1
|
Collins M, Pearce B. Mitochondrial DNA variation and intervertebral disc degeneration: a genotypic analysis in a South African cohort. Mol Biol Rep 2025; 52:288. [PMID: 40053230 DOI: 10.1007/s11033-025-10394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Non-communicable diseases are multifactorial in that they can be caused by genetic factors, age, sex and poor lifestyle choices. They are estimated to account for 71% of deaths globally with 80% of these deaths occurring in low- and middle-income countries. This is particularly true for Intervertebral Disc Degeneration associated with mitochondrial dysfunction. Interestingly, mitochondrial dysfunction can arise from mutations in both the nuclear and the mitochondrial genomes. The present study, therefore, aimed to determine if there is an association between mitochondrial DNA mutations associated with mitochondrial dysfunction and disc degeneration in a South African cohort, and in addition, generate genetic data for understudied mutations in African populations. METHODS AND RESULTS Mutations were selected using a systematic literature review. DNA was collected using buccal swabs and extracted using a standard salt-lysis protocol. Mass-array genotyping was done for previously reported as well as novel mutations. GenAlEx (version 6.5), RStudio and SHEsis were used for statistical analyses. Although no significant associations were found, the identified polymorphic mutations C16223T, A10398G and A8536G were found to have higher mutant allele frequencies in case individuals indicating that had a larger cohort been used, significance may have been observed. CONCLUSIONS This study was able to generate genotypic information for a South African cohort for both reported and understudied mutations. Furthermore, the identification of higher mutant allele frequencies for C16223T, A10398G and A8536G highlights the importance of considering these mutations in future studies using a larger cohort.
Collapse
Affiliation(s)
- Megan Collins
- Genetics Department, Faculty of Agriscience, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa
| | - Brendon Pearce
- Genetics Department, Faculty of Agriscience, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| |
Collapse
|
2
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
4
|
Li HY, Feng YH, Lin CL, Hsu TI. Mitochondrial Mechanisms in Temozolomide Resistance: Unraveling the Complex Interplay and Therapeutic Strategies in Glioblastoma. Mitochondrion 2024; 75:101836. [PMID: 38158149 DOI: 10.1016/j.mito.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor, with temozolomide (TMZ) being the standard chemotherapeutic agent for its treatment. However, TMZ resistance often develops, limiting its therapeutic efficacy and contributing to poor patient outcomes. Recent evidence highlights the crucial role of mitochondria in the development of TMZ resistance through various mechanisms, including alterations in reactive oxygen species (ROS) production, metabolic reprogramming, apoptosis regulation, biogenesis, dynamics, stress response, and mtDNA mutations. This review article aims to provide a comprehensive overview of the mitochondrial mechanisms involved in TMZ resistance and discuss potential therapeutic strategies targeting these mechanisms to overcome resistance in GBM. We explore the current state of clinical trials targeting mitochondria or related pathways in primary GBM or recurrent GBM, as well as the challenges and future perspectives in this field. Understanding the complex interplay between mitochondria and TMZ resistance will facilitate the development of more effective therapeutic strategies and ultimately improve the prognosis for GBM patients.
Collapse
Affiliation(s)
- Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich 81377, Germany; Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | | | | | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Foley A, Lao N, Clarke C, Barron N. A complete workflow for single cell mtDNAseq in CHO cells, from cell culture to bioinformatic analysis. Front Bioeng Biotechnol 2024; 12:1304951. [PMID: 38440325 PMCID: PMC10910102 DOI: 10.3389/fbioe.2024.1304951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024] Open
Abstract
Chinese hamster ovary (CHO) cells have a long history in the biopharmaceutical industry and currently produce the vast majority of recombinant therapeutic proteins. A key step in controlling the process and product consistency is the development of a producer cell line derived from a single cell clone. However, it is recognized that genetic and phenotypic heterogeneity between individual cells in a clonal CHO population tends to arise over time. Previous bulk analysis of CHO cell populations revealed considerable variation within the mtDNA sequence (heteroplasmy), which could have implications for the performance of the cell line. By analyzing the heteroplasmy of single cells within the same population, this heterogeneity can be characterized with greater resolution. Such analysis may identify heterogeneity in the mitochondrial genome, which impacts the overall phenotypic performance of a producer cell population, and potentially reveal routes for genetic engineering. A critical first step is the development of robust experimental and computational methods to enable single cell mtDNA sequencing (termed scmtDNAseq). Here, we present a protocol from cell culture to bioinformatic analysis and provide preliminary evidence of significant mtDNA heteroplasmy across a small panel of single CHO cells.
