1
|
Cheng B, Du J, Tian S, Zhang Z, Chen W, Liu Y. High-intensity interval training or lactate administration combined with aerobic training enhances visceral fat loss while promoting VMH neuroplasticity in female rats. Lipids Health Dis 2024; 23:405. [PMID: 39696579 DOI: 10.1186/s12944-024-02397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND High-intensity interval training (HIT) does not burn fat during exercise. However, it significantly reduces visceral adipose after long-term training. The underlying mechanism may be related to the elevation of fat consumption during the post-exercise recovery period, which is regulated by the hypothalamus-adipose axis. Lactate is a hallmark metabolite of high-intensity exercise, which could mediate significant neuroplasticity through the brain-derived neurotrophic factor (BDNF) pathway. However, whether HIT could enhance hypothalamus activity and adipose catabolism in the recovery period remains to be elucidated. Also, it is worth exploring whether adding lactate administration to prolonged, continuous submaximal aerobic training (AT) could simulate HIT-induced neuroplastic effects and fat loss. METHODS First, we compared the influence of 4-week HIT and aerobic training (AT) on the electrophysiology of the ventromedial hypothalamus (VMH), which is deeply involved in the regulation of lipolysis, as well as the 24-hour excess post-exercise oxygen consumption (EPOC), the fat oxidation rate and lipolysis. To further confirm whether excess lactate during AT could reproduce the effect of HIT, we also observed the effects of lactate infusion during AT (AT + Lac) on neuroplasticity and metabolism. RESULTS Four-week HIT induced higher BDNF expression and a higher neuronal spike firing rate in VMH than AT, accompanied by elevated EPOC, fat oxidation and visceral fat lipolysis. AT + Lac and HITT could induce similar hypothalamic and metabolic changes. However, power spectral density analysis of local field potentials (LFPs) showed that the AT + Lac group was affected in fewer frequency bands than the HIT group. CONCLUSION HIT-induced reduction of visceral fat was accompanied by increased VMH activity. Adding lactate administration to AT could partially reproduce hypothalamic plasticity and the metabolic effects of HIT. However, different band changes of LFPs implied that the neuronal subpopulations or pathways influenced by these two methods were not entirely consistent.
Collapse
Affiliation(s)
- Baishuo Cheng
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Jinchan Du
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Shuai Tian
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zixiong Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, China
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio-Information, Hebei Normal University, No. 20, South Second Ring Road East, Shijiazhuang, Hebei, China
| | - Yang Liu
- Physical Education College, Hebei Normal University, Shijiazhuang, China.
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio-Information, Hebei Normal University, No. 20, South Second Ring Road East, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Glucose and fructose directly stimulate brain-derived neurotrophic factor gene expression in microglia. Neuroreport 2022; 33:583-589. [DOI: 10.1097/wnr.0000000000001820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Tu L, Fukuda M, Tong Q, Xu Y. The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell Biosci 2022; 12:71. [PMID: 35619170 PMCID: PMC9134642 DOI: 10.1186/s13578-022-00799-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.
Collapse
Affiliation(s)
- Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Makoto Fukuda
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Perry BI, Bowker N, Burgess S, Wareham NJ, Upthegrove R, Jones PB, Langenberg C, Khandaker GM. Evidence for Shared Genetic Aetiology Between Schizophrenia, Cardiometabolic, and Inflammation-Related Traits: Genetic Correlation and Colocalization Analyses. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac001. [PMID: 35156041 PMCID: PMC8827407 DOI: 10.1093/schizbullopen/sgac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Schizophrenia commonly co-occurs with cardiometabolic and inflammation-related traits. It is unclear to what extent the comorbidity could be explained by shared genetic aetiology. METHODS We used GWAS data to estimate shared genetic aetiology between schizophrenia, cardiometabolic, and inflammation-related traits: fasting insulin (FI), fasting glucose, glycated haemoglobin, glucose tolerance, type 2 diabetes (T2D), lipids, body mass index (BMI), coronary artery disease (CAD), and C-reactive protein (CRP). We examined genome-wide correlation using linkage disequilibrium score regression (LDSC); stratified by minor-allele frequency using genetic covariance analyzer (GNOVA); then refined to locus-level using heritability estimation from summary statistics (ρ-HESS). Regions with local correlation were used in hypothesis prioritization multi-trait colocalization to examine for colocalisation, implying common genetic aetiology. RESULTS We found evidence for weak genome-wide negative correlation of schizophrenia with T2D (rg = -0.07; 95% C.I., -0.03,0.12; P = .002) and BMI (rg = -0.09; 95% C.I., -0.06, -0.12; P = 1.83 × 10-5). We found a trend of evidence for positive genetic correlation between schizophrenia and cardiometabolic traits confined to lower-frequency variants. This was underpinned by 85 regions of locus-level correlation with evidence of opposing mechanisms. Ten loci showed strong evidence of colocalization. Four of those (rs6265 (BDNF); rs8192675 (SLC2A2); rs3800229 (FOXO3); rs17514846 (FURIN)) are implicated in brain-derived neurotrophic factor (BDNF)-related pathways. CONCLUSIONS LDSC may lead to downwardly-biased genetic correlation estimates between schizophrenia, cardiometabolic, and inflammation-related traits. Common genetic aetiology for these traits could be confined to lower-frequency common variants and involve opposing mechanisms. Genes related to BDNF and glucose transport amongst others may partly explain the comorbidity between schizophrenia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Nicholas Bowker
