1
|
Qebibo L, Davakan A, Nesson-Dauphin M, Boulali N, Siquier-Pernet K, Afenjar A, Amiel J, Bartholdi D, Barth M, Blondiaux E, Cristian I, Frazier Z, Goldenberg A, Good JM, Salussolia CL, Sahin M, McCullagh H, McDonald K, McRae A, Morrison J, Pinner J, Shinawi M, Toutain A, Vyhnálková E, Wheeler PG, Wilnai Y, Hausman-Kedem M, Coolen M, Cantagrel V, Burglen L, Lory P. The characterization of new de novo CACNA1G variants affecting the intracellular gate of Cav3.1 channel broadens the spectrum of neurodevelopmental phenotypes in SCA42ND. Genet Med 2025; 27:101337. [PMID: 39674904 DOI: 10.1016/j.gim.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
PURPOSE Missense de novo variants in CACNA1G, which encodes the Cav3.1 T-type calcium channel, have been associated with a severe, early-onset form of cerebellar disorder with neurodevelopmental deficits (SCA42ND). We explored a large series of pediatric cases carrying heterozygous variants in CACNA1G to further characterize genotype-phenotype correlations in SCA42ND. METHODS We describe 19 patients with congenital CACNA1G-variants, including 6 new heterozygotes of the recurrent SCA42ND variants, p.(Ala961Thr) and p.(Met1531Val), and 8 unreported variants, including 7 missense variants, mainly de novo. We carried out genetic and structural analyses of all variants. Patch-clamp recordings were performed to measure their channel activity. RESULTS We provide a consolidated clinical description for the patients carrying p.(Ala961Thr) and p.(Met1531Val). The new variants associated with the more severe phenotypes are found in the Cav3.1 channel intracellular gate. Calcium currents of these Cav3.1 variants showed slow inactivation and deactivation kinetics and an increase in window current, supporting a gain of channel activity. On the contrary, the p.(Met197Arg) variant (IS4-S5 loop) resulted in a loss of channel activity. CONCLUSION This detailed description of several de novo missense pathogenic variants in CACNA1G, including 13 previously reported cases, supports a clinical spectrum of congenital CACNA1G syndrome beyond spinocerebellar ataxia.
Collapse
Affiliation(s)
- Leila Qebibo
- Pediatric Neurogenetics Laboratory, Department of Genetics, Armand-Trousseau Hospital, AP-HP. Sorbonne Université, Paris, France; Reference Center for Cerebellar Malformations and Congenital Diseases, Armand-Trousseau Hospital, APHP. Sorbonne Université, Paris, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Amaël Davakan
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Mathilde Nesson-Dauphin
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Najlae Boulali
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Karine Siquier-Pernet
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Alexandra Afenjar
- Reference Center for Cerebellar Malformations and Congenital Diseases, Armand-Trousseau Hospital, APHP. Sorbonne Université, Paris, France
| | - Jeanne Amiel
- Service de Médecine Génomique des Maladies Rares, Necker Enfants Malades University Hospital, APHP, Paris, France
| | - Deborah Bartholdi
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Magalie Barth
- Department of Biochemistry and Genetics, Angers University Hospital, Angers France
| | - Eléonore Blondiaux
- Department of Radiology, Armand-Trousseau Hospital, APHP, Sorbonne University, Paris, France
| | | | - Zoe Frazier
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alice Goldenberg
- Université Rouen Normandie, INSERM U1245, CHU de Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Catherine Lourdes Salussolia
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Kimberly McDonald
- Department of Pediatrics, University of Louisville, Norton Children's Hospital, Louisville, KY
| | - Anne McRae
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | | - Jason Pinner
- Centre for Clinical Genetics, Sydney Children's Hospitals Network and University of New South Wales, Sydney, Australia
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Annick Toutain
- Unité fonctionnelle de Génétique Médicale, Centre Hospitalier Universitaire, Tours, France
| | - Emílie Vyhnálková
- Charles University, Motol University Hospital, Prague, Czech Republic
| | | | - Yael Wilnai
- Tel Aviv Sourasky Medical Center, Genetic Institute, Tel Aviv, Israel
| | - Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Center and Faculty of Medical and Health Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Marion Coolen
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Vincent Cantagrel
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France.
| | - Lydie Burglen
- Pediatric Neurogenetics Laboratory, Department of Genetics, Armand-Trousseau Hospital, AP-HP. Sorbonne Université, Paris, France; Reference Center for Cerebellar Malformations and Congenital Diseases, Armand-Trousseau Hospital, APHP. Sorbonne Université, Paris, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France.
