1
|
León A, Sallaberry I, Fuster RG, Sotelo FB, Aparicio GI, Estrada LC, Scorticati C. Non-synonymous single nucleotide polymorphisms (nsSNPs) within the extracellular domains of the GPM6A gene impair hippocampal neuron development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119913. [PMID: 39938689 DOI: 10.1016/j.bbamcr.2025.119913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Psychiatric disorders are complex pathologies influenced by both environmental and genetic factors, ultimately leading to synaptic plasticity dysfunction. Altered expression levels of neuronal glycoprotein GPM6a or polymorphisms within the GPM6A gene are associated with neuropsychiatric disorders like schizophrenia, depression, and claustrophobia. This protein promotes neurite outgrowth, filopodia formation, dendritic spine, and synapse maintenance in vitro. Although strong evidence suggests that its extracellular domains (ECs) are responsible for its function, the molecular mechanisms linking GPM6a to the onset of such diseases remain unknown. To gain knowledge of these mechanisms, we characterized new non-synonymous polymorphisms (nsSNPs) within the ECs of GPM6a. We identified six nsSNPs (T71P, T76I, M154V, F156Y, R163Q, and T210N) that impair GPM6a-induced plasticity in neuronal cultures without affecting GPM6a expression, folding, and localization to the cell membrane. However, we observed that some of these modified GPM6a's distribution at the cell membrane. Additionally, one of the nsSNPs exhibited alterations in GPM6a oligomerization, highlighting the importance of this amino acid in establishing homophilic cis interactions. Furthermore, we observed that the ability of GPM6a's extracellular domains to interact and induce cell aggregation was significantly decreased in several of the nsSNP variants studied here. Altogether, these results provide new insights into the key residues within GPM6a's extracellular regions that are crucial for its self-association, which is essential for promoting neuronal morphogenesis. Besides, these findings highlight the importance of reverse genetics approaches to gain knowledge on GPM6a's mechanisms of action and the genetic susceptibility of certain GPM6A variants.
Collapse
Affiliation(s)
- Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Ignacio Sallaberry
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física y CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Rocío Gutiérrez Fuster
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Facundo Brizuela Sotelo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Gabriela Inés Aparicio
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Laura Cecilia Estrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física y CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Gutiérrez Fuster R, León A, Aparicio GI, Brizuela Sotelo F, Scorticati C. Combined additive effects of neuronal membrane glycoprotein GPM6a and the intercellular cell adhesion molecule ICAM5 on neuronal morphogenesis. J Neurochem 2025; 169:e16231. [PMID: 39352694 DOI: 10.1111/jnc.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 12/20/2024]
Abstract
The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.
Collapse
Affiliation(s)
- R Gutiérrez Fuster
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - A León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - G I Aparicio
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - F Brizuela Sotelo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - C Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
3
|
Patel SH, Bramlett HM, Raval AP. Post-stroke whole body vibration therapy alters the cerebral transcriptome to promote ischemic tolerance in middle-aged female rats. Neurochem Int 2024; 180:105843. [PMID: 39214155 DOI: 10.1016/j.neuint.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Low-frequency whole body vibration (WBV; 40 Hz) therapy after stroke reduces ischemic brain damage, motor, and cognitive deficits in middle-aged rats of both sexes. However, the underlying mechanisms responsible for WBV induced ischemic protections remain elusive. In the current study, we hypothesize that post-stroke WBV initiates transcriptional reprogramming in the cortex of middle-aged female rats which is responsible for the observed reduced stroke consequences. Middle-aged female Sprague-Dawley rats that remained in constant diestrus (reproductively senescent) were randomized to either sham or transient middle cerebral artery occlusion (tMCAO; 90 min) surgery. A day after induction of tMCAO, animals received either WBV or no-WBV treatment for 15 min twice a day for five days for a week. Post-treatment, cortical tissue was analyzed for gene expression using RNA sequencing (RNAseq) and gene enrichment analysis via Enrichr. The RNAseq data analysis revealed significant changes in gene expression due to WBV therapy and the differentially expressed genes are involved in variety of biological processes like neurogenesis, angiogenesis, excitotoxicity, and cell death. Specifically, observed significant up-regulation of 116 and down-regulation of 258 genes after WBV in tMCAO exposed rats as compared to the no-WBV group. The observed transcriptional reprogramming will identify the possible mechanism(s) responsible for post-stroke WBV conferred ischemic protection and future studies will be needed to confirm the role of the genes identified in the current study.
