1
|
Cheng MC, Chen HM, Chang TY, Chen MC, Bai BJ, Chao CH, Hsieh WY, Lin YT, Ni CK, Lu MK, Liu HK, Lee SS, Chang CC. Acetylated glucomanno-oligosaccharides from human gut microbial degradation of Dendrobium polysaccharides: production and effects on anti-hyperglycemia-related factors. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2025; 10:100808. [DOI: 10.1016/j.carpta.2025.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025] Open
|
2
|
Krizanac M, Štancl P, Mass-Sanchez PB, Karlić R, Moeckel D, Lammers T, Asimakopoulos A, Weiskirchen R. The influence of perilipin 5 deficiency on gut microbiome profiles in murine metabolic dysfunction-associated fatty liver disease (MAFLD) and MAFLD-hepatocellular carcinoma. Front Cell Infect Microbiol 2024; 14:1443654. [PMID: 39469452 PMCID: PMC11513398 DOI: 10.3389/fcimb.2024.1443654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as the leading cause of hepatocellular carcinoma (HCC) worldwide. Over the years, Perilipin 5 (PLIN5) has been recognized as a key regulator of both MAFLD and HCC development. In our previous studies we demonstrated that deficiency in Plin5 reduces the severity of MAFLD and HCC in mice. Interestingly, it has been established that patients with MAFLD and HCC exhibit various changes in their gut microbiome profiles. The gut microbiome itself has been shown to play a role in modulating carcinogenesis and the immune response against cancer. Methods Therefore, we conducted a study to investigate the alterations in fecal microbiome composition in wild type (WT) and Plin5-deficient (Plin5 -/-) mice models of MAFLD and MAFLD-induced HCC (MAFLD-HCC). We utilized 16S rRNA gene sequencing analysis to profile the composition of gut bacteria in fecal samples. Results Notably, we discovered that the absence of Plin5 alone is already associated with changes in gut microbiota composition. Moreover, feeding the mice a Western diet (WD) resulted in additional microbial alterations. Interestingly, Plin5 -/- animals exhibited an enrichment of the beneficial taxa Lactobacillus in both animal models. Discussion Our findings identify Plin5 as a major regulator of gut microbiota during the development of MAFLD and MAFLD-HCC.
Collapse
Affiliation(s)
- Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Diana Moeckel
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
3
|
Li Y, Liu T, Qin L, Wu L. Effects of probiotic administration on overweight or obese children: a meta-analysis and systematic review. J Transl Med 2023; 21:525. [PMID: 37542325 PMCID: PMC10401801 DOI: 10.1186/s12967-023-04319-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in overweight or obese children by meta-analysis, namely, body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), adiponectin, leptin and tumor necrosis factor-α (TNF-α) and summarize the mechanisms of action of probiotics based on the existing researches. METHODS Six databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed and CNKI) were searched until March 2023. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model or random effect model to observe the effects of probiotic administration on the included indicators. RESULTS Four publications with a total of 206 overweight or obesity children were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HDL-C (MD, 0.06; 95% CI 0.03, 0.09; P = 0.0001), LDL-C (MD, - 0.06; 95% CI - 0.12, - 0.00; P = 0.04), adiponectin (MD, 1.39; 95% CI 1.19, 1.59; P < 0.00001), leptin (MD, - 2.72; 95% CI - 2.9, - 2.54; P < 0.00001) and TNF-α (MD, - 4.91; 95% CI - 7.15, - 2.67; P < 0.0001) compared to those in the placebo group. Still, for BMI, the palcebo group seemed to be better than the probiotic group (MD, 0.85; 95% CI 0.04, 1.66; P = 0.04). TC (MD, - 0.05; 95% CI - 0.12, 0.02; P = 0.14) and TG (MD, - 0.16; 95% CI - 0.36, 0.05; P = 0.14) were not different between two groups. CONCLUSIONS This review drew that probiotics might act as a role in regulating HDL-C, LDL-C, adiponectin, leptin and TNF-α in overweight or obesity children. Additionally, our systematic review yielded that probiotics might regulate lipid metabolism and improve obese associated symptoms by some paths. This meta-analysis has been registered at PROSPERO with ID: CRD42023408359.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Devi R, Sharma E, Thakur R, Lal P, Kumar A, Altaf MA, Singh B, Tiwari RK, Lal MK, Kumar R. Non-dairy prebiotics: Conceptual relevance with nutrigenomics and mechanistic understanding of the effects on human health. Food Res Int 2023; 170:112980. [PMID: 37316060 DOI: 10.1016/j.foodres.2023.112980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
The increasing health awareness of consumers has made a shift towards vegan and non-dairy prebiotics counterparts. Non-dairy prebiotics when fortified with vegan products have interesting properties and widely found its applications in food industry. The chief vegan products that have prebiotics added include water-soluble plant-based extracts (fermented beverages, frozen desserts), cereals (bread, cookies), and fruits (juices & jelly, ready to eat fruits). The main prebiotic components utilized are inulin, oligofructose, polydextrose, fructooligosaccharides, and xylooligosaccharides. Prebiotics' formulations, type and food matrix affect food products, host health, and technological attributes. Prebiotics from non-dairy sources have a variety of physiological effects that help to prevent and treat chronic metabolic diseases. This review focuses on mechanistic insight on non-dairy prebiotics affecting human health, how nutrigenomics is related to prebiotics development, and role of gene-microbes' interactions. The review will provide industries and researchers with important information about prebiotics, mechanism of non-dairy prebiotics and microbe interaction as well as prebiotic based vegan products.