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx "Ion Channel Science and Therapeutics," Montpellier, France.
| |
Collapse
|
2
|
Dannenberg F, Von Moers A, Bittigau P, Lange J, Wiegand S, Török F, Stölting G, Striessnig J, Motazacker MM, Broekema MF, Schuelke M, Kaindl AM, Scholl UI, Ortner NJ. A Novel De Novo Gain-of-Function CACNA1D Variant in Neurodevelopmental Disease With Congenital Tremor, Seizures, and Hypotonia. Neurol Genet 2024; 10:e200186. [PMID: 39246741 PMCID: PMC11380501 DOI: 10.1212/nxg.0000000000200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
Background and Objectives De novo gain-of-function variants in the CACNA1D gene, encoding the L-type voltage-gated Ca2+ channel CaV1.3, cause a multifaceted syndrome. Patients show variable degrees of autism spectrum disorder, developmental delay, epilepsy, and other neurologic and endocrine abnormalities (primary aldosteronism and/or hyperinsulinemic hypoglycemia). We study here a novel variant [c.3506G>A, NM_000720.4, p.(G1169D)] in 2 children with the same CACNA1D mutation but different disease severity. Methods The clinical data of the study patients were collected. After molecular analysis and cloning by site-directed mutagenesis, patch-clamp recordings of transfected tsA201 cells were conducted in whole-cell configuration. The functional effects of wild-type and mutated channels were analyzed. Results One child is a severely affected boy with a novel de novo CACNA1D variant with additional clinical symptoms including prenatal-onset tremor, congenital respiratory insufficiency requiring continuous positive airway pressure ventilation, and sensorineural deafness. Despite episodes of hypoglycemia, insulin levels were normal. Aldosterone:renin ratios as a screening parameter for primary aldosteronism were variable. In the second patient, putative mosaicism of the p.(G1169D) variant was associated with a less severe phenotype. Patch-clamp electrophysiology of the p.(G1169D) variant in a heterologous expression system revealed pronounced activity-enhancing gating changes, including a shift of channel activation and inactivation to more hyperpolarized potentials, as well as impaired channel inactivation and deactivation. Despite retained sensitivity to the Ca2+ channel blocker isradipine in vitro, no beneficial effects of isradipine or nifedipine treatment were observed in the index case. Discussion Through this report, we expand the knowledge about the disease presentation in patients with CACNA1D variants and show the novel variant's modulatory effects on CaV1.3 gating.
Collapse
Affiliation(s)
- Fabian Dannenberg
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Arpad Von Moers
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Petra Bittigau
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Jörn Lange
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Sylvia Wiegand
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Ferenc Török
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Gabriel Stölting
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Jörg Striessnig
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - M Mahdi Motazacker
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Marjoleine F Broekema
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Markus Schuelke
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Angela M Kaindl
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Ute I Scholl
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| | - Nadine J Ortner
- From the Department of Pediatric Neurology (F.D., P.B., M.S., A.M.K.); Center for Chronically Sick Children (F.D., P.B., M.S., A.M.K.), Charité-Universitätsmedizin Berlin; Department of Pediatrics (A.V.M.),DRK Kliniken Berlin Westend, Berlin; Department of Neuropediatrics (J.L., S.W.), VAMED Klinik Hohenstücken, Brandenburg an der Havel, Germany; Department of Pharmacology and Toxicology (F.T., J.S., N.J.O.), Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Center of Functional Genomics (G.S., U.I.S.), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Hessische Straße 4A, Berlin, Germany; Department of Human Genetics (M.M.M., M.F.B.), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cell Biology and Neurobiology (A.M.K.); and Department of Nephrology and Medical Intensive Care (U.I.S.), Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
3
|
Maino E, Scott O, Rizvi SZ, Chan WS, Visuvanathan S, Zablah YB, Li H, Sengar AS, Salter MW, Jia Z, Rossant J, Cohn RD, Gu B, Ivakine EA. An Irak1-Mecp2 tandem duplication mouse model for the study of MECP2 duplication syndrome. Dis Model Mech 2024; 17:dmm050528. [PMID: 38881329 PMCID: PMC11552499 DOI: 10.1242/dmm.050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.