Collapse
Affiliation(s)
- Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Graduate Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Graduate Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Graduate Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and High-Grade Glioma-Associated Vascular Cells Differentially Regulate Tumor Growth. Mol Cancer Res 2024; 22:656-667. [PMID: 38441553 PMCID: PMC11217726 DOI: 10.1158/1541-7786.mcr-23-1069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
A key feature distinguishing high-grade glioma (HG) from low-grade glioma (LG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor-associated vasculature from HG is molecularly and functionally distinct from normal brain vasculature and expresses higher levels of protumorigenic factors that promote glioma growth and progression. However, it remains unclear whether vessels from LG also express protumorigenic factors, and to what extent they functionally contribute to glioma growth. Here, we profile the transcriptomes of glioma-associated vascular cells (GVC) from IDH-mutant (mIDH) LG and IDH-wild-type (wIDH) HG and show that they exhibit significant molecular and functional differences. LG-GVC show enrichment of extracellular matrix-related gene sets and sensitivity to antiangiogenic drugs, whereas HG-GVC display an increase in immune response-related gene sets and antiangiogenic resistance. Strikingly, conditioned media from LG-GVC inhibits the growth of wIDH glioblastoma cells, whereas HG-GVC promotes growth. In vivo cotransplantation of LG-GVC with tumor cells reduces growth, whereas HG-GVC enhances tumor growth in orthotopic xenografts. We identify ASPORIN (ASPN), a small leucine-rich repeat proteoglycan, highly enriched in LG-GVC as a growth suppressor of wIDH glioblastoma cells in vitro and in vivo. Together, these findings indicate that GVC from LG and HG are molecularly and functionally distinct and differentially regulate tumor growth. Implications: This study demonstrated that vascular cells from IDH-mutant LG and IDH-wild-type HG exhibit distinct molecular signatures and have differential effects on tumor growth via regulation of ASPN-TGFβ1-GPM6A signaling.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - David Wang
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Lubayna Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Amy Pham
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Fuying Gao
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Riki Kawaguchi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
5
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. Aging Dis 2024; 16:1598-1625. [PMID: 38913039 PMCID: PMC12096932 DOI: 10.14336/ad.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, suggesting that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, suggesting that DEGs exert more impact on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we observe an overall downregulation of astrocyte and microglia modules across all brain regions in AD, indicating a prevailing trend of functional repression in glial cells across these regions. Notable genes from the CALM and HSP90 families emerged as hub genes across neuronal modules in all brain regions, suggesting conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis to comprehensively understand the cell-type-specific roles of genes in AD-related biological processes.
Collapse
Affiliation(s)
| | | | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
6
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585267. [PMID: 38559218 PMCID: PMC10980062 DOI: 10.1101/2024.03.15.585267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial cells across these regions. Notable genes, including those of the CALM and HSP90 family genes emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis for a comprehensive understanding of the cell-type-specific roles of genes in AD-related biological processes.
Collapse
Affiliation(s)
- Temitope Adeoye
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Syed I Shah
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
7
|
Deckers C, Karbalaei R, Miles NA, Harder EV, Witt E, Harris EP, Reissner K, Wimmer ME, Bangasser DA. Early resource scarcity causes cortical astrocyte enlargement and sex-specific changes in the orbitofrontal cortex transcriptome in adult rats. Neurobiol Stress 2024; 29:100607. [PMID: 38304302 PMCID: PMC10831308 DOI: 10.1016/j.ynstr.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN augments maternal behaviors and promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.
