1
|
Hao KX, Shen CY, Jiang JG. The flowers extracts of Citrus aurantium regulates fat metabolism in obese C57BL/6J mice by improving intestinal microbiota disorders. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3808-3818. [PMID: 39948729 DOI: 10.1002/jsfa.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Obesity can lead to many diseases such as diabetes, hypertension, cancer and cardiovascular diseases, which seriously affect people's quality of life and health. AIMS OF THE STUDY To investigate the main components and potential of n-butanol extract from Citrus aurantium L. var. amara Engl to reduce lipid accumulation and to explore its modulatory effects on the gut microbiota. METHODS The main components of n-butanol extract were analyzed using liquid chromatography quadrupole trap mass spectrometry (LC-QTRAP-MS) and a high-fat diet-induced obese mouse model was established to analyze its effects on the determination of gene expression levels and intestinal microbiota using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and 16S rRNA gene sequence method. RESULTS The n-butanol extract mainly consists of 15 components, and it could significantly inhibit weight gain, reduce liver coefficient and improve oxidative damage. By regulating the expression of related genes, it inhibited hepatic steatosis and hypertrophy of epididymal tissue. The n-butanol extract increased the diversity of intestinal microbiota, improved the composition and structure of the flora, and reversed the high-fat diet-induced disturbance of intestinal microbiota in mice. CONCLUSION These results indicated that the n-butanol extract of C. aurantium could inhibit lipid accumulation and provide a more comprehensive basis for the development and utilization of C. aurantium in anti-obesity activity. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
- Southern Medical University, School of Traditional Chinese Medicine, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Wang WY, Song YM, Zhang JN, Zhao MY, Pei WH, Zhang H, Yin HB, Xu ZL, Xin GZ, Xie M, Kang TG, Chen YH, Song HP. Comprehensive exploration of a traditional Chinese medicinal plant of Magnolia officinalis based on high-coverage mass spectrometry and multidimensional chemical-biological analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1246:124290. [PMID: 39208603 DOI: 10.1016/j.jchromb.2024.124290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Magnolia bark is a traditional Chinese medicine used for hypoglycaemia. With the widespread use of Magnolia bark, its resources are facing a serious shortage. To address this issue, a strategy based on high-coverage mass spectrometry (HCMS) and multidimensional chemical-biological analysis (MCBA) was proposed for the comprehensive exploration of Magnolia officinalis which is the main source of Magnolia bark. The strategy is divided into three main steps. In the first step, the stem bark, stem xylem, root bark, root xylem, leaf and rootlet of Magnolia officinalis were comprehensively analyzed using high-coverage mass spectrometry. In the second step, multivariate statistical analysis was used to explore the heterogeneity of the six parts and detect differential chemical components. In the third step, a combination of experimental screening and molecular docking was used to explore α-glucosidase inhibitors from Magnolia officinalis. Multidimensional chemical-biological analysis (MCBA) of Magnolia officinalis was achieved by combining the last two steps. Finally, a total of 103 compounds were identified from the whole plant of Magnolia officinalis. Differential components of stem bark, stem xylem, leaf, root bark, root xylem and rootlet were systematically revealed. A pair of positional isomers, namely magnolol and honokiol, were found to be α-glucosidase inhibitors. The activity of their combination is superior to that of each single compound, indicating that magnolol and honokiol are in a synergistic relationship. This strategy contributes to comprehensive exploitation of functional plants and effective alleviation of resource shortage. This study also provides a research paradigm for other similar traditional Chinese medicinal plants.
