1
|
Pal I, Bhattacharyya A, V-Ghaffari B, Williams ED, Xiao M, Rutherford MA, Rubio ME. Female mice lacking GluA3 show early onset of hearing loss, cochlear synaptopathy, and afferent terminal swellings in ambient sound levels. iScience 2025; 28:111799. [PMID: 39935454 PMCID: PMC11810710 DOI: 10.1016/j.isci.2025.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/12/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate excitatory cochlear transmission. However, unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3 KO ) in male mice reduced cochlear output by 8 postnatal weeks. Here, we studied the role of X-linked Gria3 in cochlear function and synapse anatomy in females. Auditory brainstem responses (ABRs) were similar in 3-week-old female Gria3 WT and Gria3 KO mice raised in quiet. However, after switching to ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-week and older in Gria3 KO . A quiet vivarium precluded this effect. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were more frequent, and swollen afferent terminals were observed only in female Gria3 KO mice in ambient sound. Synaptic GluA4:GluA2 ratios increased relative to Gria3 WT , particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3 KO . We propose that lack of GluA3 induces a sex-dependent vulnerability to AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Indra Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak V-Ghaffari
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Essence Devine Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Allen Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - María Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
De Faveri F, Ceriani F, Marcotti W. In vivo spontaneous Ca 2+ activity in the pre-hearing mammalian cochlea. Nat Commun 2025; 16:29. [PMID: 39747044 PMCID: PMC11695946 DOI: 10.1038/s41467-024-55519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo. Here we show how calcium dynamics in the cochlear neuroepithelium of live pre-hearing mice shape the activity of the inner hair cells (IHCs) and their afferent synapses. Both IHCs and supporting cells (SCs) generate spontaneous calcium-dependent activity. Calcium waves from SCs synchronise the activity of nearby IHCs, which then spreads longitudinally recruiting several additional IHCs via a calcium wave-independent mechanism. This synchronised IHC activity in vivo increases the probability of afferent terminal recruitment. Moreover, the modiolar-to-pillar segregation in sound sensitivity of mature auditory nerve fibres appears to be primed at pre-hearing ages.
Collapse
Affiliation(s)
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
3
|
Carlton AJ, Jeng JY, Grandi FC, De Faveri F, Amariutei AE, De Tomasi L, O'Connor A, Johnson SL, Furness DN, Brown SDM, Ceriani F, Bowl MR, Mustapha M, Marcotti W. BAI1 localizes AMPA receptors at the cochlear afferent post-synaptic density and is essential for hearing. Cell Rep 2024; 43:114025. [PMID: 38564333 DOI: 10.1016/j.celrep.2024.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Adam J Carlton
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiorella C Grandi
- Sorbonne Université, INSERM, Institute de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | | | - Ana E Amariutei
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lara De Tomasi
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew O'Connor
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L Johnson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - David N Furness
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
4
|
Yu C, He Y, Liu Q, Qian X, Gao X, Yang D, Yang Y, Wan G. Thyroid hormone controls the timing of cochlear ribbon synapse maturation. Biochem Biophys Res Commun 2024; 704:149704. [PMID: 38430700 DOI: 10.1016/j.bbrc.2024.149704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Ribbon synapses in the cochlear hair cells are subject to extensive pruning and maturation processes before hearing onset. Previous studies have highlighted the pivotal role of thyroid hormone (TH) in this developmental process, yet the detailed mechanisms are largely unknown. In this study, we found that the thyroid hormone receptor α (Thrα) is expressed in both sensory epithelium and spiral ganglion neurons in mice. Hypothyroidism, induced by Pax8 gene knockout, significantly delays the synaptic pruning during postnatal development in mice. Detailed spatiotemporal analysis of ribbon synapse distribution reveals that synaptic maturation involves not only ribbon pruning but also their migration, both of which are notably delayed in the cochlea of Pax8 knockout mice. Intriguingly, postnatal hyperthyroidism, induced by intraperitoneal injections of liothyronine sodium (T3), accelerates the pruning of ribbon synapses to the mature state without affecting the auditory functions. Our findings suggest that thyroid hormone does not play a deterministic role but rather controls the timing of cochlear ribbon synapse maturation.
