1
|
Kong Y, Wang Y, Yang Q, Ye S. Immunotherapy and liver cancer research trends and the 100 most cited articles: A bibliometric analysis. Technol Health Care 2024; 32:5141-5155. [PMID: 39093101 PMCID: PMC11613086 DOI: 10.3233/thc-241111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Bibliometric analysis of liver cancer research, particularly in immunotherapy, reveals crucial insights. The US leads in liver cancer mortality but ranks fifth globally. OBJECTIVE Scopus database analysis identified 2,349 papers, with the top 100 ranging from 127 to 4,959 citations. Notably, "Microenvironmental Regulation of Tumours Progression and Metastasis" in the Journal of Nature Medicine garnered the highest citations. METHODS Journals like the Journal of Hepatology, Hepatology, and Nature Reports Clinical Oncology contributed significantly. Understanding molecular mechanisms and prognostic indicators is paramount for advancing combination therapies. RESULTS For better patient outcomes, research trends in liver cancer immunotherapy point to improved treatment protocols, knowledge of the tumor microenvironment, combining therapies, predicting disease course, international cooperation, sophisticated surgical techniques, early detection, oncolytic virotherapy, and patient-centered care. CONCLUSIONS This research underscores immunotherapy's pivotal role and encourages further exploration, offering valuable insights into liver cancer treatment trends.
Collapse
Affiliation(s)
- Yang Kong
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yizhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qifan Yang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Song Ye
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Sharifian M, Baharvand P, Moayyedkazemi A. Liver Cancer: New Insights into Surgical and Nonsurgical Treatments. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210219104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Hepatocellular carcinoma (HCC) is the most common type of liver cancer
that has increased in recent years worldwide. Primary liver cancer or HCC is considered the 5th and
7th most common cancer among men and women, respectively. It is also the second leading cause
of cancer death worldwide. Unfortunately, HCC is frequently diagnosed at an advanced stage when
the majority of the patients do not have access to remedial therapies. Furthermore, current systemic
chemotherapy shows low efficacy and minimum survival benefits. Liver cancer therapy is a multidisciplinary,
multiple-choice treatment based on the complex interaction of the tumour stage, the
degree of liver disease, and the patient's general state of health.
Methods:
In this paper, we reviewed new insights into nonsurgical and surgical treatment of liver
cancer in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google
Scholar up to December 2019.
Results:
The results demonstrated, in addition to current therapies such as chemotherapy and surgical
resection, new approaches, including immunotherapy, viral therapy, gene therapy, new ablation
therapies, and adjuvant therapy, are widely used for the treatment of HCC. In recent years, biomaterials
such as nanoparticles, liposomes, microspheres, and nanofibers are also regarded as reliable
and innovative patents for the treatment and study of liver cancers.
Conclusion:
Multidisciplinary and multi-choice treatments and therapies are available for this liver
cancer, while there are differences in liver cancer management recommendations among specialties
and geographic areas. Current results have shown that treatment strategies have been combined
with the advancement of novel treatment modalities. In addition, the use of new approaches with
greater efficacy, such as combination therapy, biomaterials, ablation therapy, etc. can be considered
the preferred treatment for patients.
Collapse
Affiliation(s)
- Masoud Sharifian
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Moayyedkazemi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Virotherapy in Germany-Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses 2021; 13:v13081420. [PMID: 34452286 PMCID: PMC8402873 DOI: 10.3390/v13081420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review—as part of the special edition on “State-of-the-Art Viral Vector Gene Therapy in Germany”—the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.
Collapse
|
4
|
Lampis A, Ratti M, Ghidini M, Mirchev MB, Okuducu AF, Valeri N, Hahne JC. Challenges and perspectives for immunotherapy in oesophageal cancer: A look to the future (Review). Int J Mol Med 2021; 47:97. [PMID: 33846775 PMCID: PMC8041478 DOI: 10.3892/ijmm.2021.4930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Oesophageal cancer is one of the most aggressive malignancies with limited treatment options, thus resulting in a high morbidity and mortality. With 5‑year survival rates of only 5‑10%, oesophageal cancer holds a dismal prognosis for patients. In order to improve overall survival, the early diagnosis and tools for patient stratification for personalized treatment are urgent needs. A minority of oesophageal cancers belong to the spectrum of Lynch syndrome‑associated cancers and are characterized by microsatellite instability (MSI). Microsatellite instability is a consequence of defective mismatch repair protein functions and it has been well characterized in other gastrointestinal tumours, such as colorectal and gastric cancer. In the latter, high levels of MSI are associated with a better prognosis and with an increased benefit to immune‑based therapies. Therefore, similar therapeutic approaches could offer an opportunity of treatment for oesophageal cancer patients with MSI. Apart from immune checkpoint inhibitors, other immunotherapies such as adoptive T‑cell transfer, peptide vaccine and oncolytic viruses are under investigation in oesophageal cancer patients. In the present review, the rationale and current knowledge about immunotherapies in oesophageal cancer are summarised.
