1
|
Li M, Hu Y, Wang J, Xu Y, Hong Y, Zhang L, Luo Q, Zhen Z, Lu S, Huang J, Zhu J, Zhang Y, Que Y, Sun F. The dual HDAC and PI3K inhibitor, CUDC‑907, inhibits tumor growth and stem‑like properties by suppressing PTX3 in neuroblastoma. Int J Oncol 2024; 64:14. [PMID: 38063204 PMCID: PMC10783937 DOI: 10.3892/ijo.2023.5602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB) is one of the common solid tumors in childhood and poses a threat to the lives of children. Patients with advanced‑stage or recurrent NB have a poor prognosis. CUDC‑907, as a novel dual‑target inhibitor of histone deacetylase (HDAC) and phosphatidylinositol‑3‑kinase (PI3K), has been proven to play an antitumor role in several types of tumors. However, the exact role of CUDC‑907 in NB remains unclear. In the present study, in vivo and in vitro assays were performed to investigate the anti‑NB activity of CUDC‑907. Pentraxin 3 (PTX3) small interfering RNA (siRNA) and PTX3 overexpression plasmid were transfected into cells to define the underlying mechanisms of CUDC‑907. Tumor tissues and clinical information were collected and immunohistochemistry (IHC) was conducted to analyze the association between the expression of HDAC1, HDAC2, HDAC3 and CD44, and the prognosis of patients with NB. The results indicated that CUDC‑907 significantly inhibited the proliferation and migration, and induced the apoptosis of NB cells, downregulating the expression level of MYCN, and suppressing the PI3K/AKT and MAPK/ERK pathways. Furthermore, CUDC‑907 suppressed the stem‑like properties of NB cells by inhibiting PTX3, a ligand and upstream protein of CD44. IHC revealed that the high expression of HDAC1, 2, 3 and CD44 was associated with a poor prognosis of patients with NB. On the whole, these findings indicate that CUDC‑907 may be developed into a possible therapeutic approach for patients with NB.
Collapse
Affiliation(s)
- Mengzhen Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yang Hu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yanjie Xu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Ye Hong
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Qiuyun Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
2
|
Yu Y, Zhao Y, Choi J, Shi Z, Guo L, Elizarraras J, Gu A, Cheng F, Pei Y, Lu D, Fabbri M, Agarwal S, Zhang C, Jung SY, Foster JH, Yang J. ERK Inhibitor Ulixertinib Inhibits High-Risk Neuroblastoma Growth In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14225534. [PMID: 36428626 PMCID: PMC9688897 DOI: 10.3390/cancers14225534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Approximately 80% of relapsed NB show RAS-MAPK pathway mutations that activate ERK, resulting in the promotion of cell proliferation and drug resistance. Ulixertinib, a first-in-class ERK-specific inhibitor, has shown promising antitumor activity in phase 1 clinical trials for advanced solid tumors. Here, we show that ulixertinib significantly and dose-dependently inhibits cell proliferation and colony formation in different NB cell lines, including PDX cells. Transcriptomic analysis revealed that ulixertinib extensively inhibits different oncogenic and neuronal developmental pathways, including EGFR, VEGF, WNT, MAPK, NGF, and NTRK1. The proteomic analysis further revealed that ulixertinib inhibits the cell cycle and promotes apoptosis in NB cells. Additionally, ulixertinib treatment significantly sensitized NB cells to the conventional chemotherapeutic agent doxorubicin. Furthermore, ulixertinib potently inhibited NB tumor growth and prolonged the overall survival of the treated mice in two different NB mice models. Our preclinical study demonstrates that ulixertinib, either as a single agent or in combination with current therapies, is a novel and practical therapeutic approach for NB.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yanling Zhao
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongmin Choi
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongcheng Shi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77003, USA
| | - Linjie Guo
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Elizarraras
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andy Gu
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Dai Lu
- Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Muller Fabbri
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Chunchao Zhang
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77003, USA
| | - Jennifer H. Foster
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (J.H.F.); (J.Y.); Tel.: +1-832-822-4556 (J.H.F.); +1-202-476-5772 (J.Y.)
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Correspondence: (J.H.F.); (J.Y.); Tel.: +1-832-822-4556 (J.H.F.); +1-202-476-5772 (J.Y.)
| |
Collapse
|
3
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain ResearchMedical University ViennaViennaAustria
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Dorothea Von Ahsen
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Johan Boström
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Tatiana Solovieva
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cameron Jackson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marianne Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Dies Meijer
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Saida Hadjab
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Alek Erickson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | - Thomas Perlmann
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Laura Lahti
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jean‐Francois Brunet
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale SupérieurePSL Research UniversityParisFrance
| | - Kaj Fried
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
4
|
Villasante A, Godier-Furnemont A, Hernandez-Barranco A, Coq JL, Boskovic J, Peinado H, Mora J, Samitier J, Vunjak-Novakovic G. Horizontal transfer of the stemness-related markers EZH2 and GLI1 by neuroblastoma-derived extracellular vesicles in stromal cells. Transl Res 2021; 237:82-97. [PMID: 34217898 PMCID: PMC9204390 DOI: 10.1016/j.trsl.2021.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/05/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid cancer originating from undifferentiated neural crest cells. NB cells express EZH2 and GLI1 genes that are known to maintain the undifferentiated phenotype of cancer stem cells (CSC) in NB. Recent studies suggest that tumor-derived extracellular vesicles (EVs) can regulate the transformation of surrounding cells into CSC by transferring tumor-specific molecules they contain. However, the horizontal transfer of EVs molecules in NB remains largely unknown. We report the analysis of NB-derived EVs in bioengineered models of NB that are based on a collagen 1/hyaluronic acid scaffold designed to mimic the native tumor niche. Using these models, we observed an enrichment of GLI1 and EZH2 mRNAs in NB-derived EVs. As a consequence of the uptake of NB-derived EVs, the host cells increased the expression levels of GLI1 and EZH2. These results suggest the alteration of the expression profile of stromal cells through an EV-based mechanism, and point the GLI1 and EZH2 mRNAs in the EV cargo as diagnostic biomarkers in NB.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, New York,USA; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.
| | | | - Alberto Hernandez-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Johanne Le Coq
- Electron Microscopy Unit, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jaume Mora
- Oncology Department, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York,USA; Department of Medicine, Columbia University, New York, New York, USA.