Collapse
Affiliation(s)
- Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Richa Thakur
- Division of Silviculture and Forest Management, Himalayan Forest Research Institute, Conifer Campus, Shimla, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| |
Collapse
|
5
|
Influence of free and immobilized chitosan on a defined human gut microbial ecosystem. Food Res Int 2022; 161:111890. [DOI: 10.1016/j.foodres.2022.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
|
6
|
Sarfraz MH, Shahid A, Asghar S, Aslam B, Ashfaq UA, Raza H, Prieto MA, Simal-Gandara J, Barba FJ, Rajoka MSR, Khurshid M, Nashwan AJ. Personalized nutrition, microbiota, and metabolism: A triad for eudaimonia. Front Mol Biosci 2022; 9:1038830. [PMID: 36330221 PMCID: PMC9623024 DOI: 10.3389/fmolb.2022.1038830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
During the previous few years, the relationship between the gut microbiota, metabolic disorders, and diet has come to light, especially due to the understanding of the mechanisms that particularly link the gut microbiota with obesity in animal models and clinical trials. Research has led to the understanding that the responses of individuals to dietary inputs vary remarkably therefore no single diet can be suggested to every individual. The variations are attributed to differences in the microbiome and host characteristics. In general, it is believed that the immanent nature of host-derived factors makes them difficult to modulate. However, diet can more easily shape the microbiome, potentially influencing human physiology through modulation of digestion, absorption, mucosal immune response, and the availability of bioactive compounds. Thus, diet could be useful to influence the physiology of the host, as well as to ameliorate various disorders. In the present study, we have described recent developments in understanding the disparities of gut microbiota populations between individuals and the primary role of diet-microbiota interactions in modulating human physiology. A deeper understanding of these relationships can be useful for proposing personalized nutrition strategies and nutrition-based therapeutic interventions to improve human health.
Collapse
Affiliation(s)
| | - Aqsa Shahid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Samra Asghar
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hammad Raza
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Francisco J. Barba
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Muhammad Shahid Riaz Rajoka
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdulqadir J. Nashwan
- Nursing Department, Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation (HMC), Doha, Qatar
| |
Collapse
|
7
|
Gemikonakli G, Mach J, Zhang F, Bullock M, Tran T, El-Omar E, Hilmer SN. Polypharmacy With High Drug Burden Index (DBI) Alters the Gut Microbiome Overriding Aging Effects and Is Reversible With Deprescribing. J Gerontol A Biol Sci Med Sci 2022; 78:213-222. [PMID: 36124741 PMCID: PMC9951051 DOI: 10.1093/gerona/glac195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 11/13/2022] Open
Abstract
Aging, medication use, and global function are associated with changes in the microbiome. However, their interrelationships and changes over time require further characterization. In a longitudinal aging mouse study, we investigated the effects of aging, chronic polypharmacy with a high Drug Burden Index (DBI, measure of total anticholinergic and sedative medication exposure) and gradual cessation (deprescribing) on the microbiome, further exploring any association with global outcomes. Chronic administration of high DBI polypharmacy attenuated the aging-related reduction in alpha diversity, which was not sustained after deprescribing. Beta diversity and LEfSe (Linear discriminant analysis Effect Size) features varied with age, polypharmacy, and deprescribing. Aging with and without polypharmacy shared decreases in Bifidobacteriaceae, Paraprevotellaceae, Bacteroidaceae, and Clostridiaceae, while only aging with polypharmacy showed increased LEfSe features. Microbiome diversity correlated with frailty, nesting, and open field performance. Polypharmacy deprescribing reversed changes that occurred with treatment. However, the microbiome did not recover to its pretreatment composition at 12 months, nor develop the same aging-related changes from 12 to 24 months as the control group. Overall, aging, chronic polypharmacy, and deprescribing differentially affected the diversity and composition of the gut microbiome, which is associated with frailty and function.