Collapse
Affiliation(s)
- Chaorong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China
| | - Yihan He
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China
| | - Xiaoyun Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China
| | - Deye Yang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310000, China.
| | - Ye Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China.
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China.
| |
Collapse
|
5
|
Pal I, Bhattacharyya A, V-Ghaffari B, Williams ED, Xiao M, Rutherford MA, Rubio ME. Female GluA3-KO mice show early onset hearing loss and afferent swellings in ambient sound levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581467. [PMID: 38659964 PMCID: PMC11042237 DOI: 10.1101/2024.02.21.581467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
AMPA-type glutamate receptors (AMPAR) mediate excitatory cochlear transmission. However, the unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3KO) in male mice reduced cochlear output by 8-weeks of age. Since Gria3 is X-linked and considering sex differences in hearing vulnerability, we hypothesized accelerated presbycusis in Gria3KO females. Here, auditory brainstem responses (ABR) were similar in 3-week-old female Gria3WT and Gria3KO mice. However, when raised in ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-weeks and older in Gria3KO. In contrast, these metrics were similar between genotypes when raised in quiet. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were increased in female Gria3KO mice in ambient sound compared to Gria3WT or to either genotype raised in quiet. Synaptic GluA4:GluA2 ratios increased relative to Gria3WT, particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3KO. Swollen afferent terminals were observed by 5-weeks only in Gria3KO females reared in ambient sound. We propose that lack of GluA3 induces sex-dependent vulnerability to AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Indra Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak V-Ghaffari
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Essence D. Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - María Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
6
|
Lu Y, Liu J, Li B, Wang H, Wang F, Wang S, Wu H, Han H, Hua Y. Spatial patterns of noise-induced inner hair cell ribbon loss in the mouse mid-cochlea. iScience 2024; 27:108825. [PMID: 38313060 PMCID: PMC10835352 DOI: 10.1016/j.isci.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
In the mammalian cochlea, moderate acoustic overexposure leads to loss of ribbon-type synapse between the inner hair cell (IHC) and its postsynaptic spiral ganglion neuron (SGN), causing a reduced dynamic range of hearing but not a permanent threshold elevation. A prevailing view is that such ribbon loss (known as synaptopathy) selectively impacts the low-spontaneous-rate and high-threshold SGN fibers contacting predominantly the modiolar IHC face. However, the spatial pattern of synaptopathy remains scarcely characterized in the most sensitive mid-cochlear region, where two morphological subtypes of IHC with distinct ribbon size gradients coexist. Here, we used volume electron microscopy to investigate noise exposure-related changes in the mouse IHCs with and without ribbon loss. Our quantifications reveal that IHC subtypes differ in the worst-hit area of synaptopathy. Moreover, we show relative enrichment of mitochondria in the surviving SGN terminals, providing key experimental evidence for the long-proposed role of SGN-terminal mitochondria in synaptic vulnerability.
Collapse
Affiliation(s)
- Yan Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jing Liu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bei Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shengxiong Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Hua Han
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| |
Collapse
|
7
|
Moverman DJ, Liberman LD, Kraemer S, Corfas G, Liberman MC. Ultrastructure of noise-induced cochlear synaptopathy. Sci Rep 2023; 13:19456. [PMID: 37945811 PMCID: PMC10636047 DOI: 10.1038/s41598-023-46859-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Acoustic overexposure can eliminate synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs), even if hair-cell function recovers. This synaptopathy has been extensively studied by confocal microscopy, however, understanding the nature and sequence of damage requires ultrastructural analysis. Here, we used focused ion-beam scanning electron microscopy to mill, image, segment and reconstruct ANF terminals in mice, 1 day and 1 week after synaptopathic exposure (8-16 kHz, 98 dB SPL). At both survivals, ANF terminals were normal in number, but 62% and 53%, respectively, lacked normal synaptic specializations. Most non-synapsing fibers (57% and 48% at 1 day and 1 week) remained in contact with an IHC and contained healthy-looking organelles. ANFs showed a transient increase in mitochondrial content (51%) and efferent innervation (34%) at 1 day. Fibers maintaining synaptic connections showed hypertrophy of pre-synaptic ribbons at both 1 day and 1 week. Non-synaptic fibers were lower in mitochondrial content and typically on the modiolar side of the IHC, where ANFs with high-thresholds and low spontaneous rates are normally found. Even 1 week post-exposure, many ANF terminals remained in IHC contact despite loss of synaptic specializations, thus, regeneration efforts at early post-exposure times should concentrate on synaptogenesis rather than neurite extension.