| |
Collapse
|
5
|
Khater AR, Abou-Antoun T. Mesenchymal Epithelial Transition Factor Signaling in Pediatric Nervous System Tumors: Implications for Malignancy and Cancer Stem Cell Enrichment. Front Cell Dev Biol 2021; 9:654103. [PMID: 34055785 PMCID: PMC8155369 DOI: 10.3389/fcell.2021.654103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant nervous system cancers in children are the most devastating and worrisome diseases, specifically due to their aggressive nature and, in some cases, inoperable location in critical regions of the brain and spinal cord, and the impermeable blood-brain barrier that hinders delivery of pharmaco-therapeutic compounds into the tumor site. Moreover, the delicate developmental processes of the nervous system throughout the childhood years adds another limitation to the therapeutic modalities and doses used to treat these malignant cancers. Therefore, pediatric oncologists are charged with the daunting responsibility of attempting to deliver effective cures to these children, yet with limited doses of the currently available therapeutic options in order to mitigate the imminent neurotoxicity of radio- and chemotherapy on the developing nervous system. Various studies reported that c-Met/HGF signaling is affiliated with increased malignancy and stem cell enrichment in various cancers such as high-grade gliomas, high-risk medulloblastomas, and MYCN-amplified, high-risk neuroblastomas. Therapeutic interventions that are utilized to target c-Met signaling in these malignant nervous system cancers have shown benefits in basic translational studies and preclinical trials, but failed to yield significant clinical benefits in patients. While numerous pre-clinical data reported promising results with the use of combinatorial therapy that targets c-Met with other tumorigenic pathways, therapeutic resistance remains a problem, and long-term cures are rare. The possible mechanisms, including the overexpression and activation of compensatory tumorigenic mechanisms within the tumors or ineffective drug delivery methods that may contribute to therapeutic resistance observed in clinical trials are elaborated in this review.
Collapse
Affiliation(s)
- Amanda Rose Khater
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
6
|
Wu X, Nelson M, Basu M, Srinivasan P, Lazarski C, Zhang P, Zheng P, Sandler AD. MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination. J Immunother Cancer 2021; 9:jitc-2020-001388. [PMID: 33757986 PMCID: PMC7993333 DOI: 10.1136/jitc-2020-001388] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Background MYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated. Methods Immune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models. Results Analysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape. Conclusions This study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Marie Nelson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Mousumi Basu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony David Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA .,Joseph E. Robert Jr. Center for Surgical Care, Childrens National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Hanna R, Abdallah J, Abou-Antoun T. A Novel Mechanism of 17-AAG Therapeutic Efficacy on HSP90 Inhibition in MYCN-Amplified Neuroblastoma Cells. Front Oncol 2021; 10:624560. [PMID: 33569349 PMCID: PMC7868539 DOI: 10.3389/fonc.2020.624560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Neuroblastoma is the most common pediatric extra-cranial nervous system tumor, originating from neural crest elements and giving rise to tumors in the adrenal medulla and sympathetic chain ganglia. Amplification of MYCN confers increased malignancy and poorer prognosis in high-risk neuroblastoma. Our SILAC proteomics analysis revealed over-expression of HSP90 in MYCN-amplified IMR-32 compared to the non-MYCN amplified SK-N-SH human neuroblastoma cells, rendering them highly resistant to therapeutic intervention. Methods We used cellular bio-functional (proliferation, migration/invasion, apoptosis, viability and stem-cell self-renewal) assays and Western blot analysis to elucidate the therapeutic efficacy of HSP90 inhibition with 17-AAG. Results 17-AAG treatment significantly inhibited cellular proliferation, viability and migration/invasion and increased apoptosis in both cell lines. Moreover, drug treatment significantly abrogated stem-cell self-renewal potential in the MYCN-amplified IMR-32 cells. Differential tumorigenic protein expression revealed a novel mechanism of therapeutic efficacy after 17-AAG treatment with a significant downregulation of HMGA1, FABP5, Oct4, MYCN, prohibitin and p-L1CAM in SK-N-SH cells. However, we observed a significant up-regulation of p-L1CAM, MYCN and prohibitin, and significant down-regulation of Oct4, FABP5, HMGA1, p-ERK, cleaved/total caspase-3 and PARP1 in IMR-32 cells. Conclusions HSP90 inhibition revealed a novel therapeutic mechanism of antitumor activity in MYCN-amplified neuroblastoma cells that may enhance therapeutic sensitivity.
Collapse
Affiliation(s)
- Reine Hanna
- Faculty of Sciences, Lebanese University, Fanar, Lebanon.,School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Jad Abdallah
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | | |
Collapse
|
8
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
9
|
Cano-Mejia J, Shukla A, Ledezma DK, Palmer E, Villagra A, Fernandes R. CpG-coated prussian blue nanoparticles-based photothermal therapy combined with anti-CTLA-4 immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma. Transl Oncol 2020; 13:100823. [PMID: 32652470 PMCID: PMC7348061 DOI: 10.1016/j.tranon.2020.100823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
High-risk neuroblastoma, which is associated with regional and systemic metastasis, is a leading cause of cancer-related mortality in children. Responding to this need for novel therapies for high-risk patients, we have developed a "nanoimmunotherapy," which combines photothermal therapy (PTT) using CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) combined with anti-CTLA-4 (aCTLA-4) immunotherapy. Our in vitro studies demonstrate that in addition to causing ablative tumor cell death, our nanoimmunotherapy alters the surface levels of co-stimulatory, antigen-presenting, and co-inhibitory molecules on neuroblastoma tumor cells. When administered in a syngeneic, murine model of neuroblastoma bearing synchronous Neuro2a tumors, the CpG-PBNP-PTT plus aCTLA-4 nanoimmunotherapy elicits complete tumor regression in both primary (CpG-PBNP-PTT-treated) and secondary tumors, and long-term survival in a significantly higher proportion (55.5%) of treated-mice compared with the controls. Furthermore, the surviving, nanoimmunotherapy-treated animals reject Neuro2a rechallenge, suggesting that the therapy generates immunological memory. Additionally, the depletion of CD4+, CD8+, and NK+ populations abrogate the observed therapeutic responses of the nanoimmunotherapy. These findings demonstrate the importance of concurrent PTT-based cytotoxicity and the antitumor immune effects of PTT, CpG, and aCTLA-4 in generating a robust abscopal effect against neuroblastoma.