Collapse
Affiliation(s)
- Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
| | - Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
- Medical Department, Division of Oncology, Hospital Trust of Cremona, I-26100 Cremona, Italy
| | - Michele Ghidini
- Division of Medical Oncology, Hospital Policlinic 'Fondazione IRCCS Ca' Granda Ospedale Maggiore', I-20122 Milan, Italy
| | - Milko B. Mirchev
- Clinic of Gastroenterology, Medical University, 9002 Varna, Bulgaria
| | | | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, Sutton SM25NG, UK
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM25NG, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM25NG, UK
| |
Collapse
|
5
|
Ji A, Jin R, Zhang R, Li H. Primary small cell carcinoma of the esophagus: progression in the last decade. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:502. [PMID: 32395546 PMCID: PMC7210214 DOI: 10.21037/atm.2020.03.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary small cell carcinoma of the esophagus (PSCCE) is a highly malignant tumor that is diagnosed by endoscopic biopsy and immunohistochemistry. Because of its low incidence, a high degree of malignancy, and rapid progress, it is difficult to conduct large, randomized controlled trials and to establish a standard treatment plan for this disease. In recent years, several retrospective studies have been reported, and with the rise of emerging therapies, PSCCE has gradually become a focus of thoracic surgery. This paper reviews progress in the diagnosis and treatment of PSCCE in recent years.
Collapse
Affiliation(s)
- Anqi Ji
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Runsen Jin
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Zhao Q, Yu J, Meng X. A good start of immunotherapy in esophageal cancer. Cancer Med 2019; 8:4519-4526. [PMID: 31231980 PMCID: PMC6712478 DOI: 10.1002/cam4.2336] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022] Open
Abstract
Considering the benefits of immunotherapy in advanced melanoma, non–small cell lung cancer, renal cell carcinoma, bladder cancers, and refractory Hodgkin lymphoma, we begin to consider whether immunotherapy is effective for esophageal cancer, which is extremely malignant and has a poor prognosis. There are a large number of clinical trials to study the application of immunotherapy such as immune checkpoint inhibitors, peptide vaccine, adoptive T cell transfer and oncolytic virus in esophageal cancer. Some already have preliminary results and show the advantages of immunotherapy in esophageal cancer, while others are still in progress. This review aims to introduce the feasibility and current status of immunotherapy in esophageal cancer.
Collapse
Affiliation(s)
- Qian Zhao
- Cheeloo College of MedicineShanDong UniversityJinanChina
| | - Jinming Yu
- Department of Radiation OncologyShandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical SciencesJinanChina
| | - Xue Meng
- Cheeloo College of MedicineShanDong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
7
|
Bretscher C, Marchini A. H-1 Parvovirus as a Cancer-Killing Agent: Past, Present, and Future. Viruses 2019; 11:v11060562. [PMID: 31216641 PMCID: PMC6630270 DOI: 10.3390/v11060562] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
The rat protoparvovirus H-1PV is nonpathogenic in humans, replicates preferentially in cancer cells, and has natural oncolytic and oncosuppressive activities. The virus is able to kill cancer cells by activating several cell death pathways. H-1PV-mediated cancer cell death is often immunogenic and triggers anticancer immune responses. The safety and tolerability of H-1PV treatment has been demonstrated in early clinical studies in glioma and pancreatic carcinoma patients. Virus treatment was associated with surrogate signs of efficacy including immune conversion of tumor microenvironment, effective virus distribution into the tumor bed even after systemic administration, and improved patient overall survival compared with historical control. However, monotherapeutic use of the virus was unable to eradicate tumors. Thus, further studies are needed to improve H-1PV's anticancer profile. In this review, we describe H-1PV's anticancer properties and discuss recent efforts to improve the efficacy of H-1PV and, thereby, the clinical outcome of H-1PV-based therapies.