Collapse
Affiliation(s)
- Gizem Gemikonakli
- Address correspondence to: Gizem Gemikonakli, BSc (Hons), Laboratory of Ageing and Pharmacology, Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, New South Wales, Australia. E-mail:
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, the University of Sydney and Royal North Shore Hosp, New South Wales, Australia,Northern Clinical School, Faculty of Medicine and Health, the University of Sydney, New South Wales, Australia
| | - Fan Zhang
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, New South Wales, Australia
| | - Martyn Bullock
- Northern Clinical School, Faculty of Medicine and Health, the University of Sydney, New South Wales, Australia
| | - Trang Tran
- Laboratory of Ageing and Pharmacology, Kolling Institute, the University of Sydney and Royal North Shore Hosp, New South Wales, Australia,Northern Clinical School, Faculty of Medicine and Health, the University of Sydney, New South Wales, Australia
| | - Emad El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, New South Wales, Australia
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, the University of Sydney and Royal North Shore Hosp, New South Wales, Australia,Northern Clinical School, Faculty of Medicine and Health, the University of Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Chen AC, Fang TJ, Ho HH, Chen JF, Kuo YW, Huang YY, Tsai SY, Wu SF, Lin HC, Yeh YT. A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Front Nutr 2022; 9:922993. [PMID: 35990345 PMCID: PMC9386160 DOI: 10.3389/fnut.2022.922993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aims Obese children are more prone to becoming obese adults, and excess adiposity consequently increases the risk of many complications, such as metabolic syndromes, non-alcoholic fatty liver disease, cardiovascular disease, etc. This study aimed to evaluate the effects of multi-strain probiotics on the gut microbiota and weight control in obese children. Methods A double-blind, randomized, placebo-controlled trial was carried out on overweight and obese children. Subjects received 12 weeks of treatment with supplementary probiotics that contained three strains: Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9, plus diet and exercise guidance. A total of 82 children were enrolled, and 53 children completed the study. Results The supplementation of multi-strain probiotics resulted in a significant effect demonstrating high-density lipoprotein (HDL) and adiponectin elevation. At the same time, body mass index (BMI) and serum total cholesterol, low-density lipoprotein (LDL), leptin, and tumor necrosis factor-alpha (TNF-α) levels were reduced. Lactobacillus spp. and B. animalis were particularly increased in subjects who received probiotic supplements. The abundance of Lactobacillus spp. was inversely correlated with the ether lipid metabolism pathway, while that of B. animalis was positively correlated with serum adiponectin levels. Conclusion Our results show that obesity-related gut dysbiosis can be reshaped by the supplementation of a multi-strain probiotic to improve lipid metabolism. The regular administration of a multi-strain probiotic supplement may be helpful for weight control and health management in overweight and obese children.
Collapse
Affiliation(s)
- An-Chyi Chen
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Tzu-Jung Fang
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shu-Fen Wu
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City, Taiwan.,Asia University Hospital, Asia University, Taichung City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| |
Collapse
|
9
|
Kynkäänniemi E, Lahtinen MH, Jian C, Salonen A, Hatanpää T, Mikkonen KS, Pajari AM. Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats. Food Funct 2022; 13:3746-3759. [DOI: 10.1039/d1fo03922a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Birch-derived polyphenol and fiber (glucuronoxylan, GX)-rich extract and highly purified GX-rich extract support the growth of beneficial gut bacteria, suppress the harmful ones, and increase the production of total short-chain fatty acids (SCFA).
