduction of seizures is due to a reduction in microfilaria densities but not a direct antiseizure effect of ivermectin. We hope that this critical analysis of available data will avert the unjustified hype associated with the recent use of ivermectin to control COVID-19 from recurring in neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
18
|
Löscher W, Stafstrom CE. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023; 64:54-91. [PMID: 36197310 DOI: 10.1111/epi.17433] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
It is well established that epilepsy is associated with numerous neurobehavioral comorbidities, with a bidirectional relationship; people with epilepsy have an increased incidence of depression, anxiety, learning and memory difficulties, and numerous other psychosocial challenges, and the occurrence of epilepsy is higher in individuals with those comorbidities. Although the cause-and-effect relationship is uncertain, a fuller understanding of the mechanisms of comorbidities within the epilepsies could lead to improved therapeutics. Here, we review recent data on epilepsy and its neurobehavioral comorbidities, discussing mainly rodent models, which have been studied most extensively, and emphasize that clinically relevant information can be gained from preclinical models. Furthermore, we explore the numerous potential factors that may confound the interpretation of emerging data from animal models, such as the specific seizure induction method (e.g., chemical, electrical, traumatic, genetic), the role of species and strain, environmental factors (e.g., laboratory environment, handling, epigenetics), and the behavioral assays that are chosen to evaluate the various aspects of neural behavior and cognition. Overall, the interplay between epilepsy and its neurobehavioral comorbidities is undoubtedly multifactorial, involving brain structural changes, network-level differences, molecular signaling abnormalities, and other factors. Animal models are well poised to help dissect the shared pathophysiological mechanisms, neurological sequelae, and biomarkers of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Patel DC, Thompson EG, Sontheimer H. Brain-Derived Neurotrophic Factor Inhibits the Function of Cation-Chloride Cotransporter in a Mouse Model of Viral Infection-Induced Epilepsy. Front Cell Dev Biol 2022; 10:961292. [PMID: 35874836 PMCID: PMC9304572 DOI: 10.3389/fcell.2022.961292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Well over 100 different viruses can infect the brain and cause brain inflammation. In the developing world, brain inflammation is a leading cause for epilepsy and often refractory to established anti-seizure drugs. Epilepsy generally results from an imbalance in excitatory glutamatergic and inhibitory GABAergic neurotransmission. GABAergic inhibition is determined by the intracellular Cl− concentration which is established through the opposing action of two cation chloride cotransporters namely NKCC1 and KCC2. Brain-derived neurotrophic factor (BDNF) signaling is known to regulate expression of KCC2. Hence we hypothesized that viral induced epilepsy may result from aberrant BDNF signaling. We tested this hypothesis using a mouse model of Theiler’s murine encephalomyelitis virus (TMEV) infection-induced epilepsy. We found that BDNF levels in the hippocampus from TMEV-infected mice with seizures was increased at the onset of acute seizures and continued to increase during the peak of acute seizure as well as in latent and chronic phases of epilepsy. During the acute phase of epilepsy, we found significant reduction in the expression of KCC2 in hippocampus, whereas the level of NKCC1 was unaltered. Importantly, inhibiting BDNF using scavenging bodies of BDNF in live brain slices from TMEV-infected mice with seizures normalized the level of KCC2 in hippocampus. Our results suggest that BDNF can directly decrease the relative expression of NKCC1 and KCC2 such as to favor accumulation of chloride intracellularly which in turn causes hyperexcitability by reversing GABA-mediated inhibition. Although our attempt to inhibit the BDNF signaling mediated through tyrosine kinase B–phospholipase Cγ1 (TrkB-PLCγ1) using a small peptide did not change the course of seizure development following TMEV infection, alternative strategies for controlling the BDNF signaling could be useful in preventing seizure generation and development of epilepsy in this model.
Collapse
Affiliation(s)
- Dipan C. Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Emily G. Thompson
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Harald Sontheimer,
| |
Collapse
|