Collapse
Affiliation(s)
- Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
8
|
Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, Yim HJ, Byun KS, Baron A, Ungerechts G, Jonker D, Ruo L, Cho M, Kaubisch A, Wege H, Merle P, Ebert O, Habersetzer F, Blanc JF, Rosmorduc O, Lencioni R, Patt R, Leen AM, Foerster F, Homerin M, Stojkowitz N, Lusky M, Limacher JM, Hennequi M, Gaspar N, McFadden B, De Silva N, Shen D, Pelusio A, Kirn DH, Breitbach CJ, Burke JM. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019; 8:1615817. [PMID: 31413923 PMCID: PMC6682346 DOI: 10.1080/2162402x.2019.1615817] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Pexastimogene devacirepvec (Pexa-Vec) is a vaccinia virus-based oncolytic immunotherapy designed to preferentially replicate in and destroy tumor cells while stimulating anti-tumor immunity by expressing GM-CSF. An earlier randomized Phase IIa trial in predominantly sorafenib-naïve hepatocellular carcinoma (HCC) demonstrated an overall survival (OS) benefit. This randomized, open-label Phase IIb trial investigated whether Pexa-Vec plus Best Supportive Care (BSC) improved OS over BSC alone in HCC patients who failed sorafenib therapy (TRAVERSE). 129 patients were randomly assigned 2:1 to Pexa-Vec plus BSC vs. BSC alone. Pexa-Vec was given as a single intravenous (IV) infusion followed by up to 5 IT injections. The primary endpoint was OS. Secondary endpoints included overall response rate (RR), time to progression (TTP) and safety. A high drop-out rate in the control arm (63%) confounded assessment of response-based endpoints. Median OS (ITT) for Pexa-Vec plus BSC vs. BSC alone was 4.2 and 4.4 months, respectively (HR, 1.19, 95% CI: 0.78–1.80; p = .428). There was no difference between the two treatment arms in RR or TTP. Pexa-Vec was generally well-tolerated. The most frequent Grade 3 included pyrexia (8%) and hypotension (8%). Induction of immune responses to vaccinia antigens and HCC associated antigens were observed. Despite a tolerable safety profile and induction of T cell responses, Pexa-Vec did not improve OS as second-line therapy after sorafenib failure. The true potential of oncolytic viruses may lie in the treatment of patients with earlier disease stages which should be addressed in future studies. ClinicalTrials.gov: NCT01387555
Collapse
Affiliation(s)
- M Moehler
- First Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Heo
- College of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - H C Lee
- Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic ofKorea
| | - W Y Tak
- School of Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Y Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - S W Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - H J Yim
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - K S Byun
- Department of Internal Medicine, Korea UniversityCollege of Medicine, Seoul, Republic of Korea
| | - A Baron
- Department of Medicine, California Pacific Medical Center, San Francisco, CA, USA
| | - G Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Heidelberg, Germany
| | - D Jonker
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - L Ruo
- Department of Surgery, Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, Canada
| | - M Cho
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Busan, Republic of Korea
| | - A Kaubisch
- Department of Medicine, Montefiore Medical Center, New York, NY, USA
| | - H Wege
- Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Merle
- Hepatology Unit, Croix-Rousse Hospital, Lyon, France
| | - O Ebert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - F Habersetzer
- Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, INSERM 1110, IHU de Strasbourg and Université de Strasbourg, Strasbourg, France
| | - J F Blanc
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Bordeaux, Bordeaux, France
| | | | - R Lencioni
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Patt
- Rad-MD, New York, NY, USA
| | - A M Leen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - F Foerster
- First Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - M Homerin
- Medical Affairs, Transgene S.A., Illkirch-Graffenstaden, France
| | - N Stojkowitz
- Clinical Operations, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - M Lusky
- Program Management, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - J M Limacher
- Medical Affairs, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - M Hennequi
- Biostatistics, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - N Gaspar
- Clinical Assays, SillaJen Inc., San Francisco, CA, USA
| | - B McFadden
- Analytical Development and Quality Control, SillaJen Inc., San Francisco, CA, USA
| | - N De Silva
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - D Shen
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - A Pelusio
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - D H Kirn