Collapse
Affiliation(s)
- Emma Kynkäänniemi
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit H. Lahtinen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Timo Hatanpää
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi S. Mikkonen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, 00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Diotallevi C, Fontana M, Latimer C, Ternan NG, Pourshahidi LK, Lawther R, O'Connor G, Conterno L, Gasperotti M, Angeli A, Lotti C, Bianchi M, Vrhovsek U, Fava F, Gobbetti M, Gill CIR, Tuohy KM. Ex Vivo Fecal Fermentation of Human Ileal Fluid Collected After Wild Strawberry Consumption Modulates Human Microbiome Community Structure and Metabolic Output and Protects Against DNA Damage in Colonic Epithelial Cells. Mol Nutr Food Res 2021; 66:e2100405. [PMID: 34821456 DOI: 10.1002/mnfr.202100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/09/2021] [Indexed: 11/06/2022]
Abstract
SCOPE Wild strawberries (Fragaria vesca) are richer in (poly)phenols than common commercial strawberry varieties, e.g., Fragaria × ananassa. (Poly)phenols and their microbiota-derived metabolites are hypothesized to exert bioactivity within the human gut mucosa. To address this, the effects of wild strawberries are investigated with respect to their bioactivity and microbiota-modulating capacity using both in vitro and ex vivo approaches. METHODS AND RESULTS Ileal fluids collected pre- (0h) and post-consumption (8h) of 225 g wild strawberries by ileostomates (n = 5) and also in vitro digested strawberry varieties (Fragaria vesca and Fragaria × ananassa Duchesne) supernatants are collected. Subsequent fermentation of these supernatants using an in vitro batch culture proximal colon model reveals significant treatment-specific changes in microbiome community structure in terms of alpha but not beta diversity at 24 h. Nutri-kinetic analysis reveals a significant increase in the concentration of gut microbiota catabolites, including 3-(4hydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propanoic acid, and benzoic acid. Furthermore, post-berry ileal fermentates (24 h) significantly (p < 0.01) decrease DNA damage (% Tail DNA, COMET assay) in both HT29 cells (∼45%) and CCD 841 CoN cells (∼25%) compared to untreated controls. CONCLUSIONS Post berry consumption fermentates exhibit increased overall levels of (poly)phenolic metabolites, which retains their bioactivity, reducing DNA damage in colonocytes.
Collapse
Affiliation(s)
- Camilla Diotallevi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy.,Freie Universität Bozen-Libera Università di Bolzano, Faculty of Science and Technology, Bolzano (BZ), Italy
| | - Massimiliano Fontana
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy.,Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Lorenza Conterno
- Fermentation and Distillation Group, Laimburg Research Centre, Vadena (BZ), Italy
| | - Mattia Gasperotti
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Andrea Angeli
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cesare Lotti
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Martina Bianchi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Francesca Fava
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Marco Gobbetti
- Freie Universität Bozen-Libera Università di Bolzano, Faculty of Science and Technology, Bolzano (BZ), Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, UK
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| |
Collapse
|
11
|
Chen YR, Jing QL, Chen FL, Zheng H, Chen LD, Yang ZC. Desulfovibrio is not always associated with adverse health effects in the Guangdong Gut Microbiome Project. PeerJ 2021; 9:e12033. [PMID: 34466295 PMCID: PMC8380029 DOI: 10.7717/peerj.12033] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Desulfovibrio (DSV) is frequently found in the human intestine but limited knowledge is available regarding the relationship between DSV and host health. In this study, we analyzed large-scale cohort data from the Guangdong Gut Microbiome Project to study the ecology of DSV and the associations of DSV and host health parameters. Phylogenetic analysis showed that Desulfovibrio piger might be the most common and abundant DSV species in the GGMP. Predominant sub-OTUs of DSV were positively associated with bacterial community diversity. The relative abundance of DSV was positively correlated with beneficial genera, including Oscillospira, Coprococcus,Ruminococcus,Akkermansia, Roseburia,Faecalibacterium, andBacteroides, and was negatively associated with harmful genera, such as Clostridium,Escherichia,Klebsiella, and Ralstonia. Moreover, the relative abundance of DSV was negatively correlated with body mass index, waist size, triglyceride levels, and uric acid levels. This suggests that DSV is associated with healthy hosts in some human populations.
