1
|
Hebda-Bauer EK, Hagenauer MH, Munro DB, Blandino P, Meng F, Arakawa K, Stead JDH, Chitre AS, Ozel AB, Mohammadi P, Watson SJ, Flagel SB, Li J, Palmer AA, Akil H. Bioenergetic-related gene expression in the hippocampus predicts internalizing vs. externalizing behavior in an animal model of temperament. Front Mol Neurosci 2025; 18:1469467. [PMID: 40103584 PMCID: PMC11913853 DOI: 10.3389/fnmol.2025.1469467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Externalizing and internalizing behavioral tendencies underlie many psychiatric and substance use disorders. These tendencies are associated with differences in temperament that emerge early in development via the interplay of genetic and environmental factors. To better understand the neurobiology of temperament, we have selectively bred rats for generations to produce two lines with highly divergent behavior: bred Low Responders (bLRs) are highly inhibited and anxious in novel environments, whereas bred High Responders (bHRs) are highly exploratory, sensation-seeking, and prone to drug-seeking behavior. Recently, we delineated these heritable differences by intercrossing bHRs and bLRs (F0-F1-F2) to produce a heterogeneous F2 sample with well-characterized lineage and behavior (exploratory locomotion, anxiety-like behavior, Pavlovian conditioning). The identified genetic loci encompassed variants that could influence behavior via many mechanisms, including proximal effects on gene expression. Here we measured gene expression in male and female F0s (n = 12 bHRs, 12 bLRs) and in a large sample of heterogeneous F2s (n = 250) using hippocampal RNA-Seq. This enabled triangulation of behavior with both genetic and functional genomic data to implicate specific genes and biological pathways. Our results show that bHR/bLR differential gene expression is robust, surpassing sex differences in expression, and predicts expression associated with F2 behavior. In F0 and F2 samples, gene sets related to growth/proliferation are upregulated with bHR-like behavior, whereas gene sets related to mitochondrial function, oxidative stress, and microglial activation are upregulated with bLR-like behavior. Integrating our F2 RNA-Seq data with previously-collected whole genome sequencing data identified genes with hippocampal expression correlated with proximal genetic variation (cis-expression quantitative trait loci or cis-eQTLs). These cis-eQTLs successfully predict bHR/bLR differential gene expression based on F0 genotype. Sixteen of these genes are associated with cis-eQTLs colocalized within loci we previously linked to behavior and are strong candidates for mediating the influence of genetic variation on behavioral temperament. Eight of these genes are related to bioenergetics. Convergence between our study and others targeting similar behavioral traits revealed five more genes consistently related to temperament. Overall, our results implicate hippocampal bioenergetic regulation of oxidative stress, microglial activation, and growth-related processes in shaping behavioral temperament, thereby modulating vulnerability to psychiatric and addictive disorders.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Megan H Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Daniel B Munro
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Peter Blandino
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Keiko Arakawa
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - John D H Stead
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - A Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Pejman Mohammadi
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Stanley J Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jun Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Mahmoudian Dehkordi S, Dunlop BW, Rush AJ, Penninx BWHJ, Kaddurah-Daouk R, Milaneschi Y. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. Transl Psychiatry 2025; 15:65. [PMID: 39988721 PMCID: PMC11847943 DOI: 10.1038/s41398-025-03274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Previous genomic evidence identified four ACs potentially linked to depression risk. We carried forward these ACs and tested the association of their circulating levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. The sample from the Netherlands Study of Depression and Anxiety included participants with current (n = 1035) or remitted (n = 739) MDD and healthy controls (n = 800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d = 0.2, p ≤ 1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß = 0.06, SE = 0.02, p = 1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß = -0.05, SE = 0.02, p = 1.85e-2) and higher C3 (ß = 0.08, SE = 0.02, p = 3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4141 observations). Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
- Silvia Montanari
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sudeepa Bhattacharyya
- Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-National University of Singapore, Singapore, Singapore
| | - Brenda W H J Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
4
|
Su W, Deng J, Yang L, Wang Y, Gong X, Li J. Melatonin alleviates LPS-induced depression-like behavior in mice by inhibiting ferroptosis by regulating RNA methylation-mediated SIRT6/Nrf2/HO-1 pathway. Eur J Nutr 2024; 63:3133-3148. [PMID: 39294335 DOI: 10.1007/s00394-024-03495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
PURPOSE The objective of this study is to investigate the impact of ferroptosis on depression and elucidate the molecular mechanism underlying melatonin's inhibitory effect on ferroptosis in the treatment of depression. METHODS In this study, a depression-like behavior model was induced in mice using LPS, and the effect of melatonin on depression-like behavior was evaluated through behavioral experiments (such as forced swimming test (FST) and sucrose preference test (SPT)). Additionally, molecular biological techniques (including real-time fluorescence quantitative PCR, Western blotting, immunoprecipitation) were employed to detect the expression levels and interactions of METTL3, SIRT6 and ferroptosis-related genes in mouse brain tissue. Furthermore, both in vitro and in vivo experiments were conducted to verify the regulatory effect of melatonin on Nrf2/HO-1 pathway and explore its potential molecular mechanism for regulating ferroptosis. RESULTS Melatonin was found to significantly ameliorate depression-like behavior in mice, as evidenced by reduced immobility time in the forced swimming test and increased sucrose intake in the sucrose preference test. Subsequent investigations revealed that melatonin modulated SIRT6 stability through METTL3-mediated ubiquitination of SIRT6, leading to its degradation. As a deacetylase, SIRT6 plays a pivotal role in cellular metabolism regulation and antioxidative stress response. This study elucidated potential signaling pathways involving Nrf2/HO-1 through which SIRT6 may exert its effects. CONCLUSION The findings suggest that melatonin can improve depressive behavior by suppressing ferroptosis and protecting neurons through its antioxidant properties. Additionally, targeting the Nrf2/HO-1 pathway via METTL3 and NEDD4 regulation may be a potential therapeutic approach for depression.
Collapse
Affiliation(s)
- Wenjie Su
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Jia Deng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Lina Yang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Yu Wang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Xinran Gong
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China.
| | - Jiacen Li
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
5
|
Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1829-1845. [PMID: 38172332 PMCID: PMC11579146 DOI: 10.1007/s00406-023-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Eva-Maria Dommaschk
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
| | - Leonie Karoline Stabenow
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24, Uppsala, Sweden
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany.
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany.
| |
Collapse
|
6
|
Qiu H, Zhong Z, Wu T, Hu H, Zhou M, Feng Z. Evaluating the causal relationship of Levo-carnitine and risk of schizophrenia: a bidirectional two-sample mendelian randomization study. BMC Psychiatry 2024; 24:720. [PMID: 39438849 PMCID: PMC11515733 DOI: 10.1186/s12888-024-06177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Schizophrenia is a debilitating mental disorder affecting about 1% of the global population, characterized by significant cognitive impairments and a strong hereditary component. Carnitine, particularly Levo-carnitine and its derivatives, plays a crucial role in cellular metabolism and mitochondrial function, with evidence suggesting a link between levo-carnitine deficiency and schizophrenia pathology. This study aims to investigate the causal relationship between different subtypes of levo-carnitine and the susceptibility to schizophrenia using Mendelian randomization analysis. METHODS Forward Mendelian randomization analysis was conducted using levo-carnitine and its derivatives as exposure and schizophrenia as the outcome. Candidate data were obtained from the Open-GWAS database. Instrumental variables were identified as single nucleotide polymorphisms closely associated with exposure and harmonized with the outcome data after removing confounders and outliers. Mendelian randomization analysis was performed using inverse variance weighting as the primary approach, and sensitivity analysis was conducted to assess the reliability and robustness of the results. Finally, a reverse Mendelian randomization analysis was carried out using the same analytical