1
|
Chen L, Chen B, Dai Y, Sun Q, Wu J, Zheng D, Vgontzas AN, Tang X, Li Y. The association of objective daytime sleepiness with impaired glucose metabolism in patients with obstructive sleep apnea: a multi-omics study. Sleep 2025; 48:zsae240. [PMID: 39549285 DOI: 10.1093/sleep/zsae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Indexed: 11/18/2024] Open
Abstract
STUDY OBJECTIVES To examine the joint effect of obstructive sleep apnea (OSA) and objective excessive daytime sleepiness (EDS) on glucose metabolism and the underlying mechanisms. METHODS We included 127 patients with OSA. The multiple sleep latency test (MSLT) and Epworth sleepiness scale (ESS) were used to assess objective and subjective EDS, respectively. Disordered glucose metabolism was defined as either a physician diagnosis or having fasting blood glucose levels ≥5.6 mmol/L. Values of fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) higher than the median values of our sample were defined as high fasting insulin and insulin resistance. Serum metabolomics and fecal microbiota were used to explore underlying mechanisms. RESULTS Lower MSLT values were associated with higher levels of fasting blood glucose, fasting insulin, and HOMA-IR. Furthermore, objective EDS was associated with increased odds of disordered glucose metabolism, elevated fasting insulin, and insulin resistance. Dysregulation of serum valine degradation and dysbiosis of fecal Bacteroides thetaiotaomicron were associated with impaired glucose metabolism in OSA with objective EDS. No association between subjective EDS and impaired glucose metabolism was observed. CONCLUSIONS OSA with objective, but not subjective, EDS is associated with an increased risk of disordered glucose metabolism and insulin resistance. Dysregulation of valine degradation and dysbiosis of B. thetaiotaomicron appear to link objective EDS and disordered glucose metabolism in OSA.
Collapse
Affiliation(s)
- Le Chen
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
- Joint Lab of Biological Psychiatry Shantou University-University of Manitoba, Shantou University Medical College, Shantou, China
| | - Baixin Chen
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
- Joint Lab of Biological Psychiatry Shantou University-University of Manitoba, Shantou University Medical College, Shantou, China
| | - Yanyuan Dai
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
- Joint Lab of Biological Psychiatry Shantou University-University of Manitoba, Shantou University Medical College, Shantou, China
| | - Qimeng Sun
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
| | - Jun Wu
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
- Joint Lab of Biological Psychiatry Shantou University-University of Manitoba, Shantou University Medical College, Shantou, China
| | - Dandan Zheng
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
- Joint Lab of Biological Psychiatry Shantou University-University of Manitoba, Shantou University Medical College, Shantou, China
| | - Alexandros N Vgontzas
- Department of Psychiatry and Behavioral Health, Sleep Research and Treatment Center, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Li
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
- Joint Lab of Biological Psychiatry Shantou University-University of Manitoba, Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Jang JH, Sung JH, Huh JY. Diverse Functions of Macrophages in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease: Bridging Inflammation and Metabolism. Immune Netw 2025; 25:e12. [PMID: 40078789 PMCID: PMC11896663 DOI: 10.4110/in.2025.25.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Macrophages play crucial roles in immune response and tissue homeostasis, with their functions becoming increasingly complex in obesity-mediated metabolic disorders. This review explores the extensive range of macrophage activities within adipose and liver tissues, emphasizing their contribution to the pathogenesis and progression of obesity and its related metabolic dysfunction-associated steatotic liver disease (MASLD). In the context of obesity, macrophages respond adaptively to lipid overloads and inflammatory cues in adipose tissue, profoundly influencing insulin resistance and metabolic homeostasis. Concurrently, their role in the liver extends to moderating inflammation and orchestrating fibrotic responses, integral to the development of MASLD. Highlighting the spectrum of macrophage phenotypes across these metabolic landscapes, we summarize their diverse roles in linking inflammatory processes with metabolic functions. This review advocates for a deeper understanding of macrophage subsets in metabolic tissues, proposing targeted research to harness their therapeutic potential in mitigating MASLD and other metabolic disorders.