Collapse
Affiliation(s)
- Daniel J Moverman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard College, Cambridge, MA, 02138, USA
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA.
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Michanski S, Kapoor R, Steyer AM, Möbius W, Früholz I, Ackermann F, Gültas M, Garner CC, Hamra FK, Neef J, Strenzke N, Moser T, Wichmann C. Piccolino is required for ribbon architecture at cochlear inner hair cell synapses and for hearing. EMBO Rep 2023; 24:e56702. [PMID: 37477166 PMCID: PMC10481675 DOI: 10.15252/embr.202256702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.
Collapse
Affiliation(s)
- Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| | - Rohan Kapoor
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Wiebke Möbius
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Iris Früholz
- Developmental, Neural, and Behavioral Biology Master ProgramUniversity of GöttingenGöttingenGermany
| | | | - Mehmet Gültas
- Faculty of AgricultureSouth Westphalia University of Applied SciencesSoestGermany
| | - Craig C Garner
- German Center for Neurodegenerative DiseasesBerlinGermany
- NeuroCureCluster of ExcellenceCharité – UniversitätsmedizinBerlinGermany
| | - F Kent Hamra
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jakob Neef
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Nicola Strenzke
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
9
|
Siebald C, Vincent PFY, Bottom RT, Sun S, Reijntjes DOJ, Manca M, Glowatzki E, Müller U. Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. Proc Natl Acad Sci U S A 2023; 120:e2217033120. [PMID: 37487063 PMCID: PMC10400978 DOI: 10.1073/pnas.2217033120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
Type I spiral ganglion neurons (SGNs) are the auditory afferents that transmit sound information from cochlear inner hair cells (IHCs) to the brainstem. These afferents consist of physiological subtypes that differ in their spontaneous firing rate (SR), activation threshold, and dynamic range and have been described as low, medium, and high SR fibers. Lately, single-cell RNA sequencing experiments have revealed three molecularly defined type I SGN subtypes. The extent to which physiological type I SGN subtypes correspond to molecularly defined subtypes is unclear. To address this question, we have generated mouse lines expressing CreERT2 in SGN subtypes that allow for a physiological assessment of molecular subtypes. We show that Lypd1-CreERT2 expressing SGNs represent a well-defined group of neurons that preferentially innervate the IHC modiolar side and exhibit a narrow range of low SRs. In contrast, Calb2-CreERT2 expressing SGNs preferentially innervate the IHC pillar side and exhibit a wider range of SRs, thus suggesting that a strict stratification of all SGNs into three molecular subclasses is not obvious, at least not with the CreERT2 tools used here. Genetically marked neuronal subtypes refine their innervation specificity onto IHCs postnatally during the time when activity is required to refine their molecular phenotype. Type I SGNs thus consist of genetically defined subtypes with distinct physiological properties and innervation patterns. The molecular subtype-specific lines characterized here will provide important tools for investigating the role of the physiologically distinct type I SGNs in encoding sound signals.