Collapse
Affiliation(s)
- Eleonora Maino
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ori Scott
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Samar Z. Rizvi
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wing Suen Chan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Shagana Visuvanathan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Youssif Ben Zablah
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hongbin Li
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ameet S. Sengar
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W. Salter
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zhengping Jia
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Janet Rossant
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, the Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ronald D. Cohn
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Lazar SM, Abid F. Pearls & Oy-sters: CACNA1A-Related Paroxysmal Tonic Upgaze With Ataxia Responsive to Acetazolamide. Neurology 2024; 102:e207992. [PMID: 38175838 PMCID: PMC10834120 DOI: 10.1212/wnl.0000000000207992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/20/2023] [Indexed: 01/06/2024] Open
Abstract
A 9-month-old male infant was evaluated for sudden onset of paroxysmal episodes of forced, conjugate upward eye deviation. Extensive in-hospital evaluation including electrophysiology and neuroimaging studies were reassuring against seizures or a structural abnormality. Given the clinical presentation of sudden onset intermittent upward eye deviations, downbeating saccades, associated ataxia, and typical development, a clinical diagnosis of paroxysmal tonic upgaze (PTU) with ataxia was made. Targeted genetic testing of CACNA1A was performed, which revealed a variant of undetermined significance, which was later classified as a de novo pathogenic variant after protein modeling and parental testing performed. Off-label use of oral acetazolamide was prescribed, which led to dose-responsive decrease in the frequency and intensity of eye movement episodes. After 6 months of episode freedom at 2 years of age, acetazolamide was discontinued without return of episodes. Neurodevelopmental assessments revealed continued typical development. This case is presented to describe the diagnostic formulation, etiologic evaluation, and symptomatic treatment of CACNA1A-related PTU with ataxia.
Collapse
Affiliation(s)
- Steven M Lazar
- From the Section of Pediatric Neurology and Developmental Neuroscience (S.M.L., F.A.), Baylor College of Medicine, Houston, TX; and Meyer Center for Developmental Pediatrics & Autism (S.M.L.), Texas Children's Hospital, Houston
| | - Farida Abid
- From the Section of Pediatric Neurology and Developmental Neuroscience (S.M.L., F.A.), Baylor College of Medicine, Houston, TX; and Meyer Center for Developmental Pediatrics & Autism (S.M.L.), Texas Children's Hospital, Houston
| |
Collapse
|
5
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Ortner NJ, Sah A, Paradiso E, Shin J, Stojanovic S, Hammer N, Haritonova M, Hofer NT, Marcantoni A, Guarina L, Tuluc P, Theiner T, Pitterl F, Ebner K, Oberacher H, Carbone E, Stefanova N, Ferraguti F, Singewald N, Roeper J, Striessnig J. The human channel gating-modifying A749G CACNA1D (Cav1.3) variant induces a neurodevelopmental syndrome-like phenotype in mice. JCI Insight 2023; 8:e162100. [PMID: 37698939 PMCID: PMC10619503 DOI: 10.1172/jci.insight.162100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Germline de novo missense variants of the CACNA1D gene, encoding the pore-forming α1 subunit of Cav1.3 L-type Ca2+ channels (LTCCs), have been found in patients with neurodevelopmental and endocrine dysfunction, but their disease-causing potential is unproven. These variants alter channel gating, enabling enhanced Cav1.3 activity, suggesting Cav1.3 inhibition as a potential therapeutic option. Here we provide proof of the disease-causing nature of such gating-modifying CACNA1D variants using mice (Cav1.3AG) containing the A749G variant reported de novo in a patient with autism spectrum disorder (ASD) and intellectual impairment. In heterozygous mutants, native LTCC currents in adrenal chromaffin cells exhibited gating changes as predicted from heterologous expression. The A749G mutation induced aberrant excitability of dorsomedial striatum-projecting substantia nigra dopamine neurons and medium spiny neurons in the dorsal striatum. The phenotype observed in heterozygous mutants reproduced many of the abnormalities described within the human disease spectrum, including developmental delay, social deficit, and pronounced hyperactivity without major changes in gross neuroanatomy. Despite an approximately 7-fold higher sensitivity of A749G-containing channels to the LTCC inhibitor isradipine, oral pretreatment over 2 days did not rescue the hyperlocomotion. Cav1.3AG mice confirm the pathogenicity of the A749G variant and point toward a pathogenetic role of altered signaling in the dopamine midbrain system.
Collapse
Affiliation(s)
- Nadine J. Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Enrica Paradiso
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Shin
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | | | - Niklas Hammer
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | - Maria Haritonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadja T. Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrea Marcantoni
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Laura Guarina
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics and
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Emilio Carbone
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jochen Roeper
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Filippini L, Ortner NJ, Kaserer T, Striessnig J. Ca v 1.3-selective inhibitors of voltage-gated L-type Ca 2+ channels: Fact or (still) fiction? Br J Pharmacol 2023; 180:1289-1303. [PMID: 36788128 PMCID: PMC10953394 DOI: 10.1111/bph.16060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Voltage-gated L-type Ca2+ -channels (LTCCs) are the target of Ca2+ -channel blockers (CCBs), which are in clinical use for the evidence-based treatment of hypertension and angina. Their cardiovascular effects are largely mediated by the Cav 1.2-subtype. However, based on our current understanding of their physiological and pathophysiological roles, Cav 1.3 LTCCs also appear as attractive drug targets for the therapy of various diseases, including treatment-resistant hypertension, spasticity after spinal cord injury and neuroprotection in Parkinson's disease. Since CCBs inhibit both Cav 1.2 and Cav 1.3, Cav 1.3-selective inhibitors would be valuable tools to validate the therapeutic potential of Cav 1.3 channel inhibition in preclinical models. Despite a number of publications reporting the discovery of Cav 1.3-selective blockers, their selectivity remains controversial. We conclude that at present no pharmacological tools exist that are suitable to confirm or refute a role of Cav 1.3 channels in cellular responses. We also suggest essential criteria for a small molecule to be considered Cav 1.3-selective.