Collapse
Affiliation(s)
- Yi-Ran Chen
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qin-Long Jing
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Fang-Lan Chen
- Department of Intensive Care Unit, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Huimin Zheng
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Dan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| | - Zhi-Cong Yang
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Willems AEM, Sura-de Jong M, van Beek AP, Nederhof E, van Dijk G. Effects of macronutrient intake in obesity: a meta-analysis of low-carbohydrate and low-fat diets on markers of the metabolic syndrome. Nutr Rev 2021; 79:429-444. [PMID: 32885229 PMCID: PMC7947787 DOI: 10.1093/nutrit/nuaa044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The metabolic syndrome (MetS) comprises cardiometabolic risk factors frequently found in individuals with obesity. Guidelines to prevent or reverse MetS suggest limiting fat intake, however, lowering carbohydrate intake has gained attention too. The aim for this review was to determine to what extent either weight loss, reduction in caloric intake, or changes in macronutrient intake contribute to improvement in markers of MetS in persons with obesity without cardiometabolic disease. A meta-analysis was performed across a spectrum of studies applying low-carbohydrate (LC) and low-fat (LF) diets. PubMed searches yielded 17 articles describing 12 separate intervention studies assessing changes in MetS markers of persons with obesity assigned to LC (<40% energy from carbohydrates) or LF (<30% energy from fat) diets. Both diets could lead to weight loss and improve markers of MetS. Meta-regression revealed that weight loss most efficaciously reduced fasting glucose levels independent of macronutrient intake at the end of the study. Actual carbohydrate intake and actual fat intake at the end of the study, but not the percent changes in intake of these macronutrients, improved diastolic blood pressure and circulating triglyceride levels, without an effect of weight loss. The homeostatic model assessment of insulin resistance improved with both diets, whereas high-density lipoprotein cholesterol only improved in the LC diet, both irrespective of aforementioned factors. Remarkably, changes in caloric intake did not play a primary role in altering MetS markers. Taken together, these data suggest that, beyond the general effects of the LC and LF diet categories to improve MetS markers, there are also specific roles for weight loss, LC and HF intake, but not reduced caloric intake, that improve markers of MetS irrespective of diet categorization. On the basis of the results from this meta-analysis, guidelines to prevent MetS may need to be re-evaluated.
Collapse
Affiliation(s)
- Anouk E M Willems
- Groningen Institute for Evolutionary Life Sciences - Neurobiology, University of Groningen, Groningen, The Netherlands.,Van Hall Larenstein University of Applied Sciences, Applied Research Centre Food and Dairy, Leeuwarden, The Netherlands
| | - Martina Sura-de Jong
- Van Hall Larenstein University of Applied Sciences, Applied Research Centre Food and Dairy, Leeuwarden, The Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther Nederhof
- Van Hall Larenstein University of Applied Sciences, Applied Research Centre Food and Dairy, Leeuwarden, The Netherlands
| | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences - Neurobiology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Chen Y, Liu Y. Characterization of galacto-oligosaccharides using high-performance anion exchange chromatography-tandem mass spectrometry. J Sep Sci 2021; 44:2221-2233. [PMID: 33811795 DOI: 10.1002/jssc.202100064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
The analysis of complex oligosaccharide mixtures remains a challenge in the field of analytical chemistry. In this work, two commercial galacto-oligosaccharides samples were characterized using high-performance anion exchange chromatography coupled to mass spectrometry. The isomeric oligosaccharides were resolved with high resolution. The structures of the individual isomers with a degree of polymerization up to 6 were analyzed using targeted selected ion monitoring with data-dependent tandem mass spectrometry, with additional in-source collision-induced dissociation.
Collapse
Affiliation(s)
- Yongjing Chen
- Thermo Fisher Scientific, Sunnyvale, California, USA
| | - Yan Liu
- Thermo Fisher Scientific, Sunnyvale, California, USA
| |
Collapse
|
14
|
Kaur AP, Bhardwaj S, Dhanjal DS, Nepovimova E, Cruz-Martins N, Kuča K, Chopra C, Singh R, Kumar H, Șen F, Kumar V, Verma R, Kumar D. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021; 11:440. [PMID: 33809763 PMCID: PMC8002343 DOI: 10.3390/biom11030440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Fatih Șen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| |
Collapse
|
15
|
Mohammadifard N, Ghaderian N, Hassannejad R, Sajjadi F, Sadeghi M, Roohafza H, Salas-Salvadó J, Sarrafzadegan N. Longitudinal Association of Nut Consumption and the Risk of Cardiovascular Events: A Prospective Cohort Study in the Eastern Mediterranean Region. Front Nutr 2021; 7:610467. [PMID: 33553230 PMCID: PMC7859480 DOI: 10.3389/fnut.2020.610467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/25/2020] [Indexed: 02/02/2023] Open