Collapse
Affiliation(s)
- Caroline Siebald
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Philippe F. Y. Vincent
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Riley T. Bottom
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Shuohao Sun
- National Institute of Biological Science, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing100084, China
| | - Daniel O. J. Reijntjes
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Marco Manca
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Elisabeth Glowatzki
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
10
|
Rutherford MA, Bhattacharyya A, Xiao M, Cai HM, Pal I, Rubio ME. GluA3 subunits are required for appropriate assembly of AMPAR GluA2 and GluA4 subunits on cochlear afferent synapses and for presynaptic ribbon modiolar-pillar morphology. eLife 2023; 12:e80950. [PMID: 36648432 PMCID: PMC9891727 DOI: 10.7554/elife.80950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Cochlear sound encoding depends on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), but reliance on specific pore-forming subunits is unknown. With 5-week-old male C57BL/6J Gria3-knockout mice (i.e., subunit GluA3KO) we determined cochlear function, synapse ultrastructure, and AMPAR molecular anatomy at ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons. GluA3KO and wild-type (GluA3WT) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar auditory brainstem response (ABR) thresholds, wave-1 amplitudes, and latencies. Postsynaptic densities (PSDs), presynaptic ribbons, and synaptic vesicle sizes were all larger on the modiolar side of the IHCs from GluA3WT, but not GluA3KO, demonstrating GluA3 is required for modiolar-pillar synapse differentiation. Presynaptic ribbons juxtaposed with postsynaptic GluA2/4 subunits were similar in quantity, however, lone ribbons were more frequent in GluA3KO and GluA2-lacking synapses were observed only in GluA3KO. GluA2 and GluA4 immunofluorescence volumes were smaller on the pillar side than the modiolar side in GluA3KO, despite increased pillar-side PSD size. Overall, the fluorescent puncta volumes of GluA2 and GluA4 were smaller in GluA3KO than GluA3WT. However, GluA3KO contained less GluA2 and greater GluA4 immunofluorescence intensity relative to GluA3WT (threefold greater mean GluA4:GluA2 ratio). Thus, GluA3 is essential in development, as germline disruption of Gria3 caused anatomical synapse pathology before cochlear output became symptomatic by ABR. We propose the hearing loss in older male GluA3KO mice results from progressive synaptopathy evident in 5-week-old mice as decreased abundance of GluA2 subunits and an increase in GluA2-lacking, GluA4-monomeric Ca2+-permeable AMPARs.
Collapse
Affiliation(s)
- Mark A Rutherford
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Hou-Ming Cai
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Indra Pal
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Maria Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Otolaryngology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
11
|
Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea. Mol Cell Neurosci 2022; 120:103720. [DOI: 10.1016/j.mcn.2022.103720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023] Open
|
12
|
Liu J, Wang S, Lu Y, Wang H, Wang F, Qiu M, Xie Q, Han H, Hua Y. Aligned Organization of Synapses and Mitochondria in Auditory Hair Cells. Neurosci Bull 2021; 38:235-248. [PMID: 34837647 PMCID: PMC8975952 DOI: 10.1007/s12264-021-00801-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/25/2021] [Indexed: 10/19/2022] Open
Abstract
Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell (IHC). This feature is believed to be critical for audition over a wide dynamic range, but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear. By means of three-dimensional electron microscopy and artificial intelligence-based algorithms, we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice. We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization. Moreover, our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.
Collapse
Affiliation(s)
- Jing Liu
- grid.9227.e0000000119573309National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Artificial Intelligence, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408 China ,grid.507732.4CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031 China
| | - Shengxiong Wang
- grid.24516.340000000123704535Putuo People’s Hospital, Tongji University, Shanghai, 200060 China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China
| | - Yan Lu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412523.3Department of Otolaryngology–Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai, 200125 China ,grid.16821.3c0000 0004 0368 8293Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412987.10000 0004 0630 1330Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125 China
| | - Haoyu Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412523.3Department of Otolaryngology–Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai, 200125 China ,grid.16821.3c0000 0004 0368 8293Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412987.10000 0004 0630 1330Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125 China
| | - Fangfang Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China
| | - Miaoxin Qiu
- grid.24516.340000000123704535Putuo People’s Hospital, Tongji University, Shanghai, 200060 China
| | - Qiwei Xie
- grid.28703.3e0000 0000 9040 3743Research Base of Beijing Modern Manufacturing Development, Beijing University of Technology, Beijing, 100124 China
| | - Hua Han
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Artificial Intelligence, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, 200125, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125, China.