Collapse
Affiliation(s)
- Ludovica Filippini
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
- Department of Pharmaceutical Chemistry, Institute of PharmacyUniversity of InnsbruckInnsbruckAustria
| | - Nadine J. Ortner
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of PharmacyUniversity of InnsbruckInnsbruckAustria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
8
|
Török F, Tezcan K, Filippini L, Fernández-Quintero ML, Zanetti L, Liedl KR, Drexel RS, Striessnig J, Ortner NJ. Germline de novo variant F747S extends the phenotypic spectrum of CACNA1D Ca2+ channelopathies. Hum Mol Genet 2023; 32:847-859. [PMID: 36208199 PMCID: PMC9941835 DOI: 10.1093/hmg/ddac248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Germline gain-of-function missense variants in the pore-forming Cav1.3 α1-subunit (CACNA1D gene) confer high risk for a severe neurodevelopmental disorder with or without endocrine symptoms. Here, we report a 4-week-old new-born with the novel de novo missense variant F747S with a so far not described prominent jittering phenotype in addition to symptoms previously reported for CACNA1D mutations including developmental delay, elevated aldosterone level and transient hypoglycemia. We confirmed the pathogenicity of this variant in whole-cell patch-clamp experiments with wild-type and F747S mutant channels heterologously expressed together with α2δ1 and cytosolic β3 or membrane-bound β2a subunits. Mutation F747S caused the quantitatively largest shift in the voltage dependence of activation (-28 mV) reported so far for CACNA1D germline mutations. It also shifted inactivation to more negative voltages, slowed the time course of current inactivation and slowed current deactivation upon repolarization with both co-expressed β-subunits. In silico modelling and molecular docking, simulations revealed that this gain-of-function phenotype can be explained by formation of a novel inter-domain hydrogen bond between mutant residues S747 (IIS6) with N1145 (IIIS6) stabilizing selectively the activated open channel state. F747S displayed 2-6-fold increased sensitivity for the L-type Ca2+ channel blocker isradipine compared to wild type. Our data confirm the pathogenicity of the F747S variant with very strong gain-of-function gating changes, which may contribute to the novel jittering phenotype. Increased sensitivity for isradipine suggests this drug for potential symptomatic off-label treatment for carriers of this mutation.
Collapse
Affiliation(s)
- Ferenc Török
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Kamer Tezcan
- Department of Genetics, Kaiser Permanente, Sacramento, CA 95825, USA
| | - Ludovica Filippini
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Lucia Zanetti
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Raphaela S Drexel
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
9
|
Mustafá ER, Weiss N. Extended spectrum of Ca v1.3 channelopathies. Pflugers Arch 2023; 475:147-149. [PMID: 36307590 DOI: 10.1007/s00424-022-02766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Emilio R Mustafá
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
10
|
Gao Y, Xu S, Cui X, Xu H, Qiu Y, Wei Y, Dong Y, Zhu B, Peng C, Liu S, Zhang XC, Sun J, Huang Z, Zhao Y. Molecular insights into the gating mechanisms of voltage-gated calcium channel Ca V2.3. Nat Commun 2023; 14:516. [PMID: 36720859 PMCID: PMC9889812 DOI: 10.1038/s41467-023-36260-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
High-voltage-activated R-type CaV2.3 channel plays pivotal roles in many physiological activities and is implicated in epilepsy, convulsions, and other neurodevelopmental impairments. Here, we determine the high-resolution cryo-electron microscopy (cryo-EM) structure of human CaV2.3 in complex with the α2δ1 and β1 subunits. The VSDII is stabilized in the resting state. Electrophysiological experiments elucidate that the VSDII is not required for channel activation, whereas the other VSDs are essential for channel opening. The intracellular gate is blocked by the W-helix. A pre-W-helix adjacent to the W-helix can significantly regulate closed-state inactivation (CSI) by modulating the association and dissociation of the W-helix with the gate. Electrostatic interactions formed between the negatively charged domain on S6II, which is exclusively conserved in the CaV2 family, and nearby regions at the alpha-interacting domain (AID) and S4-S5II helix are identified. Further functional analyses indicate that these interactions are critical for the open-state inactivation (OSI) of CaV2 channels.