Abstract
Background and Aim: There are few pieces of evidence on the association between nut consumption and the risk of cardiovascular disease (CVD) in the Eastern Mediterranean Region. This study investigated the relationship of nut consumption with the risk of CVD and all-cause mortality in the Iranian population. Methods and Results: This population-based prospective cohort study was carried out in 6,504 randomly selected participants aged ≥35 years in central Iran (2001-2013) in the framework of the Isfahan Cohort Study. Dietary data were collected by a validated 48-item food frequency questionnaire. Subjects or their next of kin were interviewed biannually, looking for the possible occurrence of cardiovascular events and all-cause mortality. During the median follow-up of 135 months and 52,704.3 person-years, we found a total of 751 CVD events. In unadjusted model, participants in the highest quartile of nut intake had a lower CVD risk {hazard ratio (HR) [95% confidence interval (CI)]: 0.57(0.47-0.70); P for trend < 0.001}, CVD mortality [HR (95% CI): 0.54 (0.33-0.72); P for trend < 0.001], and all-cause mortality [HR (95% CI): 0.24 (0.14-0.42); P for trend < 0.001]. In the fully adjusted model, the association was diluted, and no significant relationship was found between nut intake and CVD events and all-cause mortality, except for CVD mortality in the highest quartile vs. the lowest one [HR (95% CI): 0.55 (0.30-0.98)]. Conclusion: Nut intake had an inverse association with the risk of CVD mortality. It is suggested to perform studies to examine the association of individual types of nuts and different preparation methods on CVD risk and mortality.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Ghaderian
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Hassannejad
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Firouzeh Sajjadi
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Roohafza
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jordi Salas-Salvadó
- Department of Biochemistry and Biotechnology, Pere Virgili Institute for Health Research, Rovira i Virgili University, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Nizal Sarrafzadegan
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Lopez-Santamarina A, Mondragon ADC, Lamas A, Miranda JM, Franco CM, Cepeda A. Animal-Origin Prebiotics Based on Chitin: An Alternative for the Future? A Critical Review. Foods 2020; 9:E782. [PMID: 32545663 PMCID: PMC7353569 DOI: 10.3390/foods9060782] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota has been revealed in recent years as a factor that plays a decisive role in the maintenance of human health, as well as in the development of many non-communicable diseases. This microbiota can be modulated by various dietary factors, among which complex carbohydrates have a great influence. Although most complex carbohydrates included in the human diet come from vegetables, there are also options to include complex carbohydrates from non-vegetable sources, such as chitin and its derivatives. Chitin, and its derivatives such as chitosan can be obtained from non-vegetable sources, the best being insects, crustacean exoskeletons and fungi. The present review offers a broad perspective of the current knowledge surrounding the impacts of chitin and its derived polysaccharides on the human gut microbiota and the profound need for more in-depth investigations into this topic. Overall, the effects of whole insects or meal on the gut microbiota have contradictory results, possibly due to their high protein content. Better results are obtained for the case of chitin derivatives, regarding both metabolic effects and effects on the gut microbiota composition.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.L.-S.); (A.d.C.M.); (A.L.); (J.M.M.); (C.M.F.)
| |
Collapse
|
17
|
Nie Q, Chen H, Hu J, Tan H, Nie S, Xie M. Effects of Nondigestible Oligosaccharides on Obesity. Annu Rev Food Sci Technol 2020; 11:205-233. [DOI: 10.1146/annurev-food-032519-051743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is a major public health concern that has almost reached the level of pandemic and is rapidly progressing. The gut microbiota has emerged as a crucial regulator involved in the etiology of obesity, and the manipulation of it by dietary intervention has been widely used for reducing the risk of obesity. Nondigestible oligosaccharides (NDOs) are attracting increasing interests as prebiotics, as the indigestible ingredients can induce compositional or metabolic improvement to the gut microbiota, thereby improving gut health and giving rise to the production of short-chain fatty acids (SCFAs) to elicit metabolic effects on obesity. In this review, the role NDOs play in obesity intervention via modification of the gut microecology, as well as the physicochemical and physiological properties and industrial manufacture of NDOs, is discussed. Our goal is to provide a critical assessment of and stimulate comprehensive research into NDO use in obesity.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| |