procedures. RESULTS The Mendelian randomization results indicate a significant negative causal relationship between isovaleryl-levo-carnitine and schizophrenia (P < 0.05), but no significant associations in other groups (P > 0.05). Additionally, the reverse Mendelian randomization analysis did not identify any causal relationship between schizophrenia and levo-carnitine related exposures (P > 0.05). Sensitivity analyses, including pleiotropy and heterogeneity analysis, did not reveal any potential bias in the Mendelian randomization results (P > 0.05). CONCLUSION The results suggest that elevated levels of isovaleryl-levo-carnitine may potentially mitigate the risk of developing schizophrenia, highlighting the prospective therapeutic and preventive implications of isovaleryl-levo-carnitine in the clinical management of schizophrenia.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Tianxing Wu
- Second Clinical Medical College, Southern Medical University, Guangzhou, 510515, China
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zhijun Feng
- Postdoctoral Innovation Practice Base, Jiangmen Central Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
7
|
Milaneschi Y, Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Dehkordi SM, Dunlop B, Rush A, Penninx B, Kaddurah-Daouk R. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. RESEARCH SQUARE 2024:rs.3.rs-4638158. [PMID: 39149483 PMCID: PMC11326352 DOI: 10.21203/rs.3.rs-4638158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Previous genomic evidence identified four ACs potentially linked to depression risk. We carried forward these ACs and tested the association of their circulating levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. The sample from the Netherlands Study of Depression and Anxiety included participants with current (n = 1035) or remitted (n = 739) MDD and healthy controls (n = 800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d = 0.2, p ≤ 1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß=0.06, SE = 0.02, p = 1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß=-0.05, SE = 0.02, p = 1.85e-2) and higher C3 (ß=0.08, SE = 0.02, p = 3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4141 observations). Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
| | | | - Rick Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Varma RS, Kumar BGP, Krishna CSM. Serum Acetylcarnitine as a Diagnostic Marker in Depression Episodes. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL 2024; 8:194-199. [DOI: 10.4103/bbrj.bbrj_132_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 01/03/2025]
Abstract
AbstractBackground:Depression is a serious public health concern due to its prevalence and associated discomfort, dysfunction, morbidity, and economic impact. Depression is more prevalent in women than in males. There is a need to investigate the course of depressive disorders in India to identify the necessity and duration of ongoing treatment. Studies should also assess cost-effective treatment strategies that can be easily implemented in primary care settings to successfully treat depression.Methods:This study aimed to estimate the Serum L-Acetyl Carnitine (LAC) levels in depressive episodes, mainly to find a correlation between the levels and depression and also to correlate the values to the severity of depression with a depression rating scale like Montgomery–Åsberg Depression Rating Scale (MADRS). LAC levels were estimated using an enzyme-linked immunosorbent assay kit.Results:A cross-sectional study was conducted with 60 individuals after obtaining their informed consent. This included 30 cases of diagnosed depression and 30 age and sex-matched normal controls. The diagnosed depressive episodes were rated in MADRS, and a score was assigned based on the same. The results were tabulated and statistically analyzed. The mean age of the case group was 41.37 ± 11.32 and control group was 41.50 ± 14.37. The incidence of depressive symptoms was higher in females (53%) than males (47%). The incidence of depressive symptoms was higher in the 41–50-year age group than in any other group. The acetyl carnitine-LAC levels were significantly decreased in patients with depressive episodes (950.7 ± 902.7) compared to the control (1799.6 ± 67.1), respectively. The Pearson’s correlation shows there is a strong negative correlation between the MADRS score and the levels of acetylcarnitine in the cases which was statistically significant,P< 0.001.Conclusions:LAC may have an important role in the pathophysiology of depression by its epigenetic action on metabotropic glutamate receptors and the decrease in the brain tissue may induce depressive symptoms, and consequently, their supplementation causes a rapid antidepressant effect. Hence, it could be a useful biochemical marker for the diagnosis of depression and also an effective for the treatment of depression.
