1
|
Rivera-Olvera A, Houwing DJ, Ellegood J, Masifi S, Martina SL, Silberfeld A, Pourquie O, Lerch JP, Francks C, Homberg JR, van Heukelum S, Grandjean J. The universe is asymmetric, the mouse brain too. Mol Psychiatry 2025; 30:489-496. [PMID: 39107583 DOI: 10.1038/s41380-024-02687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models to understand the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.
Collapse
Affiliation(s)
| | - Danielle J Houwing
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Shang Masifi
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Stephany Ll Martina
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Clyde Francks
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Karaer D, Özçelik AA, Karaer K. NRXN2 Homozygous Variant Identified in a Family with Global Developmental Delay, Severe Intellectual Disability, EEG Abnormalities and Speech Delay: A new Syndrome? Clin EEG Neurosci 2025:15500594241309948. [PMID: 39748282 DOI: 10.1177/15500594241309948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background. This study aims to characterize the clinical phenotype of a family with two siblings exhibiting neurological manifestations, utilizing whole exome sequencing (WES) to identify potential pathogenic variants within the NRXN2 gene. Methods. A consanguineous family with two affected siblings displaying developmental delay, severe intellectual disability, epilepsy, and speech delay was examined. WES was performed on DNA samples from affected and unaffected family members, followed by a comprehensive bioinformatics analysis. In-silico tools were employed for variant interpretation and structural modeling of the NRXN2 protein. Clinical and genetic data were integrated to elucidate the potential impact of the identified variant. Results. WES revealed a novel homozygous missense variant (c.1475T>G, p.Leu492Arg) in the NRXN2 gene in both affected siblings. This variant was absent in healthy family members and public databases. In-silico analysis predicted a detrimental effect on protein function. Parental segregation confirmed heterozygous carrier status. The variant was classified as 'Likely Pathogenic' based on ACMG/AMP criteria. Conclusion. This study identifies a novel homozygous missense variant in NRXN2 associated with global developmental delay, severe intellectual disability, speech delay and epilepsy. The findings underscore the critical role of NRXN2 in neurodevelopment and highlight the potential implications of genetic variations within this gene in neurodevelopmental disorders. Further research and functional validation are warranted to deepen our understanding of NRXN2-related disorders and explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Derya Karaer
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Turkiye
| | - Ayşe Aysima Özçelik
- Department of Pediatric Neurology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Kadri Karaer
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Turkiye
| |
Collapse
|
3
|
Avolio E, Olivito I, Leo A, De Matteo C, Guarnieri L, Bosco F, Mahata SK, Minervini D, Alò R, De Sarro G, Citraro R, Facciolo RM. Vasostatin-1 restores autistic disorders in an idiopathic autism model (BTBR T+ Itpr3 tf/J mice) by decreasing hippocampal neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111131. [PMID: 39209101 DOI: 10.1016/j.pnpbp.2024.111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chromogranin A (CgA), a ∼ 49 kDa acidic secretory protein, is ubiquitously distributed in endocrine and neuroendocrine cells and neurons. As a propeptide, CgA is proteolytically cleaved to generate several peptides of biological importance, including pancreastatin (PST: hCgA250-301), Vasostatin 1 (VS1: hCgA1-76), and catestatin (CST: CgA 352-372). VS1 represents the most conserved fragment of CgA. A 20 amino acid domain within VS1 (CgA 47-66) exhibits potent antimicrobial and anti-inflammatory activities. Autism is known to be associated with inflammation. Therefore, we seek to test the hypothesis that VS1 modulates autism behaviors by reducing inflammation in the hippocampus. Treatment of C57BL/6 (B6) and BTBR (a mouse model of idiopathic autism) mice with VS1 revealed the following: BTBR mice showed a significant decrease in chamber time in the presence of a stranger or a novel object. Treatment with VS1 significantly increased chamber time in both cases, underscoring a crucial role for VS1 in improving behavioral deficits in BTBR mice. In contrast to chamber time, sniffing time in BTBR mice in the presence of a stranger was less compared to B6 control mice. VS1 did not improve this latter parameter. Surprisingly, sniffing time in BTBR mice in the presence of a novel object was comparable with B6 mice. Proinflammatory cytokines such as IL-6 and IL-1b, as well as other inflammatory markers, were elevated in BTBR mice, which were dramatically reduced after supplementation with VS1. Interestingly, even Beclin-1/p62, pAKT/AKT, and p-p70-S6K/p70-S6K ratios were notably reduced by VS1. We conclude that VS1 plays a crucial role in restoring autistic spectrum disorders (ASD) plausibly by attenuating neuroinflammation.
Collapse
Affiliation(s)
- Ennio Avolio
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Ilaria Olivito
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Antonio Leo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy.
| | - Claudia De Matteo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy.
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; University of California San Diego, La Jolla, CA 92093, United States of America
| | - Damiana Minervini
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Raffaella Alò
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Rita Citraro
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| |
Collapse
|
4
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
5
|
Gerik-Celebi HB, Bolat H, Unsel-Bolat G. Rare heterozygous genetic variants of NRXN and NLGN gene families involved in synaptic function and their association with neurodevelopmental disorders. Dev Neurobiol 2024; 84:158-168. [PMID: 38739110 DOI: 10.1002/dneu.22941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/02/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
The interaction of neurexins (NRXNs) in the presynaptic membrane with postsynaptic cell adhesion molecules called neuroligins (NLGNs) is critical for this synaptic function. Impaired synaptic functions are emphasized in neurodevelopmental disorders to uncover etiological factors. We evaluated variants in NRXN and NLGN genes encoding molecules located directly at the synapse in patients with neuropsychiatric disorders using clinical exome sequencing and chromosomal microarray. We presented detailed clinical findings of cases carrying heterozygous NRXN1 (c.190C > T, c.1679C > T and two copy number variations [CNVs]), NRXN2 (c.808dup, c.1901G > T), NRXN3 (c.3889C > T), and NLGN1 (c.269C > G, c.473T > A) gene variants. In addition, three novel variants were identified in the NRXN1 (c.1679C > T), NRXN3 [c.3889C > T (p.Pro1297Ser)], and NLGN1 [c.473T > A (p.Ile158Lys)] genes. We emphasize the clinical findings of CNVs of the NRXN1 gene causing a more severe clinical presentation than single nucleotide variants of the NRXN1 gene in this study. We detected an NRXN2 gene variant (c.808dup) with low allelic frequency in two unrelated cases with the same diagnosis. We emphasize the importance of this variant for future studies. We suggest that NRXN2, NRXN3, and NLGN1 genes, which are less frequently reported than NRXN1 gene variants, may also be associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
6
|
Jimenez-Gomez A, Nguyen MX, Gill JS. Understanding the role of AMPA receptors in autism: insights from circuit and synapse dysfunction. Front Psychiatry 2024; 15:1304300. [PMID: 38352654 PMCID: PMC10861716 DOI: 10.3389/fpsyt.2024.1304300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.
Collapse
Affiliation(s)
- Andres Jimenez-Gomez
- Neurodevelopmental Disabilities Program, Department of Neurology, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Megan X. Nguyen
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|