Collapse
Affiliation(s)
- Wen-Yu Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ya-Mei Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Yue Zhao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Han Pei
- Macau University of Science and Technology, Macau 999078, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zhi-Li Xu
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ting-Guo Kang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
3
|
Chen L, Jiang Q, Lu H, Jiang C, Hu W, Liu H, Xiang X, Tan CP, Zhou T, Shen G. Effects of Tea Seed Oil Extracted by Different Refining Temperatures on the Intestinal Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:2352. [PMID: 39123544 PMCID: PMC11312122 DOI: 10.3390/foods13152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its onset and progression are closely related to the intestinal microbiota, as disruption of the intestinal flora promotes the production of endotoxins and induces an inflammatory response. This study aimed to investigate the variations in the physicochemical properties of various refined tea seed oils and their impact on intestinal microbiota disorders induced by a high-fat diet (HFD) through dietary intervention. In the present study, C57BL/6J mice on a HFD were randomly divided into three groups: HFD, T-TSO, and N-TSO. T-TSO and N-TSO mice were given traditionally refined and optimized tea seed oil for 12 weeks. The data revealed that tea seed oil obtained through degumming at 70 °C, deacidification at 50 °C, decolorization at 90 °C, and deodorization at 180 °C (at 0.06 MPa for 1 h) effectively removed impurities while minimizing the loss of active ingredients. Additionally, the optimized tea seed oil mitigated fat accumulation and inflammatory responses resulting from HFD, and reduced liver tissue damage in comparison to traditional refining methods. More importantly, N-TSO can serve as a dietary supplement to enhance the diversity and abundance of intestinal microbiota, increasing the presence of beneficial bacteria (norank_f__Muribaculaceae, Lactobacillus, and Bacteroides) while reducing pathogenic bacteria (Alistipes and Mucispirillum). Therefore, in HFD-induced obese C57BL/6J mice, N-TSO can better ameliorate obesity compared with a T-TSO diet, which is promising in alleviating HFD-induced intestinal microbiota disorders.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Qihong Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Hanxiao Liu
- Zhejiang Feida Environmental Science & Technology Co., Ltd., Shaoxing 311800, China;
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia;
| | - Tianhuan Zhou
- Zhejiang Forest Resources Monitoring Center, Hangzhou 310020, China
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| |
Collapse
|
4
|
Petran EM, Periferakis A, Troumpata L, Periferakis AT, Scheau AE, Badarau IA, Periferakis K, Caruntu A, Savulescu-Fiedler I, Sima RM, Calina D, Constantin C, Neagu M, Caruntu C, Scheau C. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr Issues Mol Biol 2024; 46:7895-7943. [PMID: 39194685 DOI: 10.3390/cimb46080468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Capsaicin, the most prominent pungent compound of chilli peppers, has been used in traditional medicine systems for centuries; it already has a number of established clinical and industrial applications. Capsaicin is known to act through the TRPV1 receptor, which exists in various tissues; capsaicin is hepatically metabolised, having a half-life correlated with the method of application. Research on various applications of capsaicin in different formulations is still ongoing. Thus, local capsaicin applications have a pronounced anti-inflammatory effect, while systemic applications have a multitude of different effects because their increased lipophilic character ensures their augmented bioavailability. Furthermore, various teams have documented capsaicin's anti-cancer effects, proven both in vivo and in vitro designs. A notable constraint in the therapeutic effects of capsaicin is its increased toxicity, especially in sensitive tissues. Regarding the traditional applications of capsaicin, apart from all the effects recorded as medicinal effects, the application of capsaicin in acupuncture points has been demonstrated to be effective and the combination of acupuncture and capsaicin warrants further research. Finally, capsaicin has demonstrated antimicrobial effects, which can supplement its anti-inflammatory and anti-carcinogenic actions.
Collapse
Affiliation(s)
- Elena Madalina Petran
- Department of Biochemistry, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children's Hospital, 011743 Bucharest, Romania
| | - Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, The "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- The "Bucur" Maternity, "Saint John" Hospital, 040294 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
5
|
Husien HM, Rehman SU, Duan Z, Wang M. Effect of Moringa oleifera leaf polysaccharide on the composition of intestinal microbiota in mice with dextran sulfate sodium-induced ulcerative colitis. Front Nutr 2024; 11:1409026. [PMID: 38765820 PMCID: PMC11099247 DOI: 10.3389/fnut.2024.1409026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a natural plant that has excellent nutritional and medicinal potential. M. oleifera leaves (MOL) contain several bioactive compounds. The aim of this study was to evaluate the potential effect of MOL polysaccharide (MOLP) on intestinal flora in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. DSS-induced colitis was deemed to be a well-characterized experimental colitis model for investigating the protective effect of drugs on UC. In this study, we stimulated the experimental mice with DSS 4% for 7 days and prepared the high dose of MOLP (MOLP-H) in order to evaluate its effect on intestinal flora in DSS-induced UC mice, comparing three experimental groups, including the control, DSS model, and DSS + MOLP-H (100 mg/kg/day). At the end of the experiment, feces were collected, and the changes in intestinal flora in DSS-induced mice were analyzed based on 16S rDNA high throughput sequencing technology. The results showed that the Shannon, Simpson, and observed species indices of abundance decreased in the DSS group compared with the control group. However, the indices mentioned above were increased in the MOLP-H group. According to beta diversity analysis, the DSS group showed low bacterial diversity and the distance between the control and MOLP-H groups, respectively. In addition, compared with the control group, the relative abundance of Firmicutes in the DSS group decreased and the abundance of Helicobacter increased, while MOLP-H treatment improves intestinal health by enhancing the number of beneficial organisms, including Firmicutes, while reducing the number of pathogenic organisms, such as Helicobacter. In conclusion, these findings suggest that MOLP-H may be a viable prebiotic with health-promoting properties.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Albutana University, Rufaa, Sudan
| | - Shahab Ur Rehman
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
6
|
Langhi C, Vallier M, Bron A, Otero YF, Maura M, Le Joubioux F, Blomberg N, Giera M, Guigas B, Maugard T, Chassaing B, Peltier S, Blanquet-Diot S, Bard JM, Sirvent P. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. Front Cardiovasc Med 2024; 11:1342388. [PMID: 38317864 PMCID: PMC10839041 DOI: 10.3389/fcvm.2024.1342388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.