| |
Collapse
|
13
|
Joshi Y, Petit CP, Miot S, Guillet M, Sendin G, Bourien J, Wang J, Pujol R, El Mestikawy S, Puel JL, Nouvian R. VGLUT3-p.A211V variant fuses stereocilia bundles and elongates synaptic ribbons. J Physiol 2021; 599:5397-5416. [PMID: 34783032 PMCID: PMC9299590 DOI: 10.1113/jp282181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Abstract DFNA25 is an autosomal‐dominant and progressive form of human deafness caused by mutations in the SLC17A8 gene, which encodes the vesicular glutamate transporter type 3 (VGLUT3). To resolve the mechanisms underlying DFNA25, we studied phenotypes of mice harbouring the p.A221V mutation in humans (corresponding to p.A224V in mice). Using auditory brainstem response and distortion product otoacoustic emissions, we showed progressive hearing loss with intact cochlear amplification in the VGLUT3A224V/A224V mouse. The summating potential was reduced, indicating the alteration of inner hair cell (IHC) receptor potential. Scanning electron microscopy examinations demonstrated the collapse of stereocilia bundles in IHCs, leaving those from outer hair cells unaffected. In addition, IHC ribbon synapses underwent structural and functional modifications at later stages. Using super‐resolution microscopy, we observed oversized synaptic ribbons and patch‐clamp membrane capacitance measurements showed an increase in the rate of the sustained releasable pool exocytosis. These results suggest that DFNA25 stems from a failure in the mechano‐transduction followed by a change in synaptic transfer. The VGLUT3A224V/A224V mouse model opens the way to a deeper understanding and to a potential treatment for DFNA25. Key points The vesicular glutamate transporter type 3 (VGLUT3) loads glutamate into the synaptic vesicles of auditory sensory cells, the inner hair cells (IHCs). The VGLUT3‐p.A211V variant is associated with human deafness DFNA25. Mutant mice carrying the VGLUT3‐p.A211V variant show progressive hearing loss. IHCs from mutant mice harbour distorted stereocilary bundles, which detect incoming sound stimulation, followed by oversized synaptic ribbons, which release glutamate onto the afferent nerve fibres. These results suggest that DFNA25 stems from the failure of auditory sensory cells to faithfully transduce acoustic cues into neural messages.
Collapse
Affiliation(s)
- Yuvraj Joshi
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Stéphanie Miot
- INM, Univ Montpellier, INSERM, Montpellier, France.,Sorbonne Universités, Université Pierre et Marie Curie UM 119, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | | | | | | | - Jing Wang
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Rémy Pujol
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Salah El Mestikawy
- Sorbonne Universités, Université Pierre et Marie Curie UM 119, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | | - Régis Nouvian
- INM, Univ Montpellier, INSERM, Montpellier, France.,INM, Univ Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
14
|
Ivanchenko MV, Indzhykulian AA, Corey DP. Electron Microscopy Techniques for Investigating Structure and Composition of Hair-Cell Stereociliary Bundles. Front Cell Dev Biol 2021; 9:744248. [PMID: 34746139 PMCID: PMC8569945 DOI: 10.3389/fcell.2021.744248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hair cells—the sensory cells of the vertebrate inner ear—bear at their apical surfaces a bundle of actin-filled protrusions called stereocilia, which mediate the cells’ mechanosensitivity. Hereditary deafness is often associated with morphological disorganization of stereocilia bundles, with the absence or mislocalization within stereocilia of specific proteins. Thus, stereocilia bundles are closely examined to understand most animal models of hereditary hearing loss. Because stereocilia have a diameter less than a wavelength of light, light microscopy is not adequate to reveal subtle changes in morphology or protein localization. Instead, electron microscopy (EM) has proven essential for understanding stereocilia bundle development, maintenance, normal function, and dysfunction in disease. Here we review a set of EM imaging techniques commonly used to study stereocilia, including optimal sample preparation and best imaging practices. These include conventional and immunogold transmission electron microscopy (TEM) and scanning electron microscopy (SEM), as well as focused-ion-beam scanning electron microscopy (FIB-SEM), which enables 3-D serial reconstruction of resin-embedded biological structures at a resolution of a few nanometers. Parameters for optimal sample preparation, fixation, immunogold labeling, metal coating and imaging are discussed. Special attention is given to protein localization in stereocilia using immunogold labeling. Finally, we describe the advantages and limitations of these EM techniques and their suitability for different types of studies.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Artur A Indzhykulian
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Lee J, Kawai K, Holt JR, Géléoc GSG. Sensory transduction is required for normal development and maturation of cochlear inner hair cell synapses. eLife 2021; 10:e69433. [PMID: 34734805 PMCID: PMC8598158 DOI: 10.7554/elife.69433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Acoustic overexposure and aging can damage auditory synapses in the inner ear by a process known as synaptopathy. These insults may also damage hair bundles and the sensory transduction apparatus in auditory hair cells. However, a connection between sensory transduction and synaptopathy has not been established. To evaluate potential contributions of sensory transduction to synapse formation and development, we assessed inner hair cell synapses in several genetic models of dysfunctional sensory transduction, including mice lacking transmembrane channel-like (Tmc) 1, Tmc2, or both, in Beethoven mice which carry a dominant Tmc1 mutation and in Spinner mice which carry a recessive mutation in transmembrane inner ear (Tmie). Our analyses reveal loss of synapses in the absence of sensory transduction and preservation of synapses in Tmc1-null mice following restoration of sensory transduction via Tmc1 gene therapy. These results provide insight into the requirement of sensory transduction for hair cell synapse development and maturation.