- SillaJen Inc., San Francisco, CA, USA
| | | | - J M Burke
- Clinical, SillaJen Inc., San Francisco, CA, USA
| |
Collapse
|
9
|
Goepfert K, Dinsart C, Rommelaere J, Foerster F, Moehler M. Rational Combination of Parvovirus H1 With CTLA-4 and PD-1 Checkpoint Inhibitors Dampens the Tumor Induced Immune Silencing. Front Oncol 2019; 9:425. [PMID: 31192129 PMCID: PMC6546938 DOI: 10.3389/fonc.2019.00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
The recent therapeutic success of immune checkpoint inhibitors in the treatment of advanced melanoma highlights the potential of cancer immunotherapy. Oncolytic virus-based therapies may further improve the outcome of these cancer patients. A human ex vivo melanoma model was used to investigate the oncolytic parvovirus H-1 (H-1PV) in combination with ipilimumab and/or nivolumab. The effect of this combination on activation of human T lymphocytes was demonstrated. Expression of CTLA-4, PD-1, and PD-L1 immune checkpoint proteins was upregulated in H-1PV-infected melanoma cells. Nevertheless, maturation of antigen presenting cells such as dendritic cells was triggered by H-1PV infected melanoma cells. Combining H-1PV with checkpoint inhibitors, ipilimumab enhanced TNFα release during maturation of dendritic cells; nivolumab increased the amount of IFNγ release. H-1PV mediated reduction of regulatory T cell activity was demonstrated by lower TGF-ß levels. The combination of ipilimumab and nivolumab resulted in a further decline of TGF-ß levels. Similar results were obtained regarding the activation of cytotoxic T cells. H-1PV infection alone and in combination with both checkpoint inhibitors caused strong activation of CTLs, which was reflected by an increased number of CD8+GranB+ cells and increased release of granzyme B, IFNγ, and TNFα. Our data support the concept of a treatment benefit from combining oncolytic H-1PV with the checkpoint inhibitors ipilimumab and nivolumab, with nivolumab inducing stronger effects on cytotoxic T cells, and ipilimumab strengthening T lymphocyte activity.
Collapse
Affiliation(s)
- Katrin Goepfert
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christiane Dinsart
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jean Rommelaere
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friedrich Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Moehler
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Ungerechts G, Engeland CE, Buchholz CJ, Eberle J, Fechner H, Geletneky K, Holm PS, Kreppel F, Kühnel F, Lang KS, Leber MF, Marchini A, Moehler M, Mühlebach MD, Rommelaere J, Springfeld C, Lauer UM, Nettelbeck DM. Virotherapy Research in Germany: From Engineering to Translation. Hum Gene Ther 2018; 28:800-819. [PMID: 28870120 DOI: 10.1089/hum.2017.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.
Collapse
Affiliation(s)
- Guy Ungerechts
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany .,3 Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Christine E Engeland
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- 4 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany .,5 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Heidelberg, Germany
| | - Jürgen Eberle
- 6 Charité -Universitätsmedizin Berlin, Department of Dermatology, Skin Cancer Centre Charité , Berlin, Germany
| | - Henry Fechner
- 7 Technische Universität Berlin, Institute of Biotechnology , Department of Applied Biochemistry, Berlin, Germany
| | - Karsten Geletneky
- 8 Department of Neurosurgery, Klinikum Darmstadt , Darmstadt, Germany
| | - Per Sonne Holm
- 9 Department of Urology, Klinikum rechts der Isar, Technical University Munich , Munich, Germany
| | - Florian Kreppel
- 10 Chair of Biochemistry and Molecular Medicine, Center for Biomedical Research and Education (ZBAF), Faculty of Health, University Witten/Herdecke (UW/H), Witten, Germany
| | - Florian Kühnel
- 11 Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Karl Sebastian Lang
- 12 Institute of Immunology, Medical Faculty, University of Duisburg-Essen , Essen, Germany
| | - Mathias F Leber
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonio Marchini
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany .,14 Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Markus Moehler
- 15 University Medical Center Mainz , I. Dept. of Internal Medicine, Mainz, Germany
| | - Michael D Mühlebach
- 16 Product Testing of Immunological Veterinary Medicinal Products, Paul-Ehrlich-Institut , Langen, Germany
| | - Jean Rommelaere
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany
| | - Ulrich M Lauer
- 17 Department of Clinical Tumor Biology, Medical University Hospital , Tübingen, Germany .,18 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Tübingen, Germany
| | | |
Collapse
|
11
|
Tada S, Hamada M, Yura Y. Proteomic Analysis of Secretomes of Oncolytic Herpes Simplex Virus-Infected Squamous Cell Carcinoma Cells. Cancers (Basel) 2018; 10:cancers10020028. [PMID: 29360750 PMCID: PMC5836060 DOI: 10.3390/cancers10020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