Collapse
Affiliation(s)
- Alan Foley
- Cell Engineering Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Nga Lao
- Cell Engineering Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Colin Clarke
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- Bioinformatics Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Niall Barron
- Cell Engineering Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
7
|
Malyutina S, Maximov V, Chervova O, Orlov P, Ivanova A, Mazdorova E, Ryabikov A, Simonova G, Voevoda M. The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study. Int J Mol Sci 2023; 24:10469. [PMID: 37445647 DOI: 10.3390/ijms241310469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We explored the relationship between the copy number of mitochondrial DNA (mtDNA-CN) and all-cause natural mortality. We examined a random population sample in 2003/2005 (n = 9360, men/women, 45-69, the HAPIEE project) and followed up for 15 years. Using a nested case-control design, we selected non-external deaths among those free from baseline cardiovascular diseases (CVD) and cancer (n = 371), and a sex- and age-stratified control (n = 785). The odds ratios (ORs) of death were 1.06 (95%CI 1.01-1.11) per one-decile decrease in mtDNA-CN independent of age, sex, metabolic factors, smoking, alcohol intake and education. The age-sex-adjusted ORs of death in the second and first tertiles of mtDNA-CN vs. the top tertile were 2.35 (95% CI 1.70-3.26) and 1.59 (1.16-2.17); an increased risk was confined to the second tertile after controlling for smoking and metabolic factors. The multivariable-adjusted OR of CVD death was 1.92 (95% CI 1.18-3.15) in tertile 2 vs. the top tertile of mtDNA-CN, and for cancer-related death the ORs were 3.66 (95% CI 2.21-6.05) and 2.29 (95% CI 1.43-3.68) in tertiles 2 and 1 vs. the top tertile. In the Siberian population cohort, the mtDNA-CN was an inverse predictor of the 15-year risk of natural mortality, due to the greatest impact of CVD and cancer-related death. The findings merit attention for exploring further the role of mtDNA in human ageing and the diversity of mortality.
Collapse
Affiliation(s)
- Sofia Malyutina
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Vladimir Maximov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Olga Chervova
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Pavel Orlov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Anastasiya Ivanova
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Ekaterina Mazdorova
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Andrew Ryabikov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Galina Simonova
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Mikhail Voevoda
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| |
Collapse
|
8
|
Chen B, Das NK, Talukder I, Singhal R, Castillo C, Andren A, Mancias JD, Lyssiotis CA, Shah YM. PTEN-induced kinase PINK1 supports colorectal cancer growth by regulating the labile iron pool. J Biol Chem 2023; 299:104691. [PMID: 37037306 PMCID: PMC10196865 DOI: 10.1016/j.jbc.2023.104691] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.
Collapse
Affiliation(s)
- Brandon Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Indrani Talukder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
9
|
Abou-Zeid A, Hashad D, Baess A, Mosaad M, Tayae E. HOXA9 gene promotor methylation and copy number variation of SOX2 and HV2 genes in cell free DNA: A potential diagnostic panel for non-small cell lung cancer. BMC Cancer 2023; 23:329. [PMID: 37038139 PMCID: PMC10088126 DOI: 10.1186/s12885-023-10793-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Most cases of lung cancer are diagnosed at advanced stage. Detection of genetic and epigenetic markers in cell-free DNA (cfDNA) is a promising tool for the diagnosis of lung cancer at an early stage. The aim of this study was to identify non-invasive diagnostic markers in cell free DNA (cfDNA) for non-small cell lung cancer (NSCLC) as it is the most common type of lung cancer. METHODS We investigated the cfDNA HOXA9 gene promotor methylation by pyrosequencing. Copy number variation of SOX2 and HV2 genes were detected by real-time PCR in cfDNA extracted from plasma samples of 25 newly diagnosed NSCLC patients and 25 age and sex matched controls. RESULTS Methylation level of HOXA9 was significantly higher in NSCLC patients than controls (p > 0.001). SOX2 showed significantly higher CNV and HV2 showed lower CNV in patients than controls (p > 0.001, p = 0.001 respectively). Receiver Operating Characteristic (ROC) curve analysis for HOXA9 methylation, SOX2 CNV and HV2 CNV showed a discrimination power of 79.4%, 80% and 77.5% respectively and the area under the curve for the combined analysis of the three genes was 0.958 with 88% sensitivity and 100% specificity. CONCLUSIONS In this study, we suggest a potentially diagnostic panel that may help in detection of lung cancer with high sensitivity and specificity using cell free DNA. This Panel included HOXA9 gene methylation and the CNV of SOX2 and HV2 genes.