Collapse
Affiliation(s)
- Claire Deckers
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Reza Karbalaei
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Nylah A. Miles
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Eden V. Harder
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Witt
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erin P. Harris
- Neuroscience Institute, Georgia State University, Atlanta, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, USA
| | - Kathryn Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mathieu E. Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
| | - Debra A. Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, USA
- Neuroscience Institute, Georgia State University, Atlanta, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, USA
| |
Collapse
|
8
|
Ling E, Nemesh J, Goldman M, Kamitaki N, Reed N, Handsaker RE, Genovese G, Vogelgsang JS, Gerges S, Kashin S, Ghosh S, Esposito JM, Morris K, Meyer D, Lutservitz A, Mullally CD, Wysoker A, Spina L, Neumann A, Hogan M, Ichihara K, Berretta S, McCarroll SA. A concerted neuron-astrocyte program declines in ageing and schizophrenia. Nature 2024; 627:604-611. [PMID: 38448582 PMCID: PMC10954558 DOI: 10.1038/s41586-024-07109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.
Collapse
Affiliation(s)
- Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nora Reed
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Vogelgsang
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sherif Gerges
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alyssa Lutservitz
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christopher D Mullally
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Liv Spina
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marina Hogan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kiku Ichihara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sabina Berretta
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Cao Y, Liu YL, Lu XY, Kai HL, Han Y, Zheng YL. Integrative analysis from multi-center studies identifies a weighted gene co-expression network analysis-based Tregs signature in ovarian cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:736-750. [PMID: 37713585 DOI: 10.1002/tox.23948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/17/2023]
Abstract
Ovarian cancer (OC) is a malignancy associated with poor prognosis and has been linked to regulatory T cells (Tregs) in the immune microenvironment. Nevertheless, the association between Tregs-related genes (TRGs) and OC prognosis remains incompletely understood. The xCell algorithm was used to analyze Tregs scores across multiple cohorts. Weighted gene co-expression network analysis (WGCNA) was utilized to identify potential TRGs and molecular subtypes. Furthermore, we used nine machine learning algorithms to create risk models with prognostic indicators for patients. Reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to demonstrate the immunosuppressive ability of Tregs and the expression of key TRGs in clinical samples. Our study found that higher Tregs scores were significantly correlated with poorer overall survival. Recurrent patients exhibited increased Tregs infiltration and reduced CD8+ T cell. Moreover, molecular subtyping using seven key TRGs revealed that subtype B exhibited higher enrichment of multiple oncogenic pathways and had a worse prognosis. Notably, subtype B exhibited high Tregs levels, suggesting immune suppression. In addition, we validated machine learning-derived prognostic models across multiple platform cohorts to better distinguish patient survival and predict immunotherapy efficacy. Finally, the differential expression of key TRGs was validated using clinical samples. Our study provides novel insights into the role of Tregs in the immune microenvironment of OC. We identified potential therapeutic targets derived from Tregs (CD24, FHL2, GPM6A, HOXD8, NAP1L5, REN, and TOX3) for personalized treatment and created a machining learning-based prognostic model for OC patients, which could be useful in clinical practice.
Collapse
Affiliation(s)
- Yang Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Ying-Lei Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Xiao-Yan Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Hai-Li Kai
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Yun Han
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| | - Yan-Li Zheng
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, China
| |
Collapse
|
10
|
Ling E, Nemesh J, Goldman M, Kamitaki N, Reed N, Handsaker RE, Genovese G, Vogelgsang JS, Gerges S, Kashin S, Ghosh S, Esposito JM, French K, Meyer D, Lutservitz A, Mullally CD, Wysoker A, Spina L, Neumann A, Hogan M, Ichihara K, Berretta S, McCarroll SA. Concerted neuron-astrocyte gene expression declines in aging and schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574148. [PMID: 38260461 PMCID: PMC10802483 DOI: 10.1101/2024.01.07.574148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a striking relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA-seq to analyze the prefrontal cortex of 191 human donors ages 22-97 years, including healthy individuals and persons with schizophrenia. Latent-factor analysis of these data revealed that in persons whose cortical neurons more strongly expressed genes for synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the Synaptic Neuron-and-Astrocyte Program (SNAP). In schizophrenia and aging - two conditions that involve declines in cognitive flexibility and plasticity 1,2 - cells had divested from SNAP: astrocytes, glutamatergic (excitatory) neurons, and GABAergic (inhibitory) neurons all reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy persons of similar age, may underlie many aspects of normal human interindividual differences and be an important point of convergence for multiple kinds of pathophysiology.