Collapse
Affiliation(s)
- R. Sandeep Varma
- Department of Biochemistry, Adichunchanagiri Institute of Medical Sciences, B.G Nagara, Mandya, Karnataka, India
| | - B. G. Prashanth Kumar
- Department of Biochemistry, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - C. S. Muralidhar Krishna
- Department of Biochemistry, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Dehkordi SM, Dunlop BW, Rush AJ, Penninx BWHJ, Kaddurah-Daouk R, Milaneschi Y. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.14.24302813. [PMID: 38405847 PMCID: PMC10889013 DOI: 10.1101/2024.02.14.24302813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Studies linking AC levels to depression are few and provide mixed findings. We examined the association of circulating ACs levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. Methods The sample from the Netherlands Study of Depression and Anxiety included participants with current (n=1035) or remitted (n=739) MDD and healthy controls (n=800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. Results As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d=0.2, p≤1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß=0.06, SE=0.02, p=1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß=-0.05, SE=0.02, p=1.85e-2) and higher C3 (ß=0.08, SE=0.02, p=3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4195 observations). Conclusions Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
- Silvia Montanari
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sudeepa Bhattacharyya
- Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, AR, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A. John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-National University of Singapore, Singapore
| | - Brenda W. H. J. Penninx
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Chernonosov AA, Mednova IA, Levchuk LA, Mazurenko EO, Roschina OV, Simutkin GG, Bokhan NA, Koval VV, Ivanova SA. Untargeted Plasma Metabolomic Profiling in Patients with Depressive Disorders: A Preliminary Study. Metabolites 2024; 14:110. [PMID: 38393002 PMCID: PMC10890195 DOI: 10.3390/metabo14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Depressive disorder is a multifactorial disease that is based on dysfunctions in mental and biological processes. The search for biomarkers can improve its diagnosis, personalize therapy, and lead to a deep understanding of the biochemical processes underlying depression. The purpose of this work was a metabolomic analysis of blood serum to classify patients with depressive disorders and healthy individuals using Compound Discoverer software. Using high-resolution mass spectrometry, blood plasma samples from 60 people were analyzed, of which 30 were included in a comparison group (healthy donors), and 30 were patients with a depressive episode (F32.11) and recurrent depressive disorder (F33.11). Differences between patient and control groups were identified using the built-in utilities in Compound Discoverer software. Compounds were identified by their accurate mass and fragment patterns using the mzCloud database and tentatively identified by their exact mass using the ChemSpider search engine and the KEGG, ChEBI, FDA UNII-NLM, Human Metabolome and LipidMAPS databases. We identified 18 metabolites that could divide patients with depressive disorders from healthy donors. Of these, only two compounds were tentatively identified using the mzCloud database (betaine and piperine) based on their fragmentation spectra. For three compounds ((4S,5S,8S,10R)-4,5,8-trihydroxy-10-methyl-3,4,5,8,9,10-hexahydro-2H-oxecin-2-one, (2E,4E)-N-(2-hydroxy-2-methylpropyl)-2,4-tetradecadienamide and 17α-methyl-androstan-3-hydroxyimine-17β-ol), matches were found in the mzCloud database but with low score, which could not serve as reliable evidence of their structure. Another 13 compounds were identified by their exact mass in the ChemSpider database, 9 (g-butyrobetaine, 6-diazonio-5-oxo-L-norleucine, 11-aminoundecanoic acid, methyl N-acetyl-2-diazonionorleucinate, glycyl-glycyl-argininal, dilaurylmethylamine, 12-ketodeoxycholic acid, dicetylamine, 1-linoleoyl-2-hydroxy-sn-glycero-3-PC) had only molecular formulas proposed, and 4 were unidentified. Thus, the use of Compound Discoverer software alone was not sufficient to identify all revealed metabolites. Nevertheless, the combination of the found metabolites made it possible to divide patients with depressive disorders from healthy donors.