Collapse
Affiliation(s)
- Abla Abou-Zeid
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa Hashad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ayman Baess
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mai Mosaad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Tayae
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
10
|
Sayal L, Hamadah O, AlMasri A, Idrees M, Kassem I, Habbal W, Alsalamah B, Kujan O. Salivary-Based Cell-Free Mitochondrial DNA Level Is an Independent Prognostic Biomarker for Patients with Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:jpm13020301. [PMID: 36836535 PMCID: PMC9958681 DOI: 10.3390/jpm13020301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Changes in the copy numbers of cell-free nuclear DNA (cf-nDNA) and cell-free mitochondrial DNA (cf-mtDNA) have shown promising diagnostic utilities among patients with head and neck squamous cell carcinoma (HNSCC). Considering the absence of objective prognostic tools for HNSCC surveillance, this study aimed to assess the utility of saliva-based cf-nDNA and cf-mtDNA in predicting the overall survival of patients with HNSCC. The study included ninety-four patients with a confirmed HNSCC diagnosis with a mean follow-up time of 32.04 months (±19.1). A saliva-based liquid biopsy was collected from each patient. A multiplex quantitative PCR was used to determine the absolute number of cf-nDNA and cf-mtDNA. The Kaplan-Meier estimator and Cox proportional hazards regression models were used to assess overall survival. The absolute copy numbers of cf-nDNA and cf-mtDNA were statistically significantly higher among the deceased patients than among the censored ones (p < 0.05). Individuals with elevated levels of cf-nDNA or cf-mtDNA were associated with a significantly poorer overall survival (p ≤ 0.05). A univariate analysis showed that only the absolute copy number of cf-mtDNA was the sole predictor of overall survival. However, the multivariate analysis showed that all the absolute copy numbers of cf-nDNA, the absolute copy numbers of cf-mtDNA, and the stage of HNSCC were predictors of overall survival. Our study confirms that saliva is a reliable and non-invasive source of data that can be used to predict the overall survival of patients with HNSCC, where cf-mtDNA levels act as the sole predictor.
Collapse
Affiliation(s)
- Lana Sayal
- Department of Oral Medicine, The Faculty of Dental Medicine, Damascus University, Damascus P.O. Box 30621, Syria
| | - Omar Hamadah
- Department of Oral Medicine, The Faculty of Dental Medicine, Damascus University, Damascus P.O. Box 30621, Syria
| | - Aroub AlMasri
- Biomedical Department, National Commission for Biotechnology, Damascus P.O. Box 31902, Syria
| | - Majdy Idrees
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Issam Kassem
- Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Wafa Habbal
- Clinical Laboratories Department, Al-Assad Hospital, Damascus P.O. Box 10769, Syria
| | - Buthainah Alsalamah
- Department of Molecular Biology, National Commission for Biotechnology, Damascus P.O. Box 31902, Syria
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6457-7649
| |
Collapse
|
11
|
Santander-Lucio H, Totomoch-Serra A, Muñoz MDL, García-Hernández N, Pérez-Ramírez G, Valladares-Salgado A, Pérez-Muñoz AA. Variants in the Control Region of Mitochondrial Genome Associated with type 2 Diabetes in a Cohort of Mexican Mestizos. Arch Med Res 2023; 54:113-123. [PMID: 36792418 DOI: 10.1016/j.arcmed.