Collapse
Affiliation(s)
- Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Nora Reed
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert E. Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S. Vogelgsang
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Sherif Gerges
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Lutservitz
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D. Mullally
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Liv Spina
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Hogan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA
| | - Steven A. McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Kulkarni S, Saha M, Slosberg J, Singh A, Nagaraj S, Becker L, Zhang C, Bukowski A, Wang Z, Liu G, Leser JM, Kumar M, Bakhshi S, Anderson MJ, Lewandoski M, Vincent E, Goff LA, Pasricha PJ. Age-associated changes in lineage composition of the enteric nervous system regulate gut health and disease. eLife 2023; 12:RP88051. [PMID: 38108810 PMCID: PMC10727506 DOI: 10.7554/elife.88051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The enteric nervous system (ENS), a collection of neural cells contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the neural crest and remains largely unchanged thereafter. Here, we show that the lineage composition of maturing ENS changes with time, with a decline in the canonical lineage of neural-crest derived neurons and their replacement by a newly identified lineage of mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility which can be reversed by GDNF supplementation. Transcriptomic analyses of human gut tissues show reduced GDNF-RET signaling in patients with intestinal dysmotility which is associated with reduction in neural crest-derived neuronal markers and concomitant increase in transcriptional patterns specific to mesoderm-derived neurons. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical CenterBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Monalee Saha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alpana Singh
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Sushma Nagaraj
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Laren Becker
- Division of Gastroenterology, Stanford University – School of MedicineStanfordUnited States
| | - Chengxiu Zhang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alicia Bukowski
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Zhuolun Wang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Guosheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jenna M Leser
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Mithra Kumar
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Shriya Bakhshi
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Matthew J Anderson
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Mark Lewandoski
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Elizabeth Vincent
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University – School of MedicineBaltimoreUnited States
- Kavli Neurodiscovery Institute, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | | |
Collapse
|
12
|
Wang Q, Xia C, Zhu A, Bao Y, Lu J, Chen Y, Xu J, Wang B, Naman CB, Li L, Wang Q, Liu H, Liang H, Cui W. Discrepancy of synaptic and microtubular protein phosphorylation in the hippocampus of APP/PS1 and MAPT×P301S transgenic mice at the early stage of Alzheimer's disease. Metab Brain Dis 2023; 38:1983-1997. [PMID: 37160613 DOI: 10.1007/s11011-023-01209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/02/2023] [Indexed: 05/11/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and is caused by multiple pathological factors, such as the overproduction of β-amyloid (Aβ) and the hyperphosphorylation of tau. However, there is limited knowledge of the mechanisms underlying AD pathogenesis and no effective biomarker for the early diagnosis of this disorder. Thus in this study, a quantitative phosphoproteomics analysis was performed to evaluate global protein phosphorylation in the hippocampus of Aβ overexpressing APP/PS1 transgenic mice and tau overexpressing MAPT×P301S transgenic mice, two in vivo AD model systems. These animals, up to ten weeks old, do not exhibit cognitive dysfunctions and are widely used to simulate early-stage AD patients. The number of differentially phosphorylated proteins (DPPs) was greater for APP/PS1 transgenic mice than for MAPT×P301S transgenic mice. The function of the DPPs in APP/PS1 transgenic mice was mainly related to synapses, while the function of the DPPs in MAPT×P301S transgenic mice was mainly related to microtubules. In addition, an AD core network was established including seven phosphoproteins differentially expressed in both animal models, and the function of this core network was related to synapses and oxidative stress. The results of this study suggest that Aβ and tau induce different protein phosphorylation profiles in the early stage of AD, leading to the dysfunctions in synapses and microtubule, respectively. And the detection of same DPPs in these animal models might be used for early AD diagnosis.
Collapse
Affiliation(s)
- Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - An Zhu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yongjie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiani Lu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yuan Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiayi Xu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315211, China
| | - Liping Li
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Qinwen Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.