Collapse
Affiliation(s)
- Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoli Cui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Hao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunlong Qiu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiqing Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boling Zhu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Folacci M, Estaran S, Ménard C, Bertaud A, Rousset M, Roussel J, Thibaud JB, Vignes M, Chavanieu A, Charnet P, Cens T. Functional Characterization of Four Known Cav2.1 Variants Associated with Neurodevelopmental Disorders. MEMBRANES 2023; 13:96. [PMID: 36676903 PMCID: PMC9864995 DOI: 10.3390/membranes13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Cav2.1 channels are expressed throughout the brain and are the predominant Ca2+ channels in the Purkinje cells. These cerebellar neurons fire spontaneously, and Cav2.1 channels are involved in the regular pacemaking activity. The loss of precision of the firing pattern of Purkinje cells leads to ataxia, a disorder characterized by poor balance and difficulties in performing coordinated movements. In this study, we aimed at characterizing functional and structural consequences of four variations (p.A405T in I-II loop and p.R1359W, p.R1667W and p.S1799L in IIIS4, IVS4, and IVS6 helices, respectively) identified in patients exhibiting a wide spectrum of disorders including ataxia symptoms. Functional analysis using two major Cav2.1 splice variants (Cav2.1+e47 and Cav2.1-e47) in Xenopus laevis oocytes, revealed a lack of effect upon A405T substitution and a significant loss-of-function caused by R1359W, whereas R1667W and S1799L caused both channel gain-of-function and loss-of-function, in a splice variant-dependent manner. Structural analysis revealed the loss of interactions with S1, S2, and S3 helices upon R1359W and R1667W substitutions, but a lack of obvious structural changes with S1799L. Computational modeling suggests that biophysical changes induced by Cav2.1 pathogenic mutations might affect action potential frequency in Purkinje cells.
Collapse
|
12
|
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
13
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
El Ghaleb Y, Flucher BE. Ca V3.3 Channelopathies. Handb Exp Pharmacol 2023; 279:263-288. [PMID: 36592228 DOI: 10.1007/164_2022_631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Hessenberger M, Haddad S, Obermair GJ. Pathophysiological Roles of Auxiliary Calcium Channel α 2δ Subunits. Handb Exp Pharmacol 2023; 279:289-316. [PMID: 36598609 DOI: 10.1007/164_2022_630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
α2δ proteins serve as auxiliary subunits of voltage-gated calcium channels, which are essential components of excitable cells such as skeletal and heart muscles, nerve cells of the brain and the peripheral nervous system, as well as endocrine cells. Over the recent years, α2δ proteins have been identified as critical regulators of synaptic functions, including the formation and differentiation of synapses. These functions require signalling mechanisms which are partly independent of calcium channels. Hence, in light of these features it is not surprising that the genes encoding for the four α2δ isoforms have recently been linked to neurological and neurodevelopmental disorders including epilepsy, autism spectrum disorders, schizophrenia, and depressive and bipolar disorders. Despite the increasing number of identified disease-associated mutations, the underlying pathophysiological mechanisms are only beginning to emerge. However, a thorough understanding of the pathophysiological role of α2δ proteins ideally serves two purposes: first, it will contribute to our understanding of general pathological mechanisms in synaptic disorders. Second, it may support the future development of novel and specific treatments for brain disorders. In this context, it is noteworthy that the antiepileptic and anti-allodynic drugs gabapentin and pregabalin both act via binding to α2δ proteins and are among the top sold drugs for treating neuropathic pain. In this book chapter, we will discuss recent developments in our understanding of the functions of α2δ proteins, both as calcium channel subunits and as independent regulatory entities. Furthermore, we present and summarize recently identified and likely pathogenic mutations in the genes encoding α2δ proteins and discuss potential underlying pathophysiological consequences at the molecular and structural level.