Collapse
Affiliation(s)
- Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Anshi Shukla
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Debbie K Ledezma
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
| | - Erica Palmer
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Alejandro Villagra
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA; The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA; Department of Medicine, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
10
|
Sangweni NF, Moremane M, Riedel S, van Vuuren D, Huisamen B, Mabasa L, Barry R, Johnson R. The Prophylactic Effect of Pinocembrin Against Doxorubicin-Induced Cardiotoxicity in an In Vitro H9c2 Cell Model. Front Pharmacol 2020; 11:1172. [PMID: 32903793 PMCID: PMC7438920 DOI: 10.3389/fphar.2020.01172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The clinical use of Doxorubicin (Dox) is significantly limited by its dose-dependent cardiotoxic side effect. Accumulative evidence suggests that the use of flavonoids, such as the antioxidative Pinocembrin (Pin), could be effective in the prevention of Dox-induced cardiotoxicity. Accordingly, we investigated the ability of pinocembrin (Pin) to attenuate Dox-induced cardiotoxicity in an in vitro H9c2 cardiomyoblast model. METHODOLOGY The cardioprotective potential of Pin was established in H9c2 cells. Here, cells were treated with Dox (2μM), Dox (2μM) + Pin (1μM), and Dox (2μM) + Dexrazoxane (20μM) for 6 days. Thereafter, the safe co-administration of Pin with Dox, in a cancer environment, was investigated in MCF-7 breast cancer cells subjected to the same experimental conditions. Untreated cells served as the control. Subsequently, Pin's ability to attenuate Dox-mediated oxidative stress, impaired mitochondrial bioenergetics and potential, as well as aggravated apoptosis was quantified using biochemical assays. RESULTS The results demonstrated that co-treatment with Pin mitigates Dox-induced oxidative stress by alleviating the antioxidant enzyme activity of the H9c2 cells. Pin further reduced the rate of apoptosis and necrosis inferred by Dox by improving mitochondrial bioenergetics. Interestingly, Pin did not decrease the efficacy of Dox but, rather increased the rate of apoptosis and necrosis in Dox-treated MCF-7 cells. CONCLUSION The findings presented in this study showed, for the first time, that Pin attenuates Dox-induced cardiotoxicity without reducing its chemotherapeutic effect. We propose that additional studies, using in vivo models, should be conducted to further investigate Pin as a suitable candidate in the prevention of the cardiovascular dysfunction inferred by Dox administration.
Collapse
Affiliation(s)
- Nonhlakanipho F. Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Malebogo Moremane
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Derick van Vuuren
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
| | - Reenen Barry
- Research and Development Department, Biopharm, Hamilton, New Zealand
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
11
|
Ognibene M, Pezzolo A. Roniciclib down-regulates stemness and inhibits cell growth by inducing nucleolar stress in neuroblastoma. Sci Rep 2020; 10:12902. [PMID: 32737364 PMCID: PMC7395171 DOI: 10.1038/s41598-020-69499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma, an embryonic tumor arising from neuronal crest progenitor cells, has been shown to contain a population of undifferentiated stem cells responsible for the malignant state and the unfavorable prognosis. Although many previous studies have analyzed neuroblastoma stem cells and their therapeutic targeting, this topic appears still open to novel investigations. Here we found that neurospheres derived from neuroblastoma stem-like cells showed a homogeneous staining for several key nucleolar proteins, such as Nucleolin, Nucleophosmin-1, Glypican-2 and PES-1. We investigated the effects of Roniciclib (BAY 1000394), an anticancer stem cells agent, on neurospheres and on an orthotopic neuroblastoma mouse model, discovering an impressive inhibition of tumor growth and indicating good chances for the use of Roniciclib in vivo. We demonstrated that Roniciclib is not only a Wnt/β-catenin signaling inhibitor, but also a nucleolar stress inducer, revealing a possible novel mechanism underlying Roniciclib-mediated repression of cell proliferation. Furthermore, we found that high expression of Nucleophosmin-1 correlates with patients’ short survival. The co-expression of several stem cell surface antigens such as CD44v6 and CD114, together with the nucleolar markers here described, extends new possibilities to isolate undifferentiated subpopulations from neuroblastoma and identify new targets for the treatment of this childhood malignancy.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy. .,Unità di Genetica Medica, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| |
Collapse
|
12
|
Kim KW, Qiao J, Kim JY, Park K, Chung DH. Overexpression of microRNA-145 inhibits tumorigenesis through autophagy in chemotherapy and radiation resistant neuroblastoma cells. Oncoscience 2020; 7:1-9. [PMID: 32258242 PMCID: PMC7105155 DOI: 10.18632/oncoscience.496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA-145 (miR-145) plays a suppressive role in the process of tumorigenesis and an important role in induction of autophagy. However, the exact role of miR-145 in therapeutically resistant neuroblastoma cells remain elusive. Herein, we sought to evaluate the effects of miR-145 overexpression in chemo‑ and radiation-resistant neuroblastoma cells. We hypothesized that miR-145 affects the aggressiveness of resistant cells by enhancing autophagy. We established Cisplatin-resistant (CDDP-R), Vincristine-resistant (Vin-R), and radiation-resistant (Rad-R) neuroblastoma cells and found that miR-145 expression was significantly decreased in the resistant cells compared to the parental cells. Exogenously expression of miR-145 inhibited oncogenic properties such as proliferation, clonogenicity, anchorage-independent growth, cell migration, and tubule formation in the resistant cells. In addition, we also found that an autophagy protein marker, LC3, was only minimally expressed in the resistant cells. In particular, when miR-145 was overexpressed in the resistant cells, LC3 I and II were expressed and an increased punctate fluorescence of LC3 protein was found indicating the induction of autophagy. Taken together, our data suggests that miR-145 inhibits tumorigenesis and aggressiveness via modulation of autophagy in neuroblastoma.
Collapse
Affiliation(s)
- Kwang Woon Kim
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Jingbo Qiao
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Julia Y Kim
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Kyungho Park
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Dai H Chung
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| |
Collapse
|
13
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Cano-Mejia J, Bookstaver ML, Sweeney EE, Jewell CM, Fernandes R. Prussian blue nanoparticle-based antigenicity and adjuvanticity trigger robust antitumor immune responses against neuroblastoma. Biomater Sci 2019; 7:1875-1887. [PMID: 30789175 PMCID: PMC6491208 DOI: 10.1039/c8bm01553h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe the synthesis of CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) that function as a nanoimmunotherapy for neuroblastoma, a common childhood cancer. These CpG-PBNPs increase the antigenicity and adjuvanticity of the treated tumors, ultimately driving robust antitumor immunity through a multi-pronged mechanism. CpG-PBNPs are synthesized using a facile layer-by-layer coating scheme resulting in nanoparticles that exhibit monodisperse size distributions and multiday stability without cytotoxicity. The strong intrinsic absorption of PBNPs in the CpG-PBNPs enables ablative photothermal therapy (CpG-PBNP-PTT) that triggers tumor cell death, as well as the release of tumor antigens to increase antigenicity. Simultaneously, the CpG coating functions as an exogenous molecular adjuvant that complements the endogenous adjuvants released by the CpG-PBNP-PTT (e.g. ATP, calreticulin, and HMGB1). In cell culture, coating NPs with CpG increases immunogenicity while maintaining the photothermal activity of PBNPs. When administered in a syngeneic, Neuro2a-based, murine model of neuroblastoma, CpG-PBNP-PTT results in complete tumor regression in a significantly higher proportion (70% at 60 days) of treated animals relative to controls. Furthermore, the long-term surviving, CpG-PBNP-PTT-treated animals reject Neuro2a rechallenge, suggesting that this therapy generates immunological memory. Our findings point to the importance of simultaneous cytotoxicity, antigenicity, and adjuvanticity to generate robust and persistent antitumor immune responses against neuroblastoma.