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND According to the International Diabetes Federation, Mexico is seventh place in the prevalence of type 2 diabetes (T2D) worldwide. Mitochondrial DNA variant association studies in multifactorial diseases like T2D are scarce in Mexican populations. AIM OF THE STUDY The objective of this study was to analyze the association between 18 variants in the mtDNA control region and T2D and related metabolic traits in a Mexican mestizo population from Mexico City. METHODS This study included 1001 participants divided into 477 cases with T2D and 524 healthy controls aged between 42 and 62 years and 18 mtDNA variants with frequencies >15%. RESULTS Association analyses matched by age and sex showed differences in the distribution between cases and controls for variants m.315_316insC (p = 1.18 × 10-6), m.489T>C (p = 0.009), m.16362T>C (p = 0.001), and m.16519T>C (p = 0.004). The associations between T2D and variants m.315_316ins (OR = 6.13, CI = 3.42-10.97, p = 1.97 × 10-6), m.489T>C (OR = 1.45, CI = 1.00-2.11, p = 0.006), m.16362T>C (OR = 2.17, CI = 1.57-3.00, p = 0.001), and m.16519T>C (OR = 1.69, CI = 1.23-2.33, p = 0.006) were significant after performing logistic regression models adjusted for age, sex, and diastolic blood pressure. Metabolic traits in the control group through linear regressions, adjusted for age, sex and BMI, and corrected for multiple comparisons showed nominal association between glucose and variants m.263A>G (p <0.050), m.16183A>C (p <0.010), m.16189T>C (p <0.020), and m.16223C>T (p <0.024); triglycerides, and cholesterol and variant m.309_310insC (p <0.010 and p <0.050 respectively); urea, and creatinine, and variant m.315_316insC (p <0.007, and p <0.004 respectively); diastolic blood pressure and variants m.235A>G (p <0.016), m.263A>G (p <0.013), m.315_316insC (p <0.043), and m.16111C>T (p <0.022). CONCLUSION These results demonstrate a strong association between variant m.315_316insC and T2D and a nominal association with T2D traits.
Collapse
Affiliation(s)
- Heriberto Santander-Lucio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Armando Totomoch-Serra
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Departamento de Electrofisiología, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | - María de Lourdes Muñoz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| | - Normand García-Hernández
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Dr. Silvestre Frenk Freud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Gerardo Pérez-Ramírez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Adán Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ashael Alfredo Pérez-Muñoz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Universidad Anáhuac México Norte, Ciudad de México, México
| |
Collapse
|
12
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
13
|
Welch DR, Foster C, Rigoutsos I. Roles of mitochondrial genetics in cancer metastasis. Trends Cancer 2022; 8:1002-1018. [PMID: 35915015 PMCID: PMC9884503 DOI: 10.1016/j.trecan.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Internal Medicine (Hematology/Oncology), The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Pathology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Christian Foster
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, 1020 Locust Street, Suite M81, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Kim M, Mahmood M, Reznik E, Gammage PA. Mitochondrial DNA is a major source of driver mutations in cancer. Trends Cancer 2022; 8:1046-1059. [PMID: 36041967 PMCID: PMC9671861 DOI: 10.1016/j.trecan.2022.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are among the most common genetic events in all tumors and directly impact metabolic homeostasis. Despite the central role mitochondria play in energy metabolism and cellular physiology, the role of mutations in the mitochondrial genomes of tumors has been contentious. Until recently, genomic and functional studies of mtDNA variants were impeded by a lack of adequate tumor mtDNA sequencing data and available methods for mitochondrial genome engineering. These barriers and a conceptual fog surrounding the functional impact of mtDNA mutations in tumors have begun to lift, revealing a path to understanding the role of this essential metabolic genome in cancer initiation and progression. Here we discuss the history, recent developments, and challenges that remain for mitochondrial oncogenetics as the impact of a major new class of cancer-associated mutations is unveiled.