Collapse
Affiliation(s)
- Alexander A Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Lyudmila A Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Ekaterina O Mazurenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Olga V Roschina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| |
Collapse
|
11
|
Liu M, Ma W, He Y, Sun Z, Yang J. Recent Progress in Mass Spectrometry-Based Metabolomics in Major Depressive Disorder Research. Molecules 2023; 28:7430. [PMID: 37959849 PMCID: PMC10647556 DOI: 10.3390/molecules28217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this comprehensive review, recent developments of MS-based metabolomics in MDD research are summarized from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS, supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.), and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate further advances in MS-based metabolomics in the field of MDD research.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Brivio P, Audano M, Gallo MT, Miceli E, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Mitro N, Calabrese F. Venlafaxine's effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization. Neuropsychopharmacology 2023; 48:1475-1483. [PMID: 37380799 PMCID: PMC10425382 DOI: 10.1038/s41386-023-01633-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Eleonora Miceli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
13
|
Coletto E, Savva GM, Latousakis D, Pontifex M, Crost EH, Vaux L, Telatin A, Bergstrom K, Vauzour D, Juge N. Role of mucin glycosylation in the gut microbiota-brain axis of core 3 O-glycan deficient mice. Sci Rep 2023; 13:13982. [PMID: 37634035 PMCID: PMC10460388 DOI: 10.1038/s41598-023-40497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
Alterations in intestinal mucin glycosylation have been associated with increased intestinal permeability and sensitivity to inflammation and infection. Here, we used mice lacking core 3-derived O-glycans (C3GnT-/-) to investigate the effect of impaired mucin glycosylation in the gut-brain axis. C3GnT-/- mice showed altered microbial metabolites in the caecum associated with brain function such as dimethylglycine and N-acetyl-L-tyrosine profiles as compared to C3GnT+/+ littermates. In the brain, polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive granule cells showed an aberrant phenotype in the dentate gyrus of C3GnT-/- mice. This was accompanied by a trend towards decreased expression levels of PSA as well as ZO-1 and occludin as compared to C3GnT+/+. Behavioural studies showed a decrease in the recognition memory of C3GnT-/- mice as compared to C3GnT+/+ mice. Combined, these results support the role of mucin O-glycosylation in the gut in potentially influencing brain function which may be facilitated by the passage of microbial metabolites through an impaired gut barrier.
Collapse
Affiliation(s)
- Erika Coletto
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - George M Savva
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Dimitrios Latousakis
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Matthew Pontifex
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Emmanuelle H Crost
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Laura Vaux
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Andrea Telatin
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Kirk Bergstrom
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.
| |
Collapse
|
14
|
Prince N, Stav M, Cote M, Chu SH, Vyas CM, Okereke OI, Palacios N, Litonjua AA, Vokonas P, Sparrow D, Spiro A, Lasky-Su JA, Kelly RS. Metabolomics and Self-Reported Depression, Anxiety, and Phobic Symptoms in the VA Normative Aging Study. Metabolites 2023; 13:851. [PMID: 37512558 PMCID: PMC10383599 DOI: 10.3390/metabo13070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional approaches to understanding metabolomics in mental illness have focused on investigating a single disorder or comparisons between diagnoses, but a growing body of evidence suggests substantial mechanistic overlap in mental disorders that could be reflected by the metabolome. In this study, we investigated associations between global plasma metabolites and abnormal scores on the depression, anxiety, and phobic anxiety subscales of the Brief Symptom Inventory (BSI) among 405 older males who participated in the Normative Aging Study (NAS). Our analysis revealed overlapping and distinct metabolites associated with each mental health dimension subscale and four metabolites belonging to xenobiotic, carbohydrate, and amino acid classes that were consistently associated across all three symptom dimension subscales. Furthermore, three of these four metabolites demonstrated a higher degree of alteration in men who reported poor scores in all three dimensions compared to men with poor scores in only one, suggesting the potential for shared underlying biology but a differing degree of perturbation when depression and anxiety symptoms co-occur. Our findings implicate pathways of interest relevant to the overlap of mental health conditions in aging veterans and could represent clinically translatable targets underlying poor mental health in this high-risk population.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Meryl Stav
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
| | - Margaret Cote
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
| | - Su H. Chu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Chirag M. Vyas
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Olivia I. Okereke
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Natalia Palacios
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA 02114, USA; (P.V.); (D.S.)
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - David Sparrow
- Department of Veterans Affairs, Boston, MA 02114, USA; (P.V.); (D.S.)