Collapse
Affiliation(s)
- Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Michelle L. Bookstaver
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth E. Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- United States Department of Veterans Affairs, Maryland VA Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21205, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
15
|
Veschi V, Verona F, Thiele CJ. Cancer Stem Cells and Neuroblastoma: Characteristics and Therapeutic Targeting Options. Front Endocrinol (Lausanne) 2019; 10:782. [PMID: 31803140 PMCID: PMC6877479 DOI: 10.3389/fendo.2019.00782] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The majority of embryonal tumors or childhood blastomas derive from pluripotent progenitors or fetal stem cells that acquire cancer stem cell (CSC) properties: multipotency, self-renewal ability, metastatic potential, chemoresistance, more pronounced levels of drug transporters, enhanced DNA-damage repair mechanisms, and a quiescent state. Neuroblastoma (NB) is considered a neuroendocrine tumor and is the most common extracranial neoplasm in children. NB pathogenesis has frequently been associated with epigenetic dysregulation and a failure to implement a differentiation program. The origin, characteristics, and isolation of the CSC subpopulation in NB are still incompletely understood, despite the evidence that this cell subset contributes to disease recurrence and acquired resistance to standard therapies. Here, we summarize the literature regarding the isolation and characterization of CSCs in NB over the past decades, from the early recognition of the expression of stem cell factor (SCF) or its receptor c-KIT to more recent studies identifying the ability of G-CSF and STAT3 to support stem cell-like properties in NB cells. Additionally, we review the morphological variants of NB tumors whose recent epigenetic analyses have shed light on the tumor heterogeneity so common in NB. NB-derived mesenchymal stem cells have recently been isolated from primary tumors of NB patients and associated with a pro-tumorigenic role in the tumor microenvironment, enabling immune escape by tumors, and contributing to their invasive and metastatic capabilities. In particular, we will focus on epigenetic reprogramming in the CSC subpopulation in NB and strategies to target CSCs in NB.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J. Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- *Correspondence: Carol J. Thiele
| |
Collapse
|
16
|
Cichorek M, Ronowska A, Gensicka-Kowalewska M, Deptula M, Pelikant-Malecka I, Dzierzbicka K. Novel therapeutic compound acridine-retrotuftsin action on biological forms of melanoma and neuroblastoma. J Cancer Res Clin Oncol 2018; 145:165-179. [PMID: 30367436 PMCID: PMC6326014 DOI: 10.1007/s00432-018-2776-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE As a continuation of our search for anticancer agents, we have synthesized a new acridine-retrotuftsin analog HClx9-[Arg(NO2)-Pro-Lys-Thr-OCH3]-1-nitroacridine (named ART) and have evaluated its activity against melanoma and neuroblastoma lines. Both tumors develop from cells (melanocytes, neurons) of neuroectodermal origin, and both are tumors with high heterogeneity and unsatisfactory susceptibility to chemotherapies. Thus, we analyzed the action of ART on pairs of biological forms of melanoma (amelanotic and melanotic) and neuroblastoma (dopaminergic and cholinergic) with regard to proliferation, mechanism of cell death, and effect on the activity of tricarboxylic acid cycle (TAC) enzymes. METHODS The cytotoxicity of ART was evaluated by XTT and trypan blue tests. Cell death was estimated by plasma membrane structure changes (phosphatidylserine and calreticulin externalization), caspase activation, presence of ROS (reactive oxygen species), activity of tricarboxylic acid cycle enzymes (pyruvate dehydrogenase complex, aconitase, and isocitrate dehydrogenase), NAD level, and ATP level. RESULTS ART influences the biological forms of melanoma and neuroblastoma in different ways. Amelanotic (Ab) melanoma (with the inhibited melanogenesis, higher malignancy) and SHSY5Y neuroblastoma (with cholinergic DC cells) were especially sensitive to ART action. The Ab melanoma cells died through apoptosis, while, with SH-SY5Y-DC neuroblastoma, the number of cells decreased but not as a result of apoptosis. With Ab melanoma and SH-SY5Y-DC cells, a diminished activity of TAC enzymes was noticed, along with ATP/NAD depletion. CONCLUSION Our data show that the biological forms of certain tumors responded in different ways to the action of ART. As a combination of retrotuftsin and acridine, the compound can be an inducer of apoptotic cell death of melanoma, especially the amelanotic form. Although the mechanism of the interrelationships between energy metabolism and cell death is not fully understood, interference of ART with TAC enzymes could encourage the further investigation of its anticancer action.
Collapse
Affiliation(s)
- Miroslawa Cichorek
- Department of Embryology, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland.
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdansk, Debinki 7 St, 80-211, Gdansk, PL, Poland
| | - Monika Gensicka-Kowalewska
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, PL, Poland
| | - Milena Deptula
- Department of Embryology, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland
| | - Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, PL, Poland
| |
Collapse
|
17
|
Piletz JE, Drivon J, Eisenga J, Buck W, Yen S, McLin M, Meruvia W, Amaral C, Brue K. Human Cells Grown With or Without Substitutes for Fetal Bovine Serum. CELL MEDICINE 2018; 10:2155179018755140. [PMID: 32634183 PMCID: PMC6172986 DOI: 10.1177/2155179018755140] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Safety concerns over cell-derived pharmaceutical products being manufactured in
supplements of fetal bovine serum (FBS) have ignited pleas to replace FBS. Herein, four
newly marketed alternatives to FBS were compared: a xeno-free product called Cell-Ess®, a
human platelet lysate marketed as GroPro®, and two mixtures of adult bovine serum varying
in their proportions of neonatal growth factors, called Liporo® and FetalGro®. An
endothelial cell line (C2BBe1) and a neuronal cell line (SHSY5Y) near confluency in media
with 10% FBS were selectively scraped and taken through a 25-day step-wise algorithm to
replace FBS, and another human endothelial cell line (HRA-19) was studied to replicate
C2BBe1. Cells were stained, counted, and compared for viability, migration, and spheroids.