Collapse
Affiliation(s)
- Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Payam A Gammage
- CRUK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
Nayak D, Adiga D, Khan NG, Rai PS, Dsouza HS, Chakrabarty S, Gassman NR, Kabekkodu SP. Impact of Bisphenol A on Structure and Function of Mitochondria: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:10. [DOI: 10.1007/s44169-022-00011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 04/02/2024]
Abstract
AbstractBisphenol A (BPA) is an industrial chemical used extensively to manufacture polycarbonate plastics and epoxy resins. Because of its estrogen-mimicking properties, BPA acts as an endocrine-disrupting chemical. It has gained attention due to its high chances of daily and constant human exposure, bioaccumulation, and the ability to cause cellular toxicities and diseases at extremely low doses. Several elegant studies have shown that BPA can exert cellular toxicities by interfering with the structure and function of mitochondria, leading to mitochondrial dysfunction. Exposure to BPA results in oxidative stress and alterations in mitochondrial DNA (mtDNA), mitochondrial biogenesis, bioenergetics, mitochondrial membrane potential (MMP) decline, mitophagy, and apoptosis. Accumulation of reactive oxygen species (ROS) in conjunction with oxidative damage may be responsible for causing BPA-mediated cellular toxicity. Thus, several reports have suggested using antioxidant treatment to mitigate the toxicological effects of BPA. The present literature review emphasizes the adverse effects of BPA on mitochondria, with a comprehensive note on the molecular aspects of the structural and functional alterations in mitochondria in response to BPA exposure. The review also confers the possible approaches to alleviate BPA-mediated oxidative damage and the existing knowledge gaps in this emerging area of research.
Collapse
|
16
|
Mitochondrial DNA sequences and transcriptomic profiles for elucidating the genetic underpinnings of cisplatin responsiveness in oral squamous cell carcinoma. BMC Genom Data 2022; 23:47. [PMID: 35729497 PMCID: PMC9210765 DOI: 10.1186/s12863-022-01062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/11/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Functional genetic variation plays an important role in predicting patients’ response to chemotherapeutic agents. A growing catalogue of mitochondrial DNA (mtDNA) alterations in various cancers point to their important roles in altering the drug responsiveness and survival of cancer cells. In this work, we report the mtDNA sequences, obtained using a nanopore sequencer that can directly sequence unamplified DNA, and the transcriptomes of oral squamous cell carcinoma (OSCC) cell lines with differing responses to cisplatin, to explore the interplay between mtDNA alterations, epigenetic regulation of gene expression, and cisplatin response in OSCC. Data description Two human OSCC cell lines, namely H103 and SAS, and drug-resistant stem-like cells derived from SAS were used in this work. To validate our hypothesis that cisplatin sensitivity is linked to mtDNA changes, we sequenced their mtDNA using a nanopore sequencer, MinION. We also obtained the whole transcriptomic profiles of the cells from a microarray analysis. The mtDNA mutational and whole transcriptomic profiles that we provide can be used alongside other similar datasets to facilitate the identification of new markers of cisplatin sensitivity, and therefore the development of effective therapies for OSCC.
Collapse
|
17
|
Vikramdeo KS, Anand S, Khan MA, Khushman M, Heslin MJ, Singh S, Singh AP, Dasgupta S. Detection of mitochondrial DNA mutations in circulating mitochondria-originated extracellular vesicles for potential diagnostic applications in pancreatic adenocarcinoma. Sci Rep 2022; 12:18455. [PMID: 36323735 PMCID: PMC9630429 DOI: 10.1038/s41598-022-22006-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
There is a complete lack of highly sensitive and specific biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis, limiting multi-modal therapeutic options. Mitochondrial DNA (mtDNA) is an excellent resource for biomarker discovery because of its high copy number and increased mutational frequency in cancer cells. We examined if mtDNA mutations can be detected in circulating extracellular vesicles (EVs) of PDAC patients and used for discerning between cancer and non-cancer subjects. A greater yield of circulating EVs (~ 1.4 fold; p = 0.002) was obtained in PDAC patients (n = 20) than non-cancer (NC) individuals (n = 10). PDAC-EVs contained a higher quantity of total DNA (~ 5.5 folds; p = 0.0001) than NC-EVs and had greater enrichment of mtDNA (~ 14.02-fold; p = 0.0001). PDAC-EVs also had higher levels of cardiolipin (a mitochondrial inner-membrane phospholipid), suggestive of their mitochondrial origin. All mtDNA mutations in PDAC-EVs were unique and frequency was remarkably higher. Most mtDNA mutations (41.5%) in PDAC-EVs were in the respiratory complex-I (RCI) (ND1-ND6), followed by the RCIII gene (CYTB; 11.2%). Among the non-coding genes, D-Loop and RNR2 exhibited the most mutations (15.2% each). Altogether, our study establishes, for the first time, that mtDNA mutations can be detected in circulating EVs and potentially serve as a tool for reliable PDAC diagnosis.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Shashi Anand
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Mohammad Aslam Khan
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