Collapse
|
18
|
Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. Eur J Nutr 2019; 59:2617-2629. [DOI: 10.1007/s00394-019-02110-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023]
|
19
|
Jin J, Zhang L, Jia J, Chen Q, Yuan Z, Zhang X, Sun W, Ma C, Xu F, Zhan S, Ma L, Zhou G. Effects of Maternal Low-Protein Diet on Microbiota Structure and Function in the Jejunum of Huzhu Bamei Suckling Piglets. Animals (Basel) 2019; 9:ani9100713. [PMID: 31547553 PMCID: PMC6826398 DOI: 10.3390/ani9100713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The jejunum is the primary organ for digestion and nutrient absorption in mammals. The development of the jejunum in suckling piglets directly affects their growth performance post-weaning. The jejunum microbiome plays an important role in proliferation, metabolism, apoptosis, immune, and homeostasis of the epithelial cells within the organ. The composition and diversity of the gut microbiome is susceptible to the protein composition of the diet. Therefore, the effects of maternal low-protein diets on piglets' intestinal microbial structure and function have become a hot topic of study. Herein, a maternal low-protein diet was formulated to explore the effects on jejunum microbiome composition and metabolic profiles in Bamei suckling piglets. Using 16S ribosomal RNA (16S rRNA) sequencing in conjunction with bioinformatics analysis, 21 phyla and 297 genera were identified within the gut microflora. The top 10 phyla and 10 genera are within the gut bacteria. Next, KEGG analysis showed that the low-protein diet significantly increased the gut microbial composition, transport and catabolism, immune system, global and overview maps, amino acid metabolism, metabolism of cofactors and vitamins, endocrine system, biosynthesis of other secondary metabolites, signal transduction, environmental adaptation, and cell motility. Taken together, low-protein diets do not appear to affect the reproductive performance of Bamei sows but improved the gut microbiome of the suckling piglets as well as reduced the probability of diarrhea. The data presented here provide new insights on the dietary protein requirements to support the Huzhu Bamei pig industry.
Collapse
Affiliation(s)
- Jipeng Jin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
- Correspondence: (L.Z.); (J.J.); Tel.: +86-15002638216 (L.Z.); +86-18797328237 (J.J.)
| | - Jianlei Jia
- Key of Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Q.C.); (Z.Y.)
- Correspondence: (L.Z.); (J.J.); Tel.: +86-15002638216 (L.Z.); +86-18797328237 (J.J.)
| | - Qian Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Q.C.); (Z.Y.)
| | - Zan Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Q.C.); (Z.Y.)
| | - Xiaoyan Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
| | - Weibo Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
| | - Cunming Ma
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Fafang Xu
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Shoujun Zhan
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Limin Ma
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Guihua Zhou
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| |
Collapse
|
20
|
Study of in vitro digestion of Tenebrio molitor flour for evaluation of its impact on the human gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Zeng B, Lai Z, Sun L, Zhang Z, Yang J, Li Z, Lin J, Zhang Z. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study. Res Microbiol 2019; 170:43-52. [DOI: 10.1016/j.resmic.2018.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
|
22
|
A study of the correlation between obesity and intestinal flora in school-age children. Sci Rep 2018; 8:14511. [PMID: 30267022 PMCID: PMC6162261 DOI: 10.1038/s41598-018-32730-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
With the improvement of living standards and dietary changes, childhood obesity has increased worldwide. This study aimed to understand the differences of intestinal flora structure between obese and normal children at school-age. Using the next generation sequencing platform, Illumina Miseq, 16S rDNA high-throughput sequencing technology, we analyzed the diversity and relative abundance of intestinal flora in 39 obese and 38 normal control school-age children. First, we categorized gut bacteria on the basis of their Operational taxonomic units (OTUs) using the RDP 16s rRNA database in RDP classifier. The alpha (α) diversity was used to measure the diversity within a sample and is calculated as a value for each sample. The beta (β) diversity was used to compare different samples and to measure the dissimilarity between each other sample. Our results indicated that intestinal flora in obese children showed lower diversity than normal controls. Significant differences of relative abundance of intestinal flora were detected at multiple levels of classifications. Identification of intestinal flora with significant difference between obese and normal children may provide important information to uncover the roles of these specific bacteria in the development of obesity and find new strategy to prevent and treat obesity through intervening the intestinal flora.