The C2BBe1 and HRA-19 cell lines failed to proliferate in 10% Cell-Ess® but grew in 10%
GroPro® or 10% FetalGro® reasonably well compared to reference 10% FBS. With SH-SY5Y, only
FetalGro® approached FBS's efficacy. These were all inferior to 11 different branded lots
of FBS (positive controls), but five days into switching just amongst the FBS brands, 4 of
11 supported less proliferation than reference FBS in endothelial HRA-19
(p < 0.004). Moreover, neurospheres were enriched in two branded
lots of FBS and FetalGro® (each p < 0.004), neurospheres being an
unwanted phenotype for any neuronal cell application. Because platelet-derived GroPro®
stood out amongst the non-FBS growth supplements to allow proliferation without inducing
spheroids, it seems the best (mindful that the cells still grew slower in it compared to
FBS). While no perfect replacement was found amongst the alternatives to FBS, the
algorithm for switching should be useful in future testing of new alternatives to FBS as
the need arises to switch from FBS and expand pharmaceutical products with safety for
human use.
Collapse
Affiliation(s)
- John E Piletz
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - Jennifer Drivon
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - John Eisenga
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - Will Buck
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - Sabrina Yen
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - Megan McLin
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - William Meruvia
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - Carolina Amaral
- Department of Biology, Mississippi College, Clinton, MS, USA
| | - Kellie Brue
- Department of Biology, Mississippi College, Clinton, MS, USA
| |
Collapse
|
18
|
Sweeney EE, Cano-Mejia J, Fernandes R. Photothermal Therapy Generates a Thermal Window of Immunogenic Cell Death in Neuroblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800678. [PMID: 29665282 DOI: 10.1002/smll.201800678] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/06/2018] [Indexed: 05/05/2023]
Abstract
A thermal "window" of immunogenic cell death (ICD) elicited by nanoparticle-based photothermal therapy (PTT) in an animal model of neuroblastoma is described. In studies using Prussian blue nanoparticles to administer photothermal therapy (PBNP-PTT) to established localized tumors in the neuroblastoma model, it is observed that PBNP-PTT conforms to the "more is better" paradigm, wherein higher doses of PBNP-PTT generates higher cell/local heating and thereby more cell death, and consequently improved animal survival. However, in vitro analysis of the biochemical correlates of ICD (ATP, high-motility group box 1, and calreticulin) elicited by PBNP-PTT demonstrates that PBNP-PTT triggers a thermal window of ICD. ICD markers are highly expressed within an optimal temperature (thermal dose) window of PBNP-PTT (63.3-66.4 °C) as compared with higher (83.0-83.5 °C) and lower PBNP-PTT (50.7-52.7 °C) temperatures, which both yield lower expression. Subsequent vaccination studies in the neuroblastoma model confirm the in vitro findings, wherein PBNP-PTT administered within the optimal temperature window results in long-term survival (33.3% at 100 d) compared with PBNP-PTT administered within the higher (0%) and lower (20%) temperature ranges, and controls (0%). The findings demonstrate a tunable immune response to heat generated by PBNP-PTT, which should be critically engaged in the administration of PTT for maximizing its therapeutic benefits.
Collapse
Affiliation(s)
- Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Washington, 8th Floor Science and Engineering Hall, Washington, DC, 20052, USA
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave NW, 6th Floor Main Hospital, Washington, DC, 20010, USA
| | - Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Washington, 8th Floor Science and Engineering Hall, Washington, DC, 20052, USA
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave NW, 6th Floor Main Hospital, Washington, DC, 20010, USA
- Fischell Department of Bioengineering, University of Maryland, Room 2330 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Washington, 8th Floor Science and Engineering Hall, Washington, DC, 20052, USA
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave NW, 6th Floor Main Hospital, Washington, DC, 20010, USA
- Fischell Department of Bioengineering, University of Maryland, Room 2330 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
- Department of Medicine, The George Washington University, 2150 Pennsylvania Ave NW, Suite 8-416, Washington, DC, 20037, USA
| |
Collapse
|
19
|
Abou-Antoun TJ, Nazarian J, Ghanem A, Vukmanovic S, Sandler AD. Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: A possible explanation for radio-therapy resistance. PLoS One 2018; 13:e0189711. [PMID: 29298329 PMCID: PMC5751995 DOI: 10.1371/journal.pone.0189711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in cancer treatment and management, more than 60% of patients with neuroblastoma present with very poor prognosis in the form of metastatic and aggressive disease. Solid tumors including neuroblastoma are thought to be heterogeneous with a sub-population of stem-like cells that are treatment-evasive with highly malignant characteristics. We previously identified a phenomenon of reversible adaptive plasticity (RAP) between anchorage dependent (AD) cells and anchorage independent (AI) tumorspheres in neuroblastoma cell cultures. To expand our molecular characterization of the AI tumorspheres, we sought to define the comprehensive proteomic profile of murine AD and AI neuroblastoma cells. The proteomic profiles of the two phenotypic cell populations were compared to each other to determine the differential protein expression and molecular pathways of interest. We report exclusive or significant up-regulation of tumorigenic pathways expressed by the AI tumorspheres compared to the AD cancer cells. These pathways govern metastatic potential, enhanced malignancy and epithelial to mesenchymal transition. Furthermore, radio-therapy induced significant up-regulation of specific tumorigenic and proliferative proteins, namely survivin, CDC2 and the enzyme Poly [ADP-ribose] polymerase 1. Bio-functional characteristics of the AI tumorspheres were resistant to sutent inhibition of receptor tyrosine kinases (RTKs) as well as to 2.5 Gy radio-therapy as assessed by cell survival, proliferation, apoptosis and migration. Interestingly, PDGF-BB stimulation of the PDGFRβ led to transactivation of EGFR and VEGFR in AI tumorspheres more potently than in AD cells. Sutent inhibition of PDGFRβ abrogated this transactivation in both cell types. In addition, 48 h sutent treatment significantly down-regulated the protein expression of PDGFRβ, MYCN, SOX2 and Survivin in the AI tumorspheres and inhibited tumorsphere self-renewal. Radio-sensitivity in AI tumorspheres was enhanced when sutent treatment was combined with survivin knock-down. We conclude that AI tumorspheres have a differential protein expression compared to AD cancer cells that contribute to their malignant phenotype and radio-resistance. Specific targeting of both cellular phenotypes is needed to improve outcomes in neuroblastoma patients.