Collapse
Affiliation(s)
| | | | - Auriane Bron
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | | | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources Pour la Santé), UMR CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | | | - Stéphanie Blanquet-Diot
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR de Pharmacie, ISOMer-UE 2160, IUML-Institut Universitaire Mer et Littoral-FR3473 CNRS, Université de Nantes, Nantes, France
| | | |
Collapse
|
7
|
Martínez-Aceviz Y, Sobrevilla-Navarro AA, Ramos-Lopez O. Dietary Intake of Capsaicin and Its Association with Markers of Body Adiposity and Fatty Liver in a Mexican Adult Population of Tijuana. Healthcare (Basel) 2023; 11:3001. [PMID: 37998493 PMCID: PMC10671309 DOI: 10.3390/healthcare11223001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
Background: Capsaicin (CAP) is the main chemical component responsible for the pungency (burning pain) of the chili plant (capsicum spp.), whose metabolic functions include energy balance and fatty acid oxidation. The aim of this study is to analyze the association of dietary capsaicin consumption with markers of adiposity and fatty liver in a Mexican adult population. Methods: This cross-sectional/analytical study recruited 221 subjects aged 18 to 65 years who were resident in the city of Tijuana, Baja California, Mexico. The daily CAP intake was analyzed through a validated chili/CAP consumption questionnaire. Anthropometric and biochemical measurements were performed following standardized protocols. Adjusted Pearson's correlations were applied to analyze the association of CAP with adiposity and fatty liver markers. Results: In this study, the daily average consumption of CAP was 152.44 mg. The dietary CAP consumption positively correlated with BMI (r = 0.179, p = 0.003), hip circumference (r = 0.176, p = 0.004) and body adiposity index (r = 0.181, p = 0.001. Likewise, the daily CAP intake positively correlated with hepatic steatosis index (r = 0.158, p = 0.004), fatty liver index (r = 0.141, p = 0.003) and lactate dehydrogenase (r = 0.194, p = 0.016) after statistical settings. Conclusions: The results of this study suggest positive associations between dietary CAP consumption and the markers of body adiposity and fatty liver in a Mexican adult population.
Collapse
Affiliation(s)
- Yesenia Martínez-Aceviz
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico; (Y.M.-A.); (A.A.S.-N.)
| | - Ana Alondra Sobrevilla-Navarro
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico; (Y.M.-A.); (A.A.S.-N.)
- Department of Biomedical Sciences, University Center of Tonalá, University of Guadalajara, Guadalajara 44100, Jalisco, Mexico
| | - Omar Ramos-Lopez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico; (Y.M.-A.); (A.A.S.-N.)