Collapse
Affiliation(s)
- Jun Hee Jang
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Hyun Sung
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| |
Collapse
|
3
|
Rodrigo‐Carbó C, Madinaveitia‐Nisarre L, Pérez‐Calahorra S, Gracia‐Rubio I, Cebollada A, Galindo‐Lalana C, Mateo‐Gallego R, Lamiquiz‐Moneo I. Low-calorie, high-protein diets, regardless of protein source, improve glucose metabolism and cardiometabolic profiles in subjects with prediabetes or type 2 diabetes and overweight or obesity. Diabetes Obes Metab 2025; 27:268-279. [PMID: 39420528 PMCID: PMC11618321 DOI: 10.1111/dom.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
AIM The aim was to study the effect of two low-calorie, high-protein (HP) diets, with most of the protein coming from animal or plant sources, on glycaemic and other cardiometabolic outcomes in subjects with overweight or obesity and glucose metabolism disorders. MATERIALS AND METHODS A total of 117 participants aged >18 years with body mass index over 27.5 kg/m2 and prediabetes or type 2 diabetes mellitus (T2DM) were randomized to one of two HP low-calorie diets (35% of total calories from protein), in which 75% of the protein was from either plant-based sources (HPP) or animal sources (HPA). For both diets, 30% and 35% of the total calories were from fat and carbohydrates, respectively. The dietary intervention lasted 6 months. RESULTS Both diets improved body composition to a similar extent, including weight loss (-8.05 ± 5.12 kg for the HPA diet and -7.70 ± 5.47 kg for the HPP diet at 6 months) and fat mass, mainly visceral fat. Both diets had a similar beneficial effect on glucose metabolism, including fasting glucose, insulin, homeostasis model assessment of insulin resistance index and glycated haemoglobin. Other biochemical parameters, including lipid profiles, liver enzymes, adipokines and inflammatory biomarkers, similarly improved in both groups. Fasting incretins, mainly glucagon-like peptide 1, decreased significantly in both groups, and this effect correlated with weight loss. CONCLUSIONS Low-calorie HP diets improved body composition, glucose metabolism and other cardiometabolic outcomes, regardless of protein source (either animal or plant sources), in outpatients with prediabetes or T2DM. CLINICAL TRIAL REGISTRATION The clinical trial was registered in ClinicalTrials.gov (identifier: NCT05456347) https://clinicaltrials.gov/study/NCT05456347?term=NCT05456347&rank=1.
Collapse
Affiliation(s)
- Carmen Rodrigo‐Carbó
- Miguel Servet University Hospital, Aragon Health Research Institute, CIBERCVZaragozaSpain
- Departament of Physiatry and Nursing, Faculty of Health and Sport ScienceUniversity of ZaragozaHuescaSpain
| | | | - Sofía Pérez‐Calahorra
- Departament of Physiatry and Nursing, Faculty of Health ScienceUniversity of ZaragozaZaragozaSpain
| | - Irene Gracia‐Rubio
- Miguel Servet University Hospital, Aragon Health Research Institute, CIBERCVZaragozaSpain
- Department of Human Anatomy and Histology, Faculty of MedicineUniversity of ZaragozaZaragozaSpain
| | | | - Carlos Galindo‐Lalana
- Miguel Servet University Hospital, Aragon Health Research Institute, CIBERCVZaragozaSpain
| | - Rocío Mateo‐Gallego
- Miguel Servet University Hospital, Aragon Health Research Institute, CIBERCVZaragozaSpain
- Departament of Physiatry and Nursing, Faculty of Health and Sport ScienceUniversity of ZaragozaHuescaSpain
| | - Itziar Lamiquiz‐Moneo
- Miguel Servet University Hospital, Aragon Health Research Institute, CIBERCVZaragozaSpain
- Department of Human Anatomy and Histology, Faculty of MedicineUniversity of ZaragozaZaragozaSpain
| |
Collapse
|
4
|
Huang H, Chen H, Yao Y, Lou X. Branched-chain amino acids supplementation induces insulin resistance and pro-inflammatory macrophage polarization via INFGR1/JAK1/STAT1 signal pathway. Mol Med 2024; 30:149. [PMID: 39267003 PMCID: PMC11391606 DOI: 10.1186/s10020-024-00894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Obesity is a global epidemic, and the low-grade chronic inflammation of adipose tissue in obese individuals can lead to insulin resistance and type 2 diabetes. Adipose tissue macrophages (ATMs) are the main source of pro-inflammatory cytokines in adipose tissue, making them an important target for therapy. While branched-chain amino acids (BCAA) have been strongly linked to obesity and type 2 diabetes in humans, the relationship between BCAA catabolism and adipose tissue inflammation is unclear. This study aims to investigate whether disrupted BCAA