Collapse
Affiliation(s)
- Manuel Hessenberger
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sabrin Haddad
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
17
|
Bamgboye MA, Traficante MK, Owoyemi J, DiSilvestre D, Vieira DCO, Dick IE. Impaired Ca V1.2 inactivation reduces the efficacy of calcium channel blockers in the treatment of LQT8. J Mol Cell Cardiol 2022; 173:92-100. [PMID: 36272554 PMCID: PMC10583761 DOI: 10.1016/j.yjmcc.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the CaV1.2 L-type calcium channel can cause a profound form of long-QT syndrome known as long-QT type 8 (LQT8), which results in cardiac arrhythmias that are often fatal in early childhood. A growing number of such pathogenic mutations in CaV1.2 have been identified, increasing the need for targeted therapies. As many of these mutations reduce channel inactivation; resulting in excess Ca2+ entry during the action potential, calcium channel blockers (CCBs) would seem to represent a promising treatment option. Yet CCBs have been unsuccessful in the treatment of LQT8. Here, we demonstrate that this lack of efficacy likely stems from the impact of the mutations on CaV1.2 channel inactivation. As CCBs are known to preferentially bind to the inactivated state of the channel, mutation-dependent deficits in inactivation result in a decrease in use-dependent block of the mutant channel. Further, application of the CCB verapamil to induced pluripotent stem cell (iPSC) derived cardiomyocytes from an LQT8 patient demonstrates that this loss of use-dependent block translates to a lack of efficacy in correcting the LQT phenotype. As a growing number of channelopathic mutations demonstrate effects on channel inactivation, reliance on state-dependent blockers may leave a growing population of patients without a viable treatment option. This biophysical understanding of the interplay between inactivation deficits and state-dependent block may provide a new avenue to guide the development of improved therapies.
Collapse
Affiliation(s)
- Moradeke A Bamgboye
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Maria K Traficante
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Josiah Owoyemi
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Deborah DiSilvestre
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Ivy E Dick
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
18
|
Caminski ES, Antunes FTT, Souza IA, Dallegrave E, Zamponi GW. Regulation of N-type calcium channels by nociceptin receptors and its possible role in neurological disorders. Mol Brain 2022; 15:95. [PMID: 36434658 PMCID: PMC9700961 DOI: 10.1186/s13041-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Collapse
Affiliation(s)
- Emanuelle Sistherenn Caminski
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Flavia Tasmin Techera Antunes
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Ivana Assis Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Eliane Dallegrave
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| |
Collapse
|
19
|
Ferron L, Zamponi GW. The road to the brain in Timothy syndrome is paved with enhanced CaV1.2 activation gating. J Gen Physiol 2022; 154:213558. [PMID: 36264243 PMCID: PMC9587385 DOI: 10.1085/jgp.202213272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specific gating effects of Timothy syndrome CaV1.2 channel mutations determine cardiovascular versus nervous system deficits.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
20
|
Complex effects on Ca V2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder. Sci Rep 2022; 12:9186. [PMID: 35655070 PMCID: PMC9163077 DOI: 10.1038/s41598-022-12789-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
P/Q-type Ca2+ currents mediated by CaV2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in CACNA1A, the gene encoding the principal CaV2.1 α1A subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe CaV2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca2+ current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca2+ flux during action potential-like stimuli. However, the integrated Ca2+ fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in CaV2.1 may not represent exclusively GOF or LOF.
Collapse
|
21
|
Klomp A, Omichi R, Iwasa Y, Smith RJ, Usachev YM, Russo AF, Narayanan NS, Lee A. The voltage-gated Ca2+ channel subunit α2δ-4 regulates locomotor behavior and sensorimotor gating in mice. PLoS One 2022; 17:e0263197. [PMID: 35353835 PMCID: PMC8967030 DOI: 10.1371/journal.pone.0263197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated Ca2+ channels are critical for the development and mature function of the nervous system. Variants in the CACNA2D4 gene encoding the α2δ-4 auxiliary subunit of these channels are associated with neuropsychiatric and neurodevelopmental disorders. α2δ-4 is prominently expressed in the retina and is crucial for vision, but extra-retinal functions of α2δ-4 have not been investigated. Here, we sought to fill this gap by analyzing the behavioral phenotypes of α2δ-4 knockout (KO) mice. α2δ-4 KO mice (both males and females) exhibited significant impairments in prepulse inhibition that were unlikely to result from the modestly elevated auditory brainstem response thresholds. Whereas α2δ-4 KO mice of both sexes were hyperactive in various assays, only females showed impaired motor coordination in the rotarod assay. α2δ-4 KO mice exhibited anxiolytic and anti-depressive behaviors in the elevated plus maze and tail suspension tests, respectively. Our results reveal an unexpected role for α2δ-4 in sensorimotor gating and motor function and identify α2δ-4 KO mice as a novel model for studying the pathophysiology associated with CACNA2D4 variants.