| |
Collapse
|
8
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
9
|
Chen J, Deng LL, Xiao XL, Long SY, Deng Y, Peng T, Xie J, Zhang XY. An Association between Decreased Small Intestinal RNA Modification and Disturbed Glucagon-like Peptide-1 Secretion under High-Fat Diet Stress. Nutrients 2023; 15:3707. [PMID: 37686740 PMCID: PMC10490556 DOI: 10.3390/nu15173707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Unhealthy diets rich in fats and/or sugar are considered as the major external cause of the obesity epidemic, which is often accompanied by a significant decrease in gut hormone glucagon-like peptide-1 (GLP1) levels. Numerous studies have demonstrated notable contributions of the gut microbiota in this process. Nevertheless, the underlying mechanism still needs further investigation. The role of epigenetic modifications in gene expression and metabolism has been well demonstrated, with m6A methylation on RNAs being the most prevalent modification throughout their metabolism. In the present study, we found that the expressions of small intestinal Gcg and Pc3, two key genes regulating GLP1 expression, were significantly downregulated in obese mice, associated with reduced GLP1 level. Immunohistochemistry analysis indicated that a high-fat diet slightly increased the density of enteroendocrine L cells in the small intestine, implying that decreased GLP1 levels were not caused by the changes in L cell intensity. Instead, the small intestinal m6A level as well as the expression of known "writers", mettl3/14 and wtap, were found to be positively correlated with the expression of Gcg and Pc3. Fecal microbiota transplantation with feces from normal and obese mice daily to antibiotic-treated mice revealed that dysbiosis in diet-induced obesity was sufficient to reduce serum GLP1, small intestinal m6A level, and intestinal expressions of Gcg, Pc3, and writer genes (mettl3/14, wtap). However, as the most direct and universal methyl donor, the production of fecal S-adenosylmethionine was neither affected by the different dietary patterns nor their shaped microbiota. These results suggested that microbial modulation of the epitranscriptome may be involved in regulating GLP1 expression, and highlighted epitranscriptomic modifications as an additional level of interaction between diet and individual health.
Collapse
Affiliation(s)
- Jiang Chen
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; (J.C.)
- College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Lin-Ling Deng
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; (J.C.)
| | - Xing-Lin Xiao
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; (J.C.)
| | - Shi-Yuan Long
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; (J.C.)
| | - Yuan Deng
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; (J.C.)
| | - Tong Peng
- College of Life Sciences, Sichuan University, Chengdu 610065, China;
- Keystonecare Technology (Chengdu) Co., Ltd., No.200 Tianfu 5th Street, Chengdu 610094, China
| | - Jie Xie
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; (J.C.)
| | - Xiao-Yu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; (J.C.)
| |
Collapse
|
10
|
Lee YR, Lee HB, Kim Y, Shin KS, Park HY. Prebiotic and Anti-Adipogenic Effects of Radish Green Polysaccharide. Microorganisms 2023; 11:1862. [PMID: 37513035 PMCID: PMC10385334 DOI: 10.3390/microorganisms11071862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Radish (Raphanus sativus L.) greens are consumed as a source of nutrition, and their polysaccharides such as rhamnogalacturonan-I possess certain beneficial properties. This study investigated the prebiotic effects of a radish green polysaccharide (RGP) on gut health and obesity. The prebiotic activity of RGP was evaluated based on the pH changes and short-chain fatty acids (SCFAs) concentration. The results showed that 0.5% RGP had a higher prebiotic activity score than inulin and increased SCFAs production in all five prebiotic strains. Moreover, RGP inhibited fat accumulation in 3T3-L1 adipocytes, indicating its potential to reduce obesity. Overall, these findings suggested that the polysaccharide of radish greens has prebiotic effects and may serve as a beneficial prebiotic for gut health and obesity.
Collapse
Affiliation(s)
- Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Kwandee P, Somnuk S, Wanikorn B, Nakphaichit M, Tunsagool P. Efficacy of Triphala extracts on the changes of obese fecal microbiome and metabolome in the human gut model. J Tradit Complement Med 2023; 13:207-217. [PMID: 36970454 PMCID: PMC10037071 DOI: 10.1016/j.jtcme.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Triphala is a mixture of tree fruits obtained from Terminalia chebula, Terminalia bellerica, and Phyllanthus emblica. It is one of the Ayurveda medicinal recipes used to treat health diseases such as obesity. The chemical composition analysis of Triphala extracts obtained from an equal portion of three fruits was performed. The contents of total phenolic compounds (62.87 ± 0.21 mg gallic acid equivalent/mL), total flavonoids (0.24 ± 0.01 mg catechin equivalent/mL), hydrolyzable tannins (177.27 ± 10.09 mg gallotannin equivalent/mL), and condensed tannins (0.62 ± 0.11 mg catechin equivalent/mL) were observed in Triphala extracts. The 1 mg/mL of Triphala extracts was applied to batch culture fermentation which contained the feces from voluntarily obese female adults (body mass index of 35.0-40.0 kg/m2) for 24 h. The extraction of DNA and metabolites was each conducted on the samples obtained from batch culture fermentation within and without Triphala extracts treatment. The 16S rRNA gene sequencing and untargeted metabolomic analysis were carried out. There was no statistically significant difference between Triphala extracts and control treatments on the changes in microbial profiles (p-value <0.05). While the metabolomic analysis showed statistically significant differences of 305 up-regulated and 23 down-regulated metabolites in the treatment of Triphala extracts when compared with the control (p-value <0.05 and fold-change ≥2) belonging to 60 pathways. The pathway analysis revealed that Triphala extracts play an important role in the activation of phenylalanine, tyrosine and tryptophan biosynthesis. In this study, phenylalanine and tyrosine were identified metabolites which involve in the regulation of energy metabolism. The treatment of Triphala extracts possesses the induction of phenylalanine, tyrosine and tryptophan biosynthesis in fecal batch culture fermentation of obese adults and therefore it can be suggested as a probable herbal medicinal recipe for obesity treatment.