catabolism influences the function of adipose tissue macrophages and the secretion of pro-inflammatory cytokines in adipose tissue, and to determine the underlying mechanism. This research will help us better understand the role of BCAA catabolism in adipose tissue inflammation, obesity, and type 2 diabetes. METHODS In vivo, we examined whether the BCAA catabolism in ATMs was altered in high-fat diet-induced obesity mice, and if BCAA supplementation would influence obesity, glucose tolerance, insulin sensitivity, adipose tissue inflammation and ATMs polarization in mice. In vitro, we isolated ATMs from standard chow and high BCAA-fed group mice, using RNA-sequencing to investigate the potential molecular pathway regulated by BCAA accumulation. Finally, we performed targeted gene silence experiment and used immunoblotting assays to verify our findings. RESULTS We found that BCAA catabolic enzymes in ATMs were influenced by high-fat diet induced obesity mice, which caused the accumulation of both BCAA and its downstream BCKA. BCAA supplementation will cause obesity and insulin resistance compared to standard chow (STC) group. And high BCAA diet will induce pro-inflammatory cytokines including Interlukin-1beta (IL-1β), Tumor Necrosis Factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) secretion in adipose tissue as well as promoting ATMs M1 polarization (pro-inflammatory phenotype). Transcriptomic analysis revealed that a high BCAA diet would activate IFNGR1/JAK1/STAT1 pathway, and IFNGR1 specific silence can abolish the effect of BCAA supplementation-induced inflammation and ATMs M1 polarization. CONCLUSIONS The obesity mice model reveals the catabolism of BCAA was disrupted which will cause the accumulation of BCAA, and high-level BCAA will promote ATMs M1 polarization and increase the pro-inflammatory cytokines in adipose tissue which will cause the insulin resistance in further. Therefore, reducing the circulating level of BCAA can be a therapeutic strategy in obesity and insulin resistance patients.
Collapse
Affiliation(s)
- Huaying Huang
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Heye Chen
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Yu Yao
- Department of Neurology, JinHua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Xueyong Lou
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China.
| |
Collapse
|
5
|
Tobias DK, Hamaya R, Clish CB, Liang L, Deik A, Dennis C, Bullock K, Zhang C, Hu FB, Manson JE. Type 2 diabetes metabolomics score and risk of progression to type 2 diabetes among women with a history of gestational diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3763. [PMID: 38287718 PMCID: PMC10842268 DOI: 10.1002/dmrr.3763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/08/2023] [Accepted: 11/05/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Several metabolites are individually related to incident type 2 diabetes (T2D) risk. We prospectively evaluated a novel T2D-metabolite pattern with a risk of progression to T2D among high-risk women with a history of gestational diabetes mellitus (GDM). METHODS The longitudinal Nurses' Health Study II cohort enroled 116,429 women in 1989 and collected blood samples from 1996 to 1999. We profiled plasma metabolites in 175 incident T2D cases and 175 age-matched controls, all with a history of GDM before the blood draw. We derived a metabolomics score from 21 metabolites previously associated with incident T2D in the published literature by scoring according to the participants' quintile (1-5 points) of each metabolite. We modelled the T2D metabolomics score categorically in quartiles and continuously per 1 standard deviation (SD) with the risk of incident T2D using conditional logistic regression models adjusting for body mass index at the blood draw, and other established T2D risk factors. RESULTS The percentage of women progressing to T2D ranged from 10% in the bottom T2D metabolomics score quartile to 78% in the highest score quartile. Adjusting for established T2D risk factors, women in the highest quartile had more than a 20-fold greater diabetes risk than women in the lowest quartile (odds ratios [OR] = 23.1 [95% CI = 8.6, 62.1]; p for trend<0.001). The continuous T2D metabolomics score was strongly and positively associated with incident T2D (adjusted OR = 2.7 per SD [95% CI = 1.9, 3.7], p < 0.0001). CONCLUSIONS A pattern of plasma metabolites among high-risk women is associated with a markedly elevated risk of progression to T2D later in life.