Collapse
Affiliation(s)
- Annette Klomp
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryotaro Omichi
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Yoichiro Iwasa
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Richard J. Smith
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Yuriy M. Usachev
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew F. Russo
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Nandakumar S. Narayanan
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Amy Lee
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zheng X, Li H, Hu Z, Su D, Yang J. Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel. Commun Biol 2022; 5:190. [PMID: 35233102 PMCID: PMC8888761 DOI: 10.1038/s42003-022-03120-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
Numerous missense mutations in cyclic nucleotide-gated (CNG) channels cause achromatopsia and retinitis pigmentosa, but the underlying pathogenic mechanisms are often unclear. We investigated the structural basis and molecular/cellular effects of R410W, an achromatopsia-associated, presumed loss-of-function mutation in human CNGA3. Cryo-EM structures of the Caenorhabditis elegans TAX-4 CNG channel carrying the analogous mutation, R421W, show that most apo channels are open. R421, located in the gating ring, interacts with the S4 segment in the closed state. R421W disrupts this interaction, destabilizes the closed state, and stabilizes the open state. CNGA3_R410W/CNGB3 and TAX4_R421W channels are spontaneously active without cGMP and induce cell death, suggesting cone degeneration triggered by spontaneous CNG channel activity as a possible cause of achromatopsia. Our study sheds new light on CNG channel allosteric gating, provides an impetus for a reevaluation of reported loss-of-function CNG channel missense disease mutations, and has implications for mutation-specific treatment of retinopathy.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Huan Li
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Deyuan Su
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
23
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
24
|
Ion Channel Partnerships: Odd and Not-So-Odd Couples Controlling Neuronal Ion Channel Function. Int J Mol Sci 2022; 23:ijms23041953. [PMID: 35216068 PMCID: PMC8878034 DOI: 10.3390/ijms23041953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
The concerted function of the large number of ion channels expressed in excitable cells, including brain neurons, shapes diverse signaling events by controlling the electrical properties of membranes. It has long been recognized that specific groups of ion channels are functionally coupled in mediating ionic fluxes that impact membrane potential, and that these changes in membrane potential impact ion channel gating. Recent studies have identified distinct sets of ion channels that can also physically and functionally associate to regulate the function of either ion channel partner beyond that afforded by changes in membrane potential alone. Here, we review canonical examples of such ion channel partnerships, in which a Ca2+ channel is partnered with a Ca2+-activated K+ channel to provide a dedicated route for efficient coupling of Ca2+ influx to K+ channel activation. We also highlight examples of non-canonical ion channel partnerships between Ca2+ channels and voltage-gated K+ channels that are not intrinsically Ca2+ sensitive, but whose partnership nonetheless yields enhanced regulation of one or the other ion channel partner. We also discuss how these ion channel partnerships can be shaped by the subcellular compartments in which they are found and provide perspectives on how recent advances in techniques to identify proteins in close proximity to one another in native cells may lead to an expanded knowledge of other ion channel partnerships.
Collapse
|
25
|
Nikonishyna YV, Ortner NJ, Kaserer T, Hoffmann J, Biskup S, Dafotakis M, Reetz K, Schulz JB, Striessnig J, Dohrn MF. Novel CACNA1A Variant p.Cys256Phe Disrupts Disulfide Bonds and Causes Spinocerebellar Ataxia. Mov Disord 2022; 37:401-404. [PMID: 34647648 DOI: 10.1002/mds.28835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) is a progressive, autosomal dominant neurodegenerative disorder typically associated with CAG repeat expansions. OBJECTIVE We assessed the pathogenicity of the novel, heterozygous missense variant p.Cys256Phe (C256F) in the pore-forming α1-subunit of the Cav2.1 Ca2+ channel found in a 63-year-old woman with SCA with no CAG repeat expansion. METHODS We examined the effect of the C256F variant on channel function using whole-cell patch-clamp recordings in transfected tsA-201 cells. RESULTS The maximum Ca2+ current density was significantly reduced in the mutant compared to wild-type, which could not be explained by lower expression levels of mutant Cav2.1 α1- protein. Together with a significant increase in current inactivation, this is consistent with a loss of channel function. Molecular modeling predicted disruption of a conserved disulfide bond through the C256F variant. CONCLUSIONS Our results support the pathogenicity of the C256F variant for the SCA phenotype and provide further insight into Cav2.1 structure and function.