Oncolytic herpes simplex virus type 1 (HSV-1) strain RH2 induced immunogenic cell death (ICD) with the release and surface exposure of damage-associated molecular patterns (DAMPs) in squamous cell carcinoma (SCC) SCCVII cells. The supernatants of RH2-infected SCCVII cells also exhibited antitumor ability by intratumoral administration in SCCVII tumor-bearing mice. The supernatants of RH2-infected cells and mock-infected cells were concentrated to produce Med24 and MedC for proteomic analyses. In Med24, the up- and down-regulated proteins were observed. Proteins including filamin, tubulin, t-complex protein 1 (TCP-1), and heat shock proteins (HSPs), were up-regulated, while extracellular matrix (ECM) proteins were markedly down-regulated. Viral proteins were detected in Med 24. These results indicate that HSV-1 RH2 infection increases the release of danger signal proteins and viral gene products, but decreases the release of ECM components. These changes may alter the tumor microenvironment (TME) and contribute to enhancement of anti-tumor immunity against SCC.
Collapse
Affiliation(s)
- Shinya Tada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Angelova AL, Barf M, Geletneky K, Unterberg A, Rommelaere J. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity. Viruses 2017; 9:v9120382. [PMID: 29244745 PMCID: PMC5744156 DOI: 10.3390/v9120382] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.
Collapse
Affiliation(s)
- Assia L Angelova
- Department of Tumor Virology (F010), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Milena Barf
- Department of Tumor Virology (F010), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Karsten Geletneky
- Department of Neurosurgery, University Hospital, 69120 Heidelberg, Germany.
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital, 69120 Heidelberg, Germany.
| | - Jean Rommelaere
- Department of Tumor Virology (F010), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Heinrich B, Klein J, Delic M, Goepfert K, Engel V, Geberzahn L, Lusky M, Erbs P, Preville X, Moehler M. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes. Onco Targets Ther 2017; 10:2389-2401. [PMID: 28496337 PMCID: PMC5422459 DOI: 10.2147/ott.s126320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP) and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF) or transforming 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU). We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs) and the interaction with the autologous cytotoxic T lymphocyte (CTL) clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1), markers of immunogenic cell death (ICD), could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse melanoma cells and induce additional immunostimulatory effects to promote antitumor immune response. Further investigation in vivo is needed to consolidate the data.
Collapse
Affiliation(s)
- B Heinrich
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - J Klein
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - M Delic
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - K Goepfert
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - V Engel
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - L Geberzahn
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - M Lusky
- Transgene SA, Illkirch-Graffenstaden
| | - P Erbs
- Transgene SA, Illkirch-Graffenstaden
| | | | - M Moehler
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
14
|
The MVMp P4 promoter is a host cell-type range determinant in vivo. Virology 2017; 506:141-151. [PMID: 28391161 DOI: 10.1016/j.virol.2017.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy.
Collapse
|
15
|
Vassaux G, Angelova A, Baril P, Midoux P, Rommelaere J, Cordelier P. The Promise of Gene Therapy for Pancreatic Cancer. Hum Gene Ther 2016; 27:127-33. [PMID: 26603492 DOI: 10.1089/hum.2015.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Unlike for other digestive cancer entities, chemotherapy, radiotherapy, and targeted therapies have, so far, largely failed to improve patient survival in pancreatic adenocarcinoma (PDAC), which remains the fourth leading cause of cancer-related death in Europe and the United States. In this context, gene therapy may offer a new avenue for patients with PDAC. In this review, we explore the research currently ongoing in French laboratories aimed at defeating PDAC using nonviral therapeutic gene delivery, targeted transgene expression, or oncolytic virotherapy that recently or will soon bridge the gap between experimental models of cancer and clinical trials. These studies are likely to change clinical practice or thinking about PDAC management, as they represent a major advance not only for PDAC but may also significantly influence the field of gene-based molecular treatment of cancer.