Collapse
Affiliation(s)
- Deirdre K. Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Nutrition Department, Harvard TH Chan School of Public Health, Boston, MA
| | - Rikuta Hamaya
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Epidemiology Department, Harvard TH Chan School of Public Health, Boston, MA
| | | | - Liming Liang
- Biostatistics Department, Harvard TH Chan School of Public Health, Boston, MA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Frank B. Hu
- Nutrition Department, Harvard TH Chan School of Public Health, Boston, MA
- Epidemiology Department, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Epidemiology Department, Harvard TH Chan School of Public Health, Boston, MA
| |
Collapse
|
6
|
Andersen CJ, Huang L, Zhai F, Esposito CP, Greco JM, Zhang R, Woodruff R, Sloan A, Van Dyke AR. Consumption of Different Egg-Based Diets Alters Clinical Metabolic and Hematological Parameters in Young, Healthy Men and Women. Nutrients 2023; 15:3747. [PMID: 37686779 PMCID: PMC10490185 DOI: 10.3390/nu15173747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Eggs-particularly egg yolks-are a rich source of bioactive nutrients and dietary compounds that influence metabolic health, lipid metabolism, immune function, and hematopoiesis. We investigated the effects of consuming an egg-free diet, three egg whites per day, and three whole eggs per day for 4 weeks on comprehensive clinical metabolic, immune, and hematologic profiles in young, healthy adults (18-35 y, BMI < 30 kg/m2 or <30% body fat for men and <40% body fat for women, n = 26) in a 16-week randomized, crossover intervention trial. We observed that average daily macro- and micronutrient intake significantly differed across egg diet periods, including greater intake of choline during the whole egg diet period, which corresponded to increased serum choline and betaine without altering trimethylamine N-oxide. Egg white and whole egg intake increased serum isoleucine while whole egg intake reduced serum glycine-markers of increased and decreased risk of insulin resistance, respectively-without altering other markers of glucose sensitivity or inflammation. Whole egg intake increased a subset of large HDL particles (H6P, 10.8 nm) and decreased the total cholesterol:HDL-cholesterol ratio and % monocytes in female participants using combined oral contraceptive (COC) medication (n = 11) as compared to female non-users (n = 10). Whole egg intake further increased blood hematocrit whereas egg white and whole egg intake reduced blood platelet counts. Changes in clinical immune cell counts between egg white and whole egg diet periods were negatively correlated with several HDL parameters yet positively correlated with measures of triglyceride-rich lipoproteins and insulin sensitivity. Overall, the intake of whole eggs led to greater overall improvements in micronutrient diet quality, choline status, and HDL and hematologic profiles while minimally-yet potentially less adversely-affecting markers of insulin resistance as compared to egg whites.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Lindsey Huang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Fangyi Zhai
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Christa Palancia Esposito
- Marion Peckham Egan School of Nursing and Health Studies, Fairfield University, Fairfield, CT 06824, USA;
| | - Julia M. Greco
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Ruijie Zhang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Rachael Woodruff
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Allison Sloan
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Aaron R. Van Dyke
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, CT 06824, USA;
| |
Collapse
|
7
|
Rueter J, Rimbach G, Treitz C, Schloesser A, Lüersen K, Tholey A, Huebbe P. The mitochondrial BCKD complex interacts with hepatic apolipoprotein E in cultured cells in vitro and mouse livers in vivo. Cell Mol Life Sci 2023; 80:59. [PMID: 36749362 PMCID: PMC9905200 DOI: 10.1007/s00018-023-04706-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein E (APOE) is known for its role in lipid metabolism and its association with age-related disease pathology. The aim of the present work was to identify previously unknown functions of APOE based on the detection of novel APOE protein-protein interaction candidates. APPROACH AND RESULTS APOE targeted replacement mice and transfected cultured hepatocytes expressing the human isoforms APOE3 and APOE4 were used. For 7 months, APOE3 and APOE4 mice were fed a high-fat and high-sugar diet to induce obesity, while a subgroup was subjected to 30% dietary restriction. Proteomic analysis of coimmunoprecipitation products from APOE mouse liver extracts revealed 28 APOE-interacting candidate proteins, including branched-chain alpha-keto acid dehydrogenase (BCKD) complex subunit alpha (BCKDHA) and voltage-dependent anion-selective channel 1 (VDAC1). The binding of APOE and BCKDHA was verified in situ by proximity ligation assay in cultured cells. The activity of the BCKD enzyme complex was significantly higher in obese APOE4 mice than in APOE3 mice, while the plasma levels of branched-chain amino acids and mTOR signalling proteins were not different. However, the protein-protein interaction with VDAC1 was strongly induced in APOE3 and APOE4 mice upon dietary restriction, suggesting a prominent role of APOE in mitochondrial function. CONCLUSIONS The protein-protein interactions of APOE with BCKDHA and VDAC1 appear to be of physiological relevance and are modulated upon dietary restriction. Because these are mitochondrial proteins, it may be suggested that APOE is involved in mitochondria-related processes and adaptation to hepatic energy demands.