Collapse
Affiliation(s)
- Tamara J. Abou-Antoun
- Department of Pharmaceutical Sciences, the School of Pharmacy, Lebanese American University, Byblos, Lebanon
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, D.C., United States of America
- * E-mail:
| | - Javad Nazarian
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, D.C., United States of America
| | - Anthony Ghanem
- The School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Stanislav Vukmanovic
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, D.C., United States of America
| | - Anthony D. Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, D.C., United States of America
- The Joseph E. Robert Center for Surgical Care, Children's National Health System, Washington, D.C., United States of America
| |
Collapse
|
20
|
Villasante A, Sakaguchi K, Kim J, Cheung N, Nakayama M, Parsa H, Okano T, Shimizu T, Vunjak-Novakovic G. Vascularized Tissue-Engineered Model for Studying Drug Resistance in Neuroblastoma. Am J Cancer Res 2017; 7:4099-4117. [PMID: 29158813 PMCID: PMC5695000 DOI: 10.7150/thno.20730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/11/2017] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma is a vascularized pediatric tumor derived from neural crest stem cells that displays vasculogenic mimicry and can express a number of stemness markers, such as SOX2 and NANOG. Tumor relapse is the major cause of succumbing to this disease, and properties attributed to cancer stem-like cells (CSLC), such as drug-resistance and cell plasticity, seem to be the key mechanisms. However, the lack of controllable models that recapitulate the features of human neuroblastoma limits our understanding of the process and impedes the development of new therapies. In response to these limitations, we engineered a perfusable, vascularized in vitro model of three-dimensional human neuroblastoma to study the effects of retinoid therapy on tumor vasculature and drug-resistance. METHODS The in vitro model of neuroblastoma was generated using cell-sheet engineering and cultured in a perfusion bioreactor. Firstly, we stacked three cell sheets containing SKNBE(2) neuroblastoma cells and HUVEC. Then, a vascular bed made of fibrin, collagen I and HUVEC cells was placed onto a collagen-gel base with 8 microchannels. After gelling, the stacked cell sheets were placed on the vascular bed and cultured in the perfusion bioreactor (perfusion rate: 0.5 mL/min) for 4 days. Neuroblastoma models were treated with 10μM isotretionin in single daily doses for 5 days. RESULTS The bioengineered model recapitulated vasculogenic mimicry (vessel-like structure formation and tumor-derived endothelial cells-TECs), and contained CSLC expressing SOX2 and NANOG. Treatment with Isotretinoin destabilized vascular networks but failed to target vasculogenic mimicry and augmented populations of CSLCs expressing high levels of SOX2. Our results suggest that CSLCs can transdifferentiate into drug resistant CD31+-TECs, and reveal the presence of an intermediate state STEC (stem tumor-derived endothelial cell) expressing both SOX2 and CD31. CONCLUSION Our results reveal some roles of SOX2 in drug resistance and tumor relapse, and suggest that SOX2 could be a therapeutic target in neuroblastoma.
Collapse
|
21
|
Cano-Mejia J, Burga RA, Sweeney EE, Fisher JP, Bollard CM, Sandler AD, Cruz CRY, Fernandes R. Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:771-781. [PMID: 27826115 PMCID: PMC10568650 DOI: 10.1016/j.nano.2016.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/22/2016] [Accepted: 10/29/2016] [Indexed: 11/26/2022]
Abstract
We describe "photothermal immunotherapy," which combines Prussian blue nanoparticle (PBNP)-based photothermal therapy (PTT) with anti-CTLA-4 checkpoint inhibition for treating neuroblastoma, a common, hard-to-treat pediatric cancer. PBNPs exhibit pH-dependent stability, which makes them suitable for intratumorally-administered PTT. PBNP-based PTT is able to lower tumor burden and prime an immune response, specifically an increased infiltration of lymphocytes and T cells to the tumor area, which is complemented by the antitumor effects of anti-CTLA-4 immunotherapy, providing a more durable treatment against neuroblastoma in an animal model. We observe 55.5% survival in photothermal immunotherapy-treated mice at 100days compared to 12.5%, 0%, 0%, and 0% survival in mice receiving: anti-CTLA-4 alone, PBNPs alone, PTT alone, and no treatment, respectively. Additionally, long-term surviving, photothermal immunotherapy-treated mice exhibit protection against neuroblastoma rechallenge, suggesting the development of immunity against these tumors. Our findings suggest the potential of photothermal immunotherapy in improving treatments for neuroblastoma.
Collapse
Affiliation(s)
- Juliana Cano-Mejia
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Rachel A Burga
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA; Institute for Biomedical Sciences, The George Washington University, DC, USA.
| | - Elizabeth E Sweeney
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA.
| | - John P Fisher
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Catherine M Bollard
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA; Institute for Biomedical Sciences, The George Washington University, DC, USA; Center for Cancer and Immunology Research, Washington, DC, USA; Department of Pediatrics, The George Washington University, DC, USA.
| | - Anthony D Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA; Institute for Biomedical Sciences, The George Washington University, DC, USA; Department of Pediatrics, The George Washington University, DC, USA; The Joseph E. Robert Jr. Center for Surgical Care, Children's National Health System, Washington, DC, USA.
| | - Conrad Russell Y Cruz
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA; Institute for Biomedical Sciences, The George Washington University, DC, USA; Center for Cancer and Immunology Research, Washington, DC, USA; Department of Pediatrics, The George Washington University, DC, USA.
| | - Rohan Fernandes
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Biomedical Sciences, The George Washington University, DC, USA; Department of Pediatrics, The George Washington University, DC, USA; Department of Radiology, The George Washington University, DC, USA.
| |
Collapse
|
22
|
Cell-to-cell heterogeneity of EWSR1-FLI1 activity determines proliferation/migration choices in Ewing sarcoma cells. Oncogene 2017; 36:3505-3514. [PMID: 28135250 PMCID: PMC5541267 DOI: 10.1038/onc.2016.498] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Abstract
Ewing sarcoma is characterized by the expression of the chimeric EWSR1-FLI1 transcription factor. Proteomic analyses indicate that the decrease of EWSR1-FLI1 expression leads to major changes in effectors of the dynamics of the actin cytoskeleton and the adhesion processes with a shift from cell-to-cell to cell-matrix adhesion. These changes are associated with a dramatic increase of in vivo cell migration and invasion potential. Importantly, EWSR1-FLI1 expression, evaluated by single-cell RT-ddPCR/immunofluorescence analyses, and activity, assessed by expression of EWSR1-FLI1 downstream targets, are heterogeneous in cell lines and in tumours and can fluctuate along time in a fully reversible process between EWSR1-FLI1high states, characterized by highly active cell proliferation, and EWSR1-FLI1low states where cells have a strong propensity to migrate, invade and metastasize. This new model of phenotypic plasticity proposes that the dynamic fluctuation of the expression level of a dominant oncogene is an intrinsic characteristic of its oncogenic potential.