Collapse
Affiliation(s)
- Yuliia V Nikonishyna
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jessica Hoffmann
- Center for Genomics and Transcriptomics and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Manuel Dafotakis
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
26
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
27
|
Li XL, Li ZJ, Liang XY, Liu DT, Jiang M, Gao LD, Li H, Tang XQ, Shi YW, Li BM, He N, Li B, Bian WJ, Yi YH, Cheng CF, Wang J. CACNA1A Mutations Associated With Epilepsies and Their Molecular Sub-Regional Implications. Front Mol Neurosci 2022; 15:860662. [PMID: 35600082 PMCID: PMC9116572 DOI: 10.3389/fnmol.2022.860662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Previously, mutations in the voltage-gated calcium channel subunit alpha1 A (CACNA1A) gene have been reported to be associated with paroxysmal disorders, typically as episodic ataxia type 2. To determine the relationship between CACNA1A and epilepsies and the role of molecular sub-regional on the phenotypic heterogeneity. METHODS Trio-based whole-exome sequencing was performed in 318 cases with partial epilepsy and 150 cases with generalized epilepsy. We then reviewed all previously reported CACNA1A mutations and analyzed the genotype-phenotype correlations with molecular sub-regional implications. RESULTS We identified 12 CACNA1A mutations in ten unrelated cases of epilepsy, including four de novo null mutations (c.2963_2964insG/p.Gly989Argfs*78, c.3089 + 1G > A, c.4755 + 1G > T, and c.6340-1G > A), four de novo missense mutations (c.203G > T/p.Arg68Leu, c.3965G > A/p.Gly1322Glu, c.5032C > T/p.Arg1678Cys, and c.5393C > T/p.Ser1798Leu), and two pairs of compound heterozygous missense mutations (c.4891A > G/p.Ile1631Val& c.5978C > T/p.Pro1993Leu and c.3233C > T/p.Ser1078Leu&c.6061G > A/p.Glu2021Lys). The eight de novo mutations were evaluated as pathogenic or likely pathogenic mutations according to the criteria of American College of Medical Genetics and Genomics (ACMG). The frequencies of the compound heterozygous CACNA1A mutations identified in this cohort were significantly higher than that in the controls of East Asian and all populations (P = 7.30 × 10-4, P = 2.53 × 10-4). All of the ten cases were ultimately seizure-free after antiepileptic treatment, although frequent epileptic seizures were observed in four cases. Further analysis revealed that episodic ataxia type 2 (EA2) had a tendency of higher frequency of null mutations than epilepsies. The missense mutations in severe epileptic phenotypes were more frequently located in the pore region than those in milder epileptic phenotypes (P = 1.67 × 10-4); de novo mutations in the epilepsy with intellectual disability (ID) had a higher percentage than those in the epilepsy without ID (P = 1.92 × 10-3). CONCLUSION This study suggested that CACNA1A mutations were potentially associated with pure epilepsy and the spectrum of epileptic phenotypes potentially ranged from the mild form of epilepsies such as absence epilepsy or partial epilepsy, to the severe form of developmental epileptic encephalopathy. The clinical phenotypes variability is potentially associated with the molecular sub-regional of the mutations.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, China
| | - Zong-Jun Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - De-Tian Liu
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mi Jiang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue-Qing Tang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Wu Shi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Bian
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan-Fang Cheng
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chuan-Fang Cheng,
| | - Jie Wang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Jie Wang,
| |
Collapse
|
28
|
Luan H, Zhang L, Zhang S, Zhang M. Next-generation sequencing identified a novel CACNA1A I1379F variant in a familial hemiplegic migraine type 1 pedigree: A case report. Medicine (Baltimore) 2021; 100:e28141. [PMID: 34941060 PMCID: PMC8702007 DOI: 10.1097/md.0000000000028141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Familial hemiplegic migraine (FHM) is a rare, autosomal dominant migraine with aura. CACNA1A encodes the α1A subunit of P/Q-type voltage-gated calcium channels, and its mutations have been associated with a wide spectrum of episodic and chronic neurological disorders, including FHM type 1 (FHM1). PATIENT CONCERNS A Chinese girl and some of her relatives who presented with hemiplegia with or without migraine were found to carry a novel heterozygous missense variant, I1379F, in CACNA1A by whole-exome sequencing. The variant consegregated with the disease and was predicted to be pathogenic. DIAGNOSIS The patient was diagnosed with FHM1 clinically and genetically. INTERVENTIONS Prophylactic therapy with flunarizine 5 mg daily was prescribed to the patient. OUTCOMES Therapy with flunarizine was terminated after a few weeks. The intensity of the attacks was the same as before. LESSONS This case indicates that FHM should be considered when a patient manifests with episodic hemiplegia without migraine. In addition, genetic testing is an indispensable method to identify atypical attacks of hemiplegic migraine.
Collapse
Affiliation(s)
- Huiyan Luan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Sijin Zhang
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meng Zhang
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Ion channel-related hereditary hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Indelicato E, Boesch S. From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing. Front Neurol 2021; 12:639994. [PMID: 33737904 PMCID: PMC7960780 DOI: 10.3389/fneur.2021.639994] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.
Collapse
Affiliation(s)
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|