Collapse
Affiliation(s)
- Johanna Rueter
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.
| | - Christian Treitz
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| |
Collapse
|
8
|
Wolthuis JC, Magnúsdóttir S, Stigter E, Tang YF, Jans J, Gilbert M, van der Hee B, Langhout P, Gerrits W, Kies A, de Ridder J, van Mil S. Multi-country metabolic signature discovery for chicken health classification. Metabolomics 2023; 19:9. [PMID: 36732451 PMCID: PMC9895029 DOI: 10.1007/s11306-023-01973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION To decrease antibiotic resistance, their use as growth promoters in the agricultural sector has been largely abandoned. This may lead to decreased health due to infectious disease or microbiome changes leading to gut inflammation. OBJECTIVES We aimed to generate a m/z signature classifying chicken health in blood, and obtain biological insights from the resulting m/z signature. METHODS We used direct infusion mass-spectrometry to determine a machine-learned metabolomics signature that classifies chicken health from a blood sample. We then challenged the resulting models by investigating the classification capability of the signature on novel data obtained at poultry houses in previously unseen countries using a Leave-One-Country-Out (LOCO) cross-validation strategy. Additionally, we optimised the number of mass/charge (m/z) values required to maximise the classification capability of Random Forest models, by developing a novel ranking system based on combined univariate t-test and fold-change analyses and building models based on this ranking through forward and reverse feature selection. RESULTS The multi-country and LOCO models could classify chicken health. Both resulting 25-m/z and 3784-m/z signatures reliably classified chicken health in multiple countries. Through mummichog enrichment analysis on the large m/z signature, we found changes in amino acid metabolism, including branched chain amino acids and polyamines. CONCLUSION We reliably classified chicken health from blood, independent of genetic-, farm-, feed- and country-specific confounding factors. The 25-m/z signature can be used to aid development of a per-metabolite panel. The extended 3784-m/z version can be used to gain a deeper understanding of the metabolic causes and consequences of low chicken health. Together, they may facilitate future treatment, prevention and intervention.
Collapse
Affiliation(s)
- Joanna C. Wolthuis
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, STR3.217, PO Box 85060, 3508 AB Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefanía Magnúsdóttir
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, STR3.217, PO Box 85060, 3508 AB Utrecht, The Netherlands
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Edwin Stigter
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, STR3.217, PO Box 85060, 3508 AB Utrecht, The Netherlands
| | - Yuen Fung Tang
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, STR3.217, PO Box 85060, 3508 AB Utrecht, The Netherlands
| | - Judith Jans
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, STR3.217, PO Box 85060, 3508 AB Utrecht, The Netherlands
| | - Myrthe Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Bart van der Hee
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Pim Langhout
- DSM Nutritional Products, Animal Nutrition and Health, Kaiseraugst, Switzerland
| | - Walter Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Arie Kies
- DSM Nutritional Products, Animal Nutrition and Health, Kaiseraugst, Switzerland
| | - Jeroen de Ridder
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, STR3.217, PO Box 85060, 3508 AB Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Saskia van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, STR3.217, PO Box 85060, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
9
|
Mannino GC, Mancuso E, Sbrignadello S, Morettini M, Andreozzi F, Tura A. Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16489. [PMID: 36554367 PMCID: PMC9778390 DOI: 10.3390/ijerph192416489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The exposure to different substances present in the environment can affect the ability of the human body to maintain glucose homeostasis. Some review studies summarized the current evidence about the relationships between environment and insulin resistance or beta-cell dysfunction. Instead, no reviews focused on the relationships between the environment and the alpha cell, although in recent years clear indications have emerged for the pivotal role of the alpha cell in glucose regulation. Thus, the aim of this review was to analyze the studies about the effects of chemical, biological, and physical environmental factors on the alpha cell. Notably, we found studies focusing on the effects of different categories of compounds, including air pollutants, compounds of known toxicity present in common objects, pharmacological agents, and compounds possibly present in food, plus studies on the effects of physical factors (mainly heat exposure). However, the overall number of relevant studies was limited, especially when compared to studies related to the environment and insulin sensitivity or beta-cell function. In our opinion, this was likely due to the underestimation of the alpha-cell role in glucose homeostasis, but since such a role has recently emerged with increasing strength, we expect several new studies about the environment and alpha-cell in the near future.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy
| |
Collapse
|
10
|
Huang B, Huang W, Allen JC, Sun L, Goh HJ, Kong SC, Lee D, Ding C, Bosco N, Egli L, Actis-Goretta L, Magkos F, Arigoni F, Leow MKS, Tan SY, Yeo KK. Prediction of subclinical atherosclerosis in low Framingham risk score individuals by using the metabolic syndrome criteria and insulin sensitivity index. Front Nutr 2022; 9:979208. [PMID: 36352897 PMCID: PMC9639788 DOI: 10.3389/fnut.2022.979208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Subclinical atherosclerosis can be present in individuals with an optimal cardiovascular risk factor profile. Traditional risk scores such as the Framingham risk score do not adequately capture risk stratification in low-risk individuals. The aim of this study was to determine if markers of metabolic syndrome and insulin resistance can better stratify low-risk individuals. Methods A cross-sectional study of 101 healthy participants with a low Framingham risk score and no prior morbidities was performed to assess prevalence of subclinical atherosclerosis using computed tomography (CT) and ultrasound. Participants were compared between groups based on Metabolic Syndrome (MetS) and Insulin-Sensitivity Index (ISI-cal) scores. Results Twenty three individuals (23%) had subclinical atherosclerosis with elevated CT Agatston score ≥1. Presence of both insulin resistance (ISI-cal <9.23) and fulfillment of at least one metabolic syndrome criterion denoted high risk, resulting in significantly improved AUC (0.706 95%CI 0.588–0.822) over the Framingham risk score in predicting elevated CT Agatston score ≥1, with net reclassification index of 50.9 ± 23.7%. High-risk patients by the new classification also exhibited significantly increased carotid intima thickness. Conclusions The overlap of insulin resistance and presence of ≥1 criterion for metabolic syndrome may play an instrumental role in identifying traditionally low-risk individuals predisposed to future risk of atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Benjamin Huang
- Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- *Correspondence: Benjamin Huang
| | - Weiting Huang
- Singapore General Hospital, Singapore, Singapore
- National Heart Center Singapore, Singapore, Singapore
| | | | - Lijuan Sun
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | | | - Dewaine Lee
- National Heart Center Singapore, Singapore, Singapore
| | - Cherlyn Ding
- Nestlé Institute of Health Sciences Singapore, Singapore, Singapore
| | - Nabil Bosco
- Nestlé Institute of Health Sciences Singapore, Singapore, Singapore
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Leonie Egli
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | | | - Fabrizio Arigoni
- Nestlé Institute of Health Sciences Singapore, Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Duke-NUS Medical School, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Swee Yaw Tan
- National Heart Center Singapore, Singapore, Singapore
| | - Khung Keong Yeo
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Center Singapore, Singapore, Singapore
- Khung Keong Yeo
| |
Collapse
|
11
|
Morettini M, Palumbo MC, Göbl C, Burattini L, Karusheva Y, Roden M, Pacini G, Tura A. Mathematical model of insulin kinetics accounting for the amino acids effect during a mixed meal tolerance test. Front Endocrinol (Lausanne) 2022; 13:966305. [PMID: 36187117 PMCID: PMC9519856 DOI: 10.3389/fendo.2022.966305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Amino acids (AAs) are well known to be involved in the regulation of glucose metabolism and, in particular, of insulin secretion. However, the effects of different AAs on insulin release and kinetics have not been completely elucidated. The aim of this study was to propose a mathematical model that includes the effect of AAs on insulin kinetics during a mixed meal tolerance test. To this aim, five different models were proposed and compared. Validation was performed using average data, derived from the scientific literature, regarding subjects with normal glucose tolerance (CNT) and with type 2 diabetes (T2D). From the average data of the CNT and T2D people, data for two virtual populations (100 for each group) were generated for further model validation. Among the five proposed models, a simple model including one first-order differential equation showed the best results in terms of model performance (best compromise between model structure parsimony, estimated parameters plausibility, and data fit accuracy). With regard to the contribution of AAs to insulin appearance/disappearance (kAA model parameter), model analysis of the average data from the literature yielded 0.0247 (confidence interval, CI: 0.0168 - 0.0325) and -0.0048 (CI: -0.0281 - 0.0185) μU·ml-1/(μmol·l-1·min), for CNT and T2D, respectively. This suggests a positive effect of AAs on insulin secretion in CNT, and negligible effect in T2D. In conclusion, a simple model, including single first-order differential equation, may help to describe the possible AAs effects on insulin kinetics during a physiological metabolic test, and provide parameters that can be assessed in the single individuals.