Collapse
|
23
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
24
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
25
|
Rached J, Nasr Z, Abdallah J, Abou-Antoun T. L1-CAM knock-down radiosensitizes neuroblastoma IMR-32 cells by simultaneously decreasing MycN, but increasing PTEN protein expression. Int J Oncol 2016; 49:1722-30. [PMID: 27432152 DOI: 10.3892/ijo.2016.3625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/28/2016] [Indexed: 11/06/2022] Open
Abstract
Childhood neuroblastoma is one of the most malignant types of cancers leading to a high mortality rate. These cancerous cells can be highly metastatic and malignant giving rise to disease recurrence and poor prognosis. The proto-oncogene myelocytomatosis neuroblastoma (MycN) is known to be amplified in this type of cancer, thus, promoting high malignancy and resistance. The L1 cell adhesion molecule (L1-CAM) cleavage has been found upregulated in many types of malignant cancers. In the present study, we explored the interplay between L1-CAM, MycN and PTEN as well as the role played by PDGFR and VEGFR on tumorigenicity in neuroblastoma cells. We investigated the effect of L1-CAM knock-down (KD) and PDGFR/VEGFR inhibition with sunitinib malate (Sutent®) treatment on subsequent tumorsphere formation and cellular proliferation and migration in the MycN-amplified IMR-32 neuroblastoma cells. We further examined the effect of combined L1-CAM KD with Sutent treatment or radiotherapy on these cellular functions in our cells. Tumorsphere formation is one of the indicators of aggressiveness in malignant cancers, which was significantly inhibited in IMR-32 cells after L1-CAM KD or Sutent treatment, however, no synergistic effect was observed with dual treatments, rather L1-CAM KD alone showed a greater inhibition on tumorsphere formation compared to Sutent treatment alone. In addition, cellular proliferation and migration were significantly inhibited after L1-CAM KD in the IMR-32 cells with no synergistic effect observed on the rate of cell proliferation when combined with Sutent treatment. Again, L1-CAM KD alone exhibited greater inhibitory effect than Sutent treatment on cell proliferation. L1-CAM KD led to the simultaneous downregulation of MycN, but the upregulation of PTEN protein expression. Notably, radiotherapy (2 Gy) of the IMR-32 cells led to significant upregulation of both L1-CAM and MycN, which was abrogated with L1-CAM KD in our cells. In addition, L1-CAM KD radiosensitized the cells as exhibited by the synergistic effect on the reduction in cell proliferation compared to radiotherapy alone. Taken together, our data show the importance of L1-CAM interplay with MycN and PTEN on the MycN amplified neuroblastoma cell radioresistance, proliferation and motility.
Collapse
Affiliation(s)
- Johnny Rached
- Faculty of Sciences, University of Balamand, Koura, Lebanon
| | - Zeina Nasr
- Faculty of Sciences, University of Balamand, Koura, Lebanon
| | - Jad Abdallah
- School of Pharmacy, Pharmaceutical Sciences Department, Lebanese American University, Byblos, Lebanon
| | - Tamara Abou-Antoun
- School of Pharmacy, Pharmaceutical Sciences Department, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
26
|
Flusberg DA, Sorger PK. Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 2015; 25:446-58. [PMID: 25920803 PMCID: PMC4570028 DOI: 10.1016/j.tcb.2015.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as Nuclear Factor (NF)-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival and/or pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Chakrabarti L, Morgan C, Sandler AD. Combination of Id2 Knockdown Whole Tumor Cells and Checkpoint Blockade: A Potent Vaccine Strategy in a Mouse Neuroblastoma Model. PLoS One 2015; 10:e0129237. [PMID: 26079374 PMCID: PMC4469424 DOI: 10.1371/journal.pone.0129237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor vaccines have held much promise, but to date have demonstrated little clinical success. This lack of success is conceivably due to poor tumor antigen presentation combined with immuno-suppressive mechanisms exploited by the tumor itself. Knock down of Inhibitor of differentiation protein 2 (Id2-kd) in mouse neuroblastoma whole tumor cells rendered these cells immunogenic. Id2-kd neuroblastoma (Neuro2a) cells (Id2-kd N2a) failed to grow in most immune competent mice and these mice subsequently developed immunity against further wild-type Neuro2a tumor cell challenge. Id2-kd N2a cells grew aggressively in immune-compromised hosts, thereby establishing the immunogenicity of these cells. Therapeutic vaccination with Id2-kd N2a cells alone suppressed tumor growth even in established neuroblastoma tumors and when used in combination with immune checkpoint blockade eradicated large established tumors. Mechanistically, immune cell depletion studies demonstrated that while CD8+ T cells are critical for antitumor immunity, CD4+ T cells are also required to induce a sustained long-lasting helper effect. An increase in number of CD8+ T-cells and enhanced production of interferon gamma (IFNγ) was observed in tumor antigen stimulated splenocytes of vaccinated mice. More importantly, a massive influx of cytotoxic CD8+ T-cells infiltrated the shrinking tumor following combined immunotherapy. These findings show that down regulation of Id2 induced tumor cell immunity and in combination with checkpoint blockade produced a novel, potent, T-cell mediated tumor vaccine strategy.