- Ningbo Kangning Hospital, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and high-grade glioma endothelial cells differentially regulate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548125. [PMID: 37461434 PMCID: PMC10350040 DOI: 10.1101/2023.07.07.548125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background A key feature distinguishing high-grade glioma (HGG) from low-grade glioma (LGG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor endothelial cells (TEC) from HGG are molecularly and functionally distinct from normal brain EC and secrete higher levels of pro-tumorigenic factors that promote glioma growth and progression. However, it remains unclear whether TEC from LGG also express pro-tumorigenic factors, and to what extent they functionally contribute to glioma growth. Methods Transcriptomic profiling was conducted on tumor endothelial cells (TEC) from grade II/III (LGG, IDH-mutant) and grade IV HGG (IDH-wildtype). Functional differences between LGG- and HGG-TEC were evaluated using growth assays, resistance to anti-angiogenic drugs and radiation therapy. Conditioned media and specific factors from LGG- and HGG-TEC were tested on patient-derived gliomasphere lines using growth assays in vitro and in co-transplantation studies in vivo in orthotopic xenograft models. Results LGG-TEC showed enrichment of extracellular matrix and cell cycle-related gene sets and sensitivity to anti-angiogenic therapy whereas HGG-TEC displayed an increase in immune response-related gene sets and anti-angiogenic resistance. LGG- and HGG-TEC displayed opposing effects on growth and proliferation of IDH-wildtype and mutant tumor cells. Asporin (ASPN), a small leucine rich proteoglycan enriched in LGG-TEC was identified as a growth suppressor of IDH-wildtype GBM by modulating TGFΒ1-GPM6A signaling. Conclusions Our findings indicate that TEC from LGG and HGG are molecularly and functionally heterogeneous and differentially regulate the growth of IDH-wildtype and mutant tumors.
Collapse
|
14
|
Schoof M, Epplen GD, Walter C, Ballast A, Holdhof D, Göbel C, Neyazi S, Varghese J, Albert TK, Kerl K, Schüller U. The tumor suppressor CREBBP and the oncogene MYCN cooperate to induce malignant brain tumors in mice. Oncogenesis 2023; 12:36. [PMID: 37407554 DOI: 10.1038/s41389-023-00481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
The tumor suppressor and chromatin modifier cAMP response element-binding protein binding protein (CREBBP) and v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), a member of the MYC oncogene family, are critically involved in brain development. Both genes are frequently mutated in the same tumor entities, including high-grade glioma and medulloblastoma. Therefore, we hypothesized that alterations in both genes cooperate to induce brain tumor formation. For further investigation, hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice were generated, which combine Crebbp deletion with overexpression of MYCN in neural stem cells (NSCs). Within eight months, these animals developed aggressive forebrain tumors. The first tumors were detectable in the olfactory bulbs of seven-day-old mice. This location raises the possibility that presumptive founder cells are derived from the ventricular-subventricular zone (V-SVZ). To examine the cellular biology of these tumors, single-cell RNA sequencing was performed, which revealed high intratumoral heterogeneity. Data comparison with reference CNS cell types indicated the highest similarity of tumor cells with transit-amplifying NSCs or activated NSCs of the V-SVZ. Consequently, we analyzed V-SVZ NSCs of our mouse model aiming to confirm that the tumors originate from this stem cell niche. Mutant V-SVZ NSCs showed significantly increased cell viability and proliferation as well as reduced glial and neural differentiation in vitro compared to control cells. In summary, we demonstrate the oncogenic potential of a combined loss of function of CREBBP and overexpression of MYCN in this cell population. hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice thus provide a valuable tool to study tumor-driving mechanisms in a key neural stem/ progenitor cell niche.
Collapse
Affiliation(s)
- Melanie Schoof
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Annika Ballast
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Dörthe Holdhof
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Göbel
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Neyazi
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Thomas Karl Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Research Institute Children`s Cancer Center, Hamburg, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Deckers C, Karbalaei R, Miles NA, Harder EV, Witt E, Harris EP, Reissner K, Wimmer ME, Bangasser DA. Early resource scarcity causes cortical astrocyte enlargement and sex-specific changes in the orbitofrontal cortex transcriptome in adult rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547315. [PMID: 37425737 PMCID: PMC10327175 DOI: 10.1101/2023.07.01.547315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. However, Park7, which encodes for the protein DJ-1 that alters astrocyte morphology, was increased by LBN across sex. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.