Collapse
Affiliation(s)
- Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | | | - Christian Göbl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
12
|
Izumi M, Sonoki K, Akifusa S. Correlation of Salivary Occult Blood with the Plasma Concentration of Branched-Chain Amino Acids: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158930. [PMID: 35897295 PMCID: PMC9332040 DOI: 10.3390/ijerph19158930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023]
Abstract
Background: Plasma branched-chain amino acids (BCAA) levels are predictors of glycometabolic disorders, leading to diabetes. Microbes, including periodontal pathogens, are thought to be associated with elevated plasma BCAA levels. This study aimed to evaluate the relationship between salivary occult blood (SOB) and plasma BCAA levels in middle-aged Japanese individuals. Methods: Sixty-four Japanese individuals aged ≥ 40 years were recruited for this study, which was conducted in Fukuoka Prefecture, Japan, from August to December 2021. Individuals diagnosed with and/or treated for diabetes were excluded from the study. The body mass index (BMI); plasma concentrations of total, high-density, and low-density lipoprotein cholesterol; triglyceride, glucose, and BCAA; and glycosylated hemoglobin ratio were measured. A basic periodontal examination was performed after the SOB test. Results: The median age of participants (men—20; women—44) was 55 (range, 41–78) years. The plasma BCAA concentration in the SOB-positive group (477 [400–658] μmol/L) was higher than that in the SOB-negative group (432 [307–665] μmol/L). Linear regression analysis revealed that SOB remained independently associated with the plasma BCAA level with statistical significance (β = 0.17, p = 0.02) after adjusting for sex, age, and BMI. Conclusions: SOB was positively correlated with plasma BCAA levels in middle-aged Japanese individuals. Thus, SOB may be a predictor of elevated plasma BCAA levels.
Collapse
|
13
|
Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy. Viruses 2022; 14:v14061313. [PMID: 35746785 PMCID: PMC9228482 DOI: 10.3390/v14061313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: HIV infection results in immunometabolic reprogramming. While we are beginning to understand how this metabolic reprogramming regulates the immune response to HIV infection, we do not currently understand the impact of ART on immunometabolism in people with HIV (PWH). Methods: Serum obtained from HIV-infected (n = 278) and geographically matched HIV seronegative control subjects (n = 300) from Rakai Uganda were used in this study. Serum was obtained before and ~2 years following the initiation of ART from HIV-infected individuals. We conducted metabolomics profiling of the serum and focused our analysis on metabolic substrates and pathways assocaited with immunometabolism. Results: HIV infection was associated with metabolic adaptations that implicated hyperactive glycolysis, enhanced formation of lactate, increased activity of the pentose phosphate pathway (PPP), decreased β-oxidation of long-chain fatty acids, increased utilization of medium-chain fatty acids, and enhanced amino acid catabolism. Following ART, serum levels of ketone bodies, carnitine, and amino acid metabolism were normalized, however glycolysis, PPP, lactate production, and β-oxidation of long-chain fatty acids remained abnormal. Conclusion: Our findings suggest that HIV infection is associated with an increased immunometabolic demand that is satisfied through the utilization of alternative energetic substrates, including fatty acids and amino acids. ART alone was insufficient to completely restore this metabolic reprogramming to HIV infection, suggesting that a sustained impairment of immunometabolism may contribute to chronic immune activation and comorbid conditions in virally suppressed PWH.
Collapse
|