Collapse
Affiliation(s)
- Lina Chakrabarti
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, District of Columbia, United States of America
| | - Clifford Morgan
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, District of Columbia, United States of America
| | - Anthony D. Sandler
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
28
|
Pandian V, Ramraj S, Khan FH, Azim T, Aravindan N. Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling. Stem Cell Res Ther 2015; 6:2. [PMID: 25888913 PMCID: PMC4396071 DOI: 10.1186/s13287-015-0002-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction High-risk neuroblastoma (HR-NB) presenting with hematogenous metastasis is one of the most difficult cancers to cure. Patient survival is poor. Aggressive tumors contain populations of rapidly proliferating clonogens that exhibit stem cell properties, cancer stem cells (CSCs). Conceptually, CSCs that evade intensive multimodal therapy dictate tumor progression, relapse/recurrence, and poor clinical outcomes. Herein, we investigated the plasticity and stem-cell related molecular response of aggressive metastatic neuroblastoma cells that fit the CSC model. Methods Well-characterized clones of metastatic site-derived aggressive cells (MSDACs) from a manifold of metastatic tumors of clinically translatable HR-NB were characterized for their CSC fit by examining epithelial-to-mesenchymal transition (EMT) (E-cadherin, N-Cadherin), survival (NFκB P65, p50, IκB and pIκB) and drug resistance (ABCG2) by immunoblotting; pluripotency maintenance (Nanog, SOX2) by immunofluorescence; and EMT and stemness related transcription of 93 genes by QPCR profiling. Plasticity of MSDACs under sequential alternation of culture conditions with serum and serum-free stem-cell conditions was assessed by clonal expansion (BrdU incorporation), tumorosphere formation (anchorage independent growth), EMT and stemness related transcriptome (QPCR profiling) and validated with MYC, SOX2, EGFR, NOTCH1 and CXCL2 immunoblotting. Results HR-NB MSDACs maintained in alternated culture conditions, serum-free stem cell medium to growth medium with serum and vice versa identified its flexible revocable plasticity characteristics. We observed signatures of stem cell-related molecular responses consistent with phenotypic conversions. Successive reintroduction to the favorable niche not only regained identical EMT, self-renewal capacity, pluripotency maintenance, and other stem cell-related signaling events, but also instigated additional events depicting aggressive adaptive plasticity. Conclusions Together, these results demonstrated the flexible plasticity of HR-NB MSDACs that typically fit the CSC model, and further identified the intrinsic adaptiveness of the successive phenotype switching that clarifies the heterogeneity of HR-NB. Moreover, the continuous ongoing acquisition of stem cell-related molecular rearrangements may hold the key to the switch from favorable disease to HR-NB. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0002-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijayabaskar Pandian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Satishkumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Faizan H Khan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Tasfia Azim
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
29
|
Naiditch JA, Jie C, Lautz TB, Yu S, Clark S, Voronov D, Chu F, Madonna MB. Mesenchymal change and drug resistance in neuroblastoma. J Surg Res 2014; 193:279-88. [PMID: 25128389 DOI: 10.1016/j.jss.2014.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. MATERIALS AND METHODS Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. RESULTS Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. CONCLUSIONS Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state.
Collapse
Affiliation(s)
- Jessica A Naiditch
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Chunfa Jie
- Whole Genome Core Facility, Northwestern University, Chicago, Illinois
| | - Timothy B Lautz
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Songtao Yu
- Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Sandra Clark
- Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Dimitry Voronov
- Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Fei Chu
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois.
| | - Mary Beth Madonna
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| |
Collapse
|
30
|
Hoffman HA, Chakrabarti L, Dumont MF, Sandler AD, Fernandes R. Prussian blue nanoparticles for laser-induced photothermal therapy of tumors. RSC Adv 2014. [DOI: 10.1039/c4ra05209a] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
31
|
Candia J, Banavar JR, Losert W. Understanding health and disease with multidimensional single-cell methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:073102. [PMID: 24451406 PMCID: PMC4020281 DOI: 10.1088/0953-8984/26/7/073102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Current efforts in the biomedical sciences and related interdisciplinary fields are focused on gaining a molecular understanding of health and disease, which is a problem of daunting complexity that spans many orders of magnitude in characteristic length scales, from small molecules that regulate cell function to cell ensembles that form tissues and organs working together as an organism. In order to uncover the molecular nature of the emergent properties of a cell, it is essential to measure multiple-cell components simultaneously in the same cell. In turn, cell heterogeneity requires multiple-cells to be measured in order to understand health and disease in the organism. This review summarizes current efforts towards a data-driven framework that leverages single-cell technologies to build robust signatures of healthy and diseased phenotypes. While some approaches focus on multicolor flow cytometry data and other methods are designed to analyze high-content image-based screens, we emphasize the so-called Supercell/SVM paradigm (recently developed by the authors of this review and collaborators) as a unified framework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond their specific contributions to basic and translational biomedical research, these efforts illustrate, from a larger perspective, the powerful synergy that might be achieved from bringing together methods and ideas from statistical physics, data mining, and mathematics to solve the most pressing problems currently facing the life sciences.
Collapse
Affiliation(s)
- Julián Candia
- Department of Physics, University of Maryland, College Park, MD 20742, USA. School of Medicine, University of Maryland, Baltimore, MD 21201, USA. IFLYSIB and CONICET, University of La Plata, 1900 La Plata, Argentina
| | | | | |
Collapse
|
32
|
Chakrabarti L, Wang BD, Lee NH, Sandler AD. A mechanism linking Id2-TGFβ crosstalk to reversible adaptive plasticity in neuroblastoma. PLoS One 2013; 8:e83521. [PMID: 24376712 PMCID: PMC3871549 DOI: 10.1371/journal.pone.0083521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
The ability of high-risk neuroblastoma to survive unfavorable growth conditions and multimodal therapy has produced an elusive childhood cancer with remarkably poor prognosis. A novel phenomenon enabling neuroblastoma to survive selection pressure is its capacity for reversible adaptive plasticity. This plasticity allows cells to transition between highly proliferative anchorage dependent (AD) and slow growing, anoikis-resistant anchorage independent (AI) phenotypes. Both phenotypes are present in established mouse and human tumors. The differential gene expression profile of the two cellular phenotypes in the mouse Neuro2a cell line delineated pathways of proliferation in AD cells or tyrosine kinase activation/ apoptosis inhibition in AI cells. A 20 fold overexpression of inhibitor of differentiation 2 (Id2) was identified in AD cells while up-regulation of genes involved in anoikis resistance like PI3K/Akt, Erk, Bcl2 and integrins was observed in AI cells. Similarly, differential expression of Id2 and other genes of interest were also observed in the AD and AI phenotypes of human neuroblastoma cell lines, SK-N-SH and IMR-32; as well as in primary human tumor specimens. Forced down-regulation of Id2 in AD cells or overexpression in AI cells induced the cells to gain characteristics of the other phenotype. Id2 binds both TGFβ and Smad2/3 and appears critical for maintaining the proliferative phenotype at least partially through negative regulation of the TGFβ/Smad pathway. Simultaneously targeting the differential molecular pathways governing reversible adaptive plasticity resulted in 50% cure of microscopic disease and delayed tumor growth in established mouse neuroblastoma tumors. We present a mechanism that accounts for reversible adaptive plasticity and a molecular basis for combined targeted therapies in neuroblastoma.
Collapse
Affiliation(s)
- Lina Chakrabarti
- The Joseph E. Robert Center for Surgical Care, Children’s National Medical Center, Washington, D.C., United States of America
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, D.C., United States of America
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, D.C., United States of America
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, D.C., United States of America
| | - Anthony D. Sandler
- The Joseph E. Robert Center for Surgical Care, Children’s National Medical Center, Washington, D.C., United States of America
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|