Collapse
|
23
|
Medina-Vera I, Sanchez-Tapia M, Noriega-López L, Granados-Portillo O, Guevara-Cruz M, Flores-López A, Avila-Nava A, Fernández ML, Tovar AR, Torres N. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. DIABETES & METABOLISM 2018; 45:122-131. [PMID: 30266575 DOI: 10.1016/j.diabet.2018.09.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
AIM To study the effects of a functional food-based dietary intervention on faecal microbiota and biochemical parameters in patients with type 2 diabetes (T2D). MATERIALS AND METHODS This placebo-controlled, randomized, double-blind study included 81 patients with T2D divided into two 3-month treatment groups: one following a reduced-energy diet with a dietary portfolio (DP) comprising high-fibre, polyphenol-rich and vegetable-protein functional foods; the other taking a placebo (P). The primary outcome was the effect of the DP on faecal microbiota. Secondary endpoints were biochemical parameters, lipopolysaccharide, branched-chain amino acids, trimethylamine N-oxide, glycosylated haemoglobin (HbA1c) and free fatty acids (FFAs). RESULTS Patients with T2D exhibited intestinal dysbiosis characterized by an increase in Prevotella copri. Dietary intervention with functional foods significantly modified faecal microbiota compared with P by increasing alpha diversity and modifying the abundance of specific bacteria, independently of antidiabetic drugs. There was a decrease in P. copri and increases in Faecalibacterium prausnitzii and Akkermansia muciniphila, two bacterial species known to have anti-inflammatory effects. The DP group also exhibited significant reductions in areas under the curve for glucose, total and LDL cholesterol, FFAs, HbA1c (P< 0.05), triglycerides and CRP, and an increase in antioxidant activity (P< 0.01) vs. the P group. CONCLUSION Long-term adherence to a high-fibre, polyphenol-enriched and vegetable-protein-based diet provides benefits for the composition of faecal microbiota, and may offer potential therapies for improvement of glycaemic control, dyslipidaemia and inflammation.
Collapse
Affiliation(s)
- I Medina-Vera
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico; Facultad de Medicina, Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - M Sanchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico
| | - L Noriega-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico
| | - O Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico
| | - M Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico
| | - A Flores-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico
| | - A Avila-Nava
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico
| | - M L Fernández
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - A R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico
| | - N Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, 14080 Ciudad de México, Mexico.
| |
Collapse
|
24
|
Welcome MO. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review. Dement Geriatr Cogn Dis Extra 2018; 8:360-381. [PMID: 30483303 PMCID: PMC6244112 DOI: 10.1159/000492491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Accumulating data suggest a crucial role of the intestinal microbiota in the development and progression of neurodegenerative diseases. More recently, emerging reports have revealed an association between intestinal microbiota dysfunctions and dementia, a debilitating multifactorial disorder, characterized by progressive deterioration of cognition and behavior that interferes with the social and professional life of the sufferer. However, the mechanisms of this association are not fully understood. SUMMARY In this review, I discuss recent data that suggest mechanisms of cross-talk between intestinal microbiota dysfunction and the brain that underlie the development of dementia. Potential therapeutic options for dementia are also discussed. The pleiotropic signaling of the metabolic products of the intestinal microbiota together with their specific roles in the maintenance of both the intestinal and blood-brain barriers as well as regulation of local, distant, and circulating immunocytes, and enteric, visceral, and central neural functions are integral to a healthy gut and brain. KEY MESSAGES Research investigating the effect of intestinal microbiota dysfunctions on brain health should focus on multiple interrelated systems involving local and central neuroendocrine, immunocyte, and neural signaling of microbial products and transmitters and neurohumoral cells that not only maintain intestinal, but also blood brain-barrier integrity. The change in intestinal microbiome/dysbiome repertoire is crucial to the development of dementia.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
25
|
Han S, Gao J, Zhou Q, Liu S, Wen C, Yang X. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag Res 2018; 10:199-206. [PMID: 29440929 PMCID: PMC5798565 DOI: 10.2147/cmar.s153482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is one of the most common human malignant tumors. Recent research has shown that colorectal cancer is a dysbacteriosis-induced disease; however, the role of intestinal bacteria in colorectal cancer is unclear. This review explores the role of intestinal flora in colorectal cancer. In total, 57 articles were included after identification and screening. The pertinent literature on floral metabolites in colorectal cancer from three metabolic perspectives - including carbohydrate, lipid, and amino acid metabolism - was analyzed. An association network regarding the role of intestinal flora from a metabolic perspective was constructed by analyzing the previous literature to provide direction and insight for further research on intestinal flora in colorectal cancer.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital
| | - Jianlan Gao
- Department of Medical Oncology, Huzhou Central Hospital
| | - Qing Zhou
- Department of Critical Care Medicine, Huzhou Central Hospital
| | | | - Caixia Wen
- Medical College of Nursing, Huzhou University
| | - Xi Yang
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Huzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|