Collapse
Affiliation(s)
- Georges Vassaux
- 1 Université de Nice Sophia Antipolis , Nice, France .,2 Laboratoire TIRO , UMRE 4320, CEA, Nice, France
| | - Assia Angelova
- 3 German Cancer Research Center (DKFZ) , Tumor Virology/F010, Heidelberg, Germany
| | - Patrick Baril
- 4 Centre de Biophysique Moléculaire, CNRS UPR4301 and University of Orléans , Orléans, France
| | - Patrick Midoux
- 4 Centre de Biophysique Moléculaire, CNRS UPR4301 and University of Orléans , Orléans, France
| | - Jean Rommelaere
- 3 German Cancer Research Center (DKFZ) , Tumor Virology/F010, Heidelberg, Germany
| | - Pierre Cordelier
- 5 INSERM , UMR1037 CRCT, F-31000 Toulouse, France .,6 Université Toulouse III-Paul Sabatier , F-31000 Toulouse, France
| |
Collapse
|
16
|
Pediatric and Adult High-Grade Glioma Stem Cell Culture Models Are Permissive to Lytic Infection with Parvovirus H-1. Viruses 2016; 8:v8050138. [PMID: 27213425 PMCID: PMC4885093 DOI: 10.3390/v8050138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Combining virus-induced cytotoxic and immunotherapeutic effects, oncolytic virotherapy represents a promising therapeutic approach for high-grade glioma (HGG). A clinical trial has recently provided evidence for the clinical safety of the oncolytic parvovirus H-1 (H-1PV) in adult glioblastoma relapse patients. The present study assesses the efficacy of H-1PV in eliminating HGG initiating cells. H-1PV was able to enter and to transduce all HGG neurosphere culture models (n = 6), including cultures derived from adult glioblastoma, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Cytotoxic effects induced by the virus have been observed in all HGG neurospheres at half maximal inhibitory concentration (IC50) doses of input virus between 1 and 10 plaque forming units per cell. H-1PV infection at this dose range was able to prevent tumorigenicity of NCH421k glioblastoma multiforme (GBM) “stem-like” cells in NOD/SCID mice. Interestingly NCH421R, an isogenic subclone with equal capacity of xenograft formation, but resistant to H-1PV infection could be isolated from the parental NCH421k culture. To reveal changes in gene expression associated with H-1PV resistance we performed a comparative gene expression analysis in these subclones. Several dysregulated genes encoding receptor proteins, endocytosis factors or regulators innate antiviral responses were identified and represent intriguing candidates for to further study molecular mechanisms of H-1PV resistance.
Collapse
|
17
|
Abstract
Primary liver cancer, mostly hepatocellular carcinoma, remains a difficult-to-treat cancer. Incidence of liver cancer varies geographically and parallels with the geographic prevalence of viral hepatitis. A number of staging systems have been developed, reflecting the heterogeneity of primary liver cancer, regional preferences, and regional variations in resectability or transplant eligibility. Multimodality treatments are available for this heterogeneous malignancy, and there are variations in the management recommendations for liver cancers across specialties and geographic regions. Novel treatment strategies have merged with the advance of new treatment modalities. This work focuses on reviewing the incidence, staging, and treatment of liver cancer.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Department of Medicine, Division of Hematology and Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan School of Medicine, National Yang-Ming University, Taipei 112, Taiwan Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University College of Medicine, Taipei 112, Taiwan National Center of Excellence for Clinical Trial and Research, National Taiwan University College of Medicine, Taipei 112, Taiwan
| | - Pei-Jer Chen
- Department of Medical Research, National Taiwan University College of Medicine, Taipei 112, Taiwan National Center of Excellence for Clinical Trial and Research, National Taiwan University College of Medicine, Taipei 112, Taiwan Graduate Institute of Molecular Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 112, Taiwan
| |
Collapse
|
18
|
de Gruijl TD, Janssen AB, van Beusechem VW. Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther 2015; 15:959-71. [PMID: 25959450 DOI: 10.1517/14712598.2015.1044433] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Over the past decade, the cytolytic capabilities of oncolytic viruses (OVs), exploited to selectively eliminate neoplastic cells, have become secondary to their use to elicit a tumor-directed immune response. AREAS COVERED Here, based on an NCBI-PubMed literature survey, we review the efforts undertaken to arm OVs in order to improve therapeutic antitumor responses upon administration of these agents. Specifically, we explore the different options to modulate immune suppression in the tumor microenvironment (TME) and to facilitate the generation of effective antitumor responses that have been investigated in conjunction with OVs in recent years. EXPERT OPINION Their induction of immunogenic tumor cell death and association with pro-inflammatory signals make OVs attractive immunotherapeutic modalities. The first promising clinical results with immunologically armed OVs warrant their further optimization and development. OVs should be modified to avoid detrimental effects of pre-existent anti-OV immunity as well as for increased tumor targeting and selectivity, so as to ultimately allow for systemic administration while achieving local immune potentiation and tumor elimination in the TME. In particular, a combination of trans-genes encoding bispecific T-cell engagers, immune checkpoint blockers and antigen-presenting cell enhancers will remove suppressive hurdles in the TME and allow for optimal antitumor efficacy of armed OVs.