Collapse
Affiliation(s)
- Claire Deckers
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Reza Karbalaei
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Nylah A Miles
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Eden V Harder
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily Witt
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erin P Harris
- Neuroscience Institute, Georgia State University, Atlanta
- Center for Behavioral Neuroscience, Georgia State University, Atlanta
| | - Kathryn Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia
- Neuroscience Institute, Georgia State University, Atlanta
- Center for Behavioral Neuroscience, Georgia State University, Atlanta
| |
Collapse
|
16
|
Dixit A, Savage HS, Greer JM. An appraisal of emerging therapeutic targets for multiple sclerosis derived from current preclinical models. Expert Opin Ther Targets 2023; 27:553-574. [PMID: 37438986 DOI: 10.1080/14728222.2023.2236301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative condition affecting the central nervous system (CNS). Although therapeutic approaches have become available over the last 20 years that markedly slow the progression of disease, there is no cure for MS. Furthermore, the capacity to repair existing CNS damage caused by MS remains very limited. AREAS COVERED Several animal models are widely used in MS research to identify potential druggable targets for new treatment of MS. In this review, we look at targets identified since 2019 in studies using these models, and their potential for effecting a cure for MS. EXPERT OPINION Refinement of therapeutic strategies targeting key molecules involved in the activation of immune cells, cytokine, and chemokine signaling, and the polarization of the immune response have dominated recent publications. While some progress has been made in identifying effective targets to combat chronic demyelination and neurodegeneration, much more work is required. Progress is largely limited by the gaps in knowledge of how the immune system and the nervous system interact in MS and its animal models, and whether the numerous targets present in both systems respond in the same way in each system to the same therapeutic manipulation.
Collapse
Affiliation(s)
- Aakanksha Dixit
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| | - Hannah S Savage
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| | - Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Stewart VD, Cadieux J, Thulasiram MR, Douglas TC, Drewnik DA, Selamat S, Lao Y, Spicer V, Hannila SS. Myelin‐associated glycoprotein alters the neuronal secretome and stimulates the release of
TGFβ
and proteins that affect neural plasticity. FEBS Lett 2022; 596:2952-2973. [DOI: 10.1002/1873-3468.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Vanessa D. Stewart
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Justine Cadieux
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Matsya R. Thulasiram
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Tinsley Claire Douglas
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Dennis A. Drewnik
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Suhaila Selamat
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Ying Lao
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Victor Spicer
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Sari S. Hannila
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| |
Collapse
|
18
|
Genetic Predisposition to Schizophrenia and Depressive Disorder Comorbidity. Genes (Basel) 2022; 13:genes13030457. [PMID: 35328011 PMCID: PMC8950769 DOI: 10.3390/genes13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Patients with schizophrenia have an increased risk of depressive disorders compared to the general population. The comorbidity between schizophrenia and depression suggests a potential coincidence of the pathophysiology and/or genetic predictors of these mental disorders. The aim of this study was to review the potential genetic predictors of schizophrenia and depression comorbidity. Materials and Methods: We carried out research and analysis of publications in the databases PubMed, Springer, Wiley Online Library, Taylor & Francis Online, Science Direct, and eLIBRARY.RU using keywords and their combinations. The search depth was the last 10 years (2010–2020). Full-text original articles, reviews, meta-analyses, and clinical observations were analyzed. A total of 459 articles were found, of which 45 articles corresponding to the purpose of this study were analyzed in this topic review. Results: Overlap in the symptoms and genetic predictors between these disorders suggests that a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. The molecular mechanisms linking schizophrenia and depression are polygenic. The most studied candidate genes are GRIN1, GPM6A, SEPTIN4, TPH1, TPH2, CACNA1C, CACNB2, and BCL9.Conclusion: Planning and conducting genome-wide and associative genetic studies of the comorbid conditions under consideration in psychiatry is important for the development of biological and clinical predictors and a personalized therapy strategy for schizophrenia. However, it should be recognized that the problems of predictive and personalized psychiatry in the diagnosis and treatment of schizophrenia and comorbid disorders are far from being resolved.
Collapse
|