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Golam M Khandaker
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
5
|
Szkudelska K, Deniziak M, Hertig I, Wojciechowicz T, Tyczewska M, Jaroszewska M, Szkudelski T. Effects of Resveratrol in Goto-Kakizaki Rat, a Model of Type 2 Diabetes. Nutrients 2019; 11:nu11102488. [PMID: 31623226 PMCID: PMC6836277 DOI: 10.3390/nu11102488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Resveratrol exhibits a pleiotropic, favorable action under various pathological conditions, including type 2 diabetes. However, its anti-diabetic effects in animal models and human trials have not been fully elucidated. The aim of the present study was to determine whether resveratrol is capable of inducing beneficial changes in the Goto-Kakizaki rat, a spontaneous model of diabetes, which in several aspects is similar to type 2 diabetes in humans. Goto-Kakizaki (GK) rats and control Sprague–Dawley (SD) rats were treated intragastrically with resveratrol (20 mg/kg b.w./day) for 10 weeks. Then, a glucose tolerance test was performed and levels of some adipokines in blood were measured. Moreover, lipid contents in skeletal muscle and liver tissues, along with the expression and phosphorylation of pivotal enzymes (AMP—activated protein kinase—AMPK, acetyl-CoA carboxylase—ACC, protein kinase B—Akt) in these tissues were determined. Histology of pancreatic islets was also compared. GK rats non-treated with resveratrol displayed a marked glucose intolerance and had increased lipid accumulation in the skeletal muscle. Moreover, upregulation of the expression and phosphorylation of AMPK, ACC and Akt was shown in the muscle tissue of GK rats. Those rats also had an abnormal structure of pancreatic islets compared with control animals. However, treatment with resveratrol improved glucose tolerance and prevented lipid accumulation in the skeletal muscle of GK rats. This effect was associated with a substantial normalization of expression and phosphorylation of ACC and Akt. In GK rats subjected to resveratrol therapy, the structure of pancreatic islets was also clearly improved. Moreover, blood adiponectin and leptin levels were partially normalized by resveratrol in GK rats. It was revealed that resveratrol ameliorates key symptoms of diabetes in GK rats. This compound improved glucose tolerance, which was largely linked to beneficial changes in skeletal muscle. Resveratrol also positively affected pancreatic islets. Our new findings show that resveratrol has therapeutic potential in GK rats.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Marzanna Deniziak
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszów, Poland.
| | - Iwona Hertig
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Tatiana Wojciechowicz
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland.
| | - Magdalena Jaroszewska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
6
|
Phillips C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast 2017; 2017:7260130. [PMID: 28928987 PMCID: PMC5591905 DOI: 10.1155/2017/7260130] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments.
Collapse
|
7
|
Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus. J Diabetes Res 2017; 2017:2823671. [PMID: 29062839 PMCID: PMC5618763 DOI: 10.1155/2017/2823671] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM). BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
8
|
Repeated transcranial direct current stimulation reduces food craving in Wistar rats. Appetite 2016; 103:29-37. [DOI: 10.1016/j.appet.2016.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/26/2023]
|
9
|
Prolonged hyperglycemia & hyperinsulinemia increases BDNF mRNA expression in the posterior ventromedial hypothalamus and the dorsomedial hypothalamus of fed female rats. Neuroscience 2015; 303:422-32. [DOI: 10.1016/j.neuroscience.2015.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022]
|
10
|
Yoshii A, Constantine-Paton M, Ip NY. Editorial: Cell and molecular signaling, and transport pathways involved in growth factor control of synaptic development and function. Front Synaptic Neurosci 2015; 7:8. [PMID: 26089796 PMCID: PMC4454881 DOI: 10.3389/fnsyn.2015.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/20/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Akira Yoshii
- Department of Anatomy and Cell Biology, and Pediatrics, University of Illinois at Chicago Chicago, IL, USA
| | - Martha Constantine-Paton
- Department of Brain and Cognitive Science, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA ; McGovern Institute for Brain Research and Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Biology, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Nancy Y Ip
- Division of Life Science, Hong Kong University of Science and Technology Hong Kong, China ; Molecular Neuroscience Center and Hong Kong University of Science and Technology Hong Kong, China ; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology Hong Kong, China
| |
Collapse
|