Collapse
Affiliation(s)
- John Lee
- Speech and Hearing Bioscience & Technology Program, Division of Medical Sciences, Harvard UniversityBostonUnited States
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Kosuke Kawai
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Jeffrey R Holt
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Neurology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Gwenaëlle SG Géléoc
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
16
|
Walia A, Lee C, Hartsock J, Goodman SS, Dolle R, Salt AN, Lichtenhan JT, Rutherford MA. Reducing Auditory Nerve Excitability by Acute Antagonism of Ca 2+-Permeable AMPA Receptors. Front Synaptic Neurosci 2021; 13:680621. [PMID: 34290596 PMCID: PMC8287724 DOI: 10.3389/fnsyn.2021.680621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Hearing depends on glutamatergic synaptic transmission mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs are tetramers, where inclusion of the GluA2 subunit reduces overall channel conductance and Ca2+ permeability. Cochlear afferent synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) contain the AMPAR subunits GluA2, 3, and 4. However, the tetrameric complement of cochlear AMPAR subunits is not known. It was recently shown in mice that chronic intracochlear delivery of IEM-1460, an antagonist selective for GluA2-lacking AMPARs [also known as Ca2+-permeable AMPARs (CP-AMPARs)], before, during, and after acoustic overexposure prevented both the trauma to ANF synapses and the ensuing reduction of cochlear nerve activity in response to sound. Surprisingly, baseline measurements of cochlear function before exposure were unaffected by chronic intracochlear delivery of IEM-1460. This suggested that cochlear afferent synapses contain GluA2-lacking CP-AMPARs alongside GluA2-containing Ca2+-impermeable AMPA receptors (CI-AMPARs), and that the former can be antagonized for protection while the latter remain conductive. Here, we investigated hearing function in the guinea pig during acute local or systemic delivery of CP-AMPAR antagonists. Acute intracochlear delivery of IEM-1460 or systemic delivery of IEM-1460 or IEM-1925 reduced the amplitude of the ANF compound action potential (CAP) significantly, for all tone levels and frequencies, by > 50% without affecting CAP thresholds or distortion product otoacoustic emissions (DPOAE). Following systemic dosing, IEM-1460 levels in cochlear perilymph were ~ 30% of blood levels, on average, consistent with pharmacokinetic properties predicting permeation of the compounds into the brain and ear. Both compounds were metabolically stable with half-lives >5 h in vitro, and elimination half-lives in vivo of 118 min (IEM-1460) and 68 min (IEM-1925). Heart rate monitoring and off-target binding assays suggest an enhanced safety profile for IEM-1925 over IEM-1460. Compound potency on CAP reduction (IC50 ~ 73 μM IEM-1460) was consistent with a mixture of GluA2-lacking and GluA2-containing AMPARs. These data strongly imply that cochlear afferent synapses of the guinea pig contain GluA2-lacking CP-AMPARs. We propose these CP-AMPARs may be acutely antagonized with systemic dosing, to protect from glutamate excitotoxicity, while transmission at GluA2-containing AMPARs persists to mediate hearing during the protection.
Collapse
Affiliation(s)
- Amit Walia
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Choongheon Lee
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Jared Hartsock
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - Roland Dolle
- Department of Biochemistry and Molecular Biophysics, Washington University Center for Drug Discovery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Alec N Salt
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Mark A Rutherford
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|