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
| | - Avron Spiro
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Psychiatry, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
15
|
Wen L, Yan C, Zheng W, Li Y, Wang Y, Qu M. Metabolic Alterations and Related Biological Functions of Post-Stroke Depression in Ischemic Stroke Patients. Neuropsychiatr Dis Treat 2023; 19:1555-1564. [PMID: 37435550 PMCID: PMC10332415 DOI: 10.2147/ndt.s415141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Background Post-stroke depression (PSD) is one of the most common neuropsychiatric complications after stroke. However, the underlying mechanisms of PSD remain ambiguous, and no objective diagnosis tool is available to diagnose PSD. Previous metabolomic studies on PSD included patients with ischemic and hemorrhagic stroke indiscriminately, which is not conducive to elucidating and predicting the occurrence of PSD. The aim of this study is to elucidate the pathogenesis of PSD and provide potential diagnostic markers for PSD in ischemic stroke patients. Methods In total, 51 ischemic stroke patients at 2 weeks were included in this study. Those with depressive symptoms were assigned to the PSD group, while the others were assigned to the non-PSD group. Plasma metabolomics based on liquid chromatography-mass spectrometry (LC-MS) was performed to explore the differential plasma metabolites between the PSD and non-PSD groups. Results Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) showed significant metabolic alterations between PSD patients and non-PSD patients. In total, 41 differential metabolites were screened out, mainly including phosphatidylcholines (PCs), L-carnitine and acyl carnitines, succinic acid, pyruvic acid and L-lactic acid. Metabolite-related pathway analysis revealed that alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism and the citrate cycle (TCA cycle) may contribute to the pathogenesis of PSD. A panel of three signature metabolites [PC(22:5(7Z,10Z,13Z,16Z,19Z)/15:0), LysoPA(18:1(9Z)/0:0) and 1,5-anhydrosorbitol] was determined as potential biomarkers for PSD in ischemic stroke patients. Conclusion These findings are conducive to providing new insights into the pathogenesis of PSD and developing objective diagnostic tools for PSD in ischemic stroke patients.
Collapse
Affiliation(s)
- Lulu Wen
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Chuming Yan
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Wancheng Zheng
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Yi Li
- Neurology Department, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yuhui Wang
- Neurology Department, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Miao Qu
- Neurology Department, Xuan Wu Hospital Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Gong Y, Jiang T, He H, Wang Y, Wu GL, Shi Y, Cai Q, Xiong CL, Shen R, Li J. Effects of carnitine on glucose and lipid metabolic profiles and fertility outcomes in women with polycystic ovary syndrome: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 2023; 98:682-691. [PMID: 36746677 DOI: 10.1111/cen.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To quantify the effect of carnitine on glucose and lipid metabolic profiles and fertility outcomes in women with Polycystic ovary syndrome (PCOS). DESIGN A systematic review and meta-analysis were conducted. PATIENTS Women with PCOS diagnosed by Rotterdam or Androgen Excess Society (AES) criteria and taking carnitine supplement were assessment. MEASUREMENTS Fertility outcomes (ovulation, clinical pregnancy, live birth, and miscarriage), lipid parameters (BMI, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein), fasting glucose and insulin, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). RESULTS In total, 839 participants were included in this analysis. The dosage of carnitine and treatment duration reported by studies varied from 250 mg to 3000 mg daily and 84 to 90 days, respectively. The publication bias was absent. Compared with placebo, carnitine significantly improved ovulation rates (RR 3.42, 95% CI 2.39 to 4.89, I2 = 0%) and pregnancy rates (RR 11.05, 95% CI 1.21 to 100.58, I2 = 79%). None of included studies reported live birth. After treatment, carnitine resulted in significant reductions relative to baseline in body mass index (BMI, MD -0.93 kg/m2, 95% CI -1.15 to -0.70, I2 = 55.0%), insulin levels (MD -2.47 mIU/L, 95% CI -4.49 to -0.45, I2 = 0%) and the Homeostasis Model Assessment index (MD -0.67, 95% CI -1.20 to -0.14, I2 = 0%) than placebo, but not for lipid profiles including triglyceride, total cholesterol, and low-density lipoprotein. CONCLUSION With the available literature, carnitine seems to improve ovulation and clinical pregnancy and insulin resistance, BMI in women with PCOS. These effects are warranted to be further validated, due to insufficient statistical power.
Collapse
Affiliation(s)
- Yi Gong
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Tong Jiang
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Hui He
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guo-Lin Wu
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Ying Shi
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Qinjun Cai
- Beilun District People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Can-Li Xiong
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rong Shen
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Li
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|