Collapse
Affiliation(s)
- Pincha Kwandee
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand
| | - Surasawadee Somnuk
- Department of Sports and Health Sciences, Faculty of Sport Science, Kasetsart University, Kamphaeng Saen Campus, 73140, Nakhon Pathom, Thailand
| | - Bandhita Wanikorn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand
| | - Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand
- Corresponding author. Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand.
| |
Collapse
|
12
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
13
|
The Interaction between Oxidative Stress Biomarkers and Gut Microbiota in the Antioxidant Effects of Extracts from Sonchus brachyotus DC. in Oxazolone-Induced Intestinal Oxidative Stress in Adult Zebrafish. Antioxidants (Basel) 2023; 12:antiox12010192. [PMID: 36671053 PMCID: PMC9854779 DOI: 10.3390/antiox12010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Oxidative stress is a phenomenon caused by an imbalance between the production and accumulation of reactive oxygen species in cells and tissues that eventually leads to the production of various diseases. Here, we investigated the antioxidant effects of the extract from Sonchus brachyotus DC. (SBE) based on the 0.2% oxazolone-induced intestinal oxidative stress model of zebrafish. Compared to the model group, the treatment group alleviated oxazolone-induced intestinal tissue damage and reduced the contents of malondialdehyde, reactive oxygen species, IL-1β, and TNF-α and then increased the contents of superoxide dismutase, glutathione peroxidase, and IL-10. The 16s rDNA gene sequencing findings demonstrated that SBE could increase the relative abundance of Fusobacteriota, Actinobacteriota, and Firmicutes and decrease the relative abundance of Proteobacteria. Based on the correlation analysis between the oxidative stress biomarkers and intestinal flora, we found that the trends of oxidative stress biomarkers were significantly correlated with intestinal microorganisms, especially at the genus level. The correlations of MDA, IL-1β, and TNF-α were significantly negative with Shewanella, while SOD, GSH-Px, and IL-10 were significantly positive with Cetobacterium, Gemmobacter, and Flavobacterium. Consequently, we concluded that the antioxidant effect of SBE was realized through the interaction between oxidative stress biomarkers and gut microbiota.
Collapse
|
14
|
Weng G, Huang J, Ma X, Song M, Yin Y, Deng D, Deng J. Brevibacillus laterosporus BL1, a promising probiotic, prevents obesity and modulates gut microbiota in mice fed a high-fat diet. Front Nutr 2022; 9:1050025. [PMID: 36505236 PMCID: PMC9729748 DOI: 10.3389/fnut.2022.1050025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Scope Probiotics are a potential preventive strategy for obesity. However, with discrete efficacy and limited species of probiotics, there is a demand for novel strains with excellent anti-obesity properties. This study aimed to investigate the effects of Brevibacillus laterosporus BL1 on preventing obesity in high-fat diet (HFD)-fed mice. Methods and results C57BL/6 male mice were randomly assigned to four groups (n = 10) and fed a control diet, HFD, HFD plus B. laterosporus BL1, and HFD plus supernatant of B. laterosporus BL1, respectively for 8 weeks. The results showed that prophylactic B. laterosporus BL1 treatment reduced body weight gain by 41.26% in comparison to the HFD group, and this difference was accompanied by a reduction in body fat mass and the weight of inguinal white adipose tissues and epididymal white adipose tissue (-33.39%, -39.07%, and -43.75%, respectively). Moreover, the B. laterosporus BL1-mediated improvements in lipid profile, insulin resistance, and chronic inflammation were associated with the regulation of gene expression related to lipid metabolism and enhancement of brown adipose tissue thermogenesis. Particularly, B. laterosporus BL1 intervention significantly improved HFD-induced gut flora dysbiosis, as evidenced by a reverse in the relative abundance of Bacillota and Bacteroidota, as well as an increase in the relative abundance of bacteria that produce short-chain fatty acids (SCFAs), which in turn increased SCFAs levels. Conclusion Our findings found for the first time that B. laterosporus BL1 may be a promising probiotic for prevention of obesity associated with the regulation of gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China,State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Jian Huang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Min Song
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dun Deng