Collapse
Affiliation(s)
- Tanja D de Gruijl
- VU University Medical Center - Cancer Center Amsterdam, Department of Medical Oncology , Room VUmc-CCA 2.44, De Boelelaan 1117, 1081 HV Amsterdam , The Netherlands +31 20 4444063 ;
| | | | | |
Collapse
|
19
|
Geletneky K, Nüesch JP, Angelova A, Kiprianova I, Rommelaere J. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13:17-24. [PMID: 25841215 DOI: 10.1016/j.coviro.2015.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
The H-1 parvovirus (H-1PV) exerts oncosuppressive action that has two components: oncotoxicity and immunostimulation. While many human tumor cells, including conventional drug-resistant ones, can be killed by H-1PV, some fail to support progeny virus production, necessary for infection propagation in neoplastic tissues. This limitation can be overcome through forced selection of H-1PV variants capable of enhanced multiplication and spreading in human tumor cells. In the context of further developing H-1PV for use in cancer therapy, arming it with immunostimulatory CpG motifs under conditions preserving replication and oncolysis enhances its action as an anticancer vaccine adjuvant. A first clinical study of H-1PV treatment in glioma patients has yielded evidence of intratumoral synthesis of the viral oncotoxic protein NS1 and immune cell infiltration.
Collapse
Affiliation(s)
- Karsten Geletneky
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany; Department of Neurosurgery, University Hospital, 69120 Heidelberg, Germany
| | - Jürg Pf Nüesch
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Assia Angelova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Irina Kiprianova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Abstract
Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT.
Collapse
Affiliation(s)
- Rauf Bhat
- Division of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| | - Jean Rommelaere
- Division of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
21
|
Schirrmacher V, Fournier P. Harnessing oncolytic virus-mediated anti-tumor immunity. Front Oncol 2014; 4:337. [PMID: 25505735 PMCID: PMC4241813 DOI: 10.3389/fonc.2014.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022] Open
|
22
|
Abstract
Targeting CTLA-4 represents a new type of immunotherapeutic approach, namely immune checkpoint inhibition. Blockade of CTLA-4 by ipilimumab was the first strategy to achieve a significant clinical benefit for late-stage melanoma patients in two phase 3 trials. These results fueled the notion of immunotherapy being the breakthrough strategy for oncology in 2013. Subsequently, many trials have been set up to test various immune checkpoint modulators in malignancies, not only in melanoma. In this review, recent new ideas about the mechanism of action of CTLA-4 blockade, its current and future therapeutic use, and the intensive search for biomarkers for response will be discussed. Immune checkpoint blockade, targeting CTLA-4 and/or PD-1/PD-L1, is currently the most promising systemic therapeutic approach to achieve long-lasting responses or even cure in many types of cancer, not just in patients with melanoma.
Collapse
Affiliation(s)
- Christian U Blank
- Department of Medical Oncology and Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Alexander Enk
- Department of Dermatology, The University of Heidelberg, Im Neunheimer Feld 440, 69115 Heidelberg, Germany
| |
Collapse
|