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China,*Correspondence: Dun Deng,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China,Jinping Deng,
| |
Collapse
|
15
|
Liu H, Luo W, Liu J, Kang X, Yan J, Zhang T, Yang L, Shen L, Liu D. The glucotoxicity protecting effect of honokiol in human hepatocytes via directly activating AMPK. Front Nutr 2022; 9:1043009. [DOI: 10.3389/fnut.2022.1043009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
IntroductionSustained hyperglycemia causes glucotoxicity, which has been regarded as a contributor to hepatocyte damage in type 2 diabetes (T2D) and its metabolic comorbidities. Honokiol is a natural biphenolic component derived from the dietary supplement Magnolia officinalis extract. This study aimed to investigate the effects of honokiol on glucose metabolism disorders and oxidative stress in hepatocytes and the underlying mechanisms.MethodsHepG2 cells were treated with glucosamines (18 mM) to induce glucotoxicity as a diabetic complication model in vitro.Results and discussionHonokiol significantly increased glucose consumption, elevated 2-NBDG uptake, and promoted GLUT2 translocation to the plasma membrane in glucosamine-treated HepG2 cells, indicating that honokiol ameliorates glucose metabolism disorders. Furthermore, glucosamine-induced ROS accumulation and loss of mitochondrial membrane potential were markedly reduced by honokiol, suggesting that honokiol alleviated glucotoxicity-induced oxidative stress. These effects were largely abolished by compound C, an AMPK inhibitor, suggesting an AMPK activation-dependent manner of honokiol function in promoting glucose metabolism and mitigating oxidative stress. Molecular docking results revealed that honokiol could interact with the amino acid residues (His151, Arg152, Lys243, Arg70, Lys170, and His298) in the active site of AMPK. These findings provide new insights into the antidiabetic effect of honokiol, which may be a promising agent for the prevention and treatment of T2D and associated metabolic comorbidities.
Collapse
|
16
|
Li L, Ma L, Wen Y, Xie J, Yan L, Ji A, Zeng Y, Tian Y, Sheng J. Crude Polysaccharide Extracted From Moringa oleifera Leaves Prevents Obesity in Association With Modulating Gut Microbiota in High-Fat Diet-Fed Mice. Front Nutr 2022; 9:861588. [PMID: 35548566 PMCID: PMC9083904 DOI: 10.3389/fnut.2022.861588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Moringa oleifera is a commonly used plant with high nutritional and medicinal values. M. oleifera leaves are considered a new food resource in China. However, the biological activities of M. oleifera polysaccharides (MOP) in regulating gut microbiota and alleviating obesity remain obscure. In the present study, we prepared the MOP and evaluated its effects on obesity and gut microbiota in high-fat diet (HFD)-induced C57BL/6J mice. The experimental mice were supplemented with a normal chow diet (NCD group), a high-fat diet (HFD group), and HFD along with MOP at a different dose of 100, 200, and 400 mg/kg/d, respectively. Physiological, histological, biochemical parameters, genes related to lipid metabolism, and gut microbiota composition were compared among five experimental groups. The results showed that MOP supplementation effectively prevented weight gain and lipid accumulation induced by HFD, ameliorated blood lipid levels and insulin resistance, alleviated the secretion of pro-inflammatory cytokines, and regulated the expression of genes related to lipid metabolism and bile acid metabolism. In addition, MOP positively reshaped the gut microbiota composition, significantly increasing the abundance of Bacteroides, norank_f_Ruminococcaceae, and Oscillibacter, while decreasing the relative abundance of Blautia, Alistipes, and Tyzzerella, which are closely associated with obesity. These results demonstrated that MOP supplementation has a protective effect against HFD-induced obesity in mice, which was associated with reshaping the gut microbiota. To the best of our knowledge, this is the first report on the potential of MOP to prevent obesity and modulating gut microbiota, which suggests that MOP can be used as a potential prebiotic.
Collapse
Affiliation(s)
- Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Yan
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Aibing Ji
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yin Zeng
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
17
|
FENG F, HU P, TAO X. Mulberry leaf polysaccharide extracted by response surface methodolog suppresses the proliferation, invasion and migration of MCF-7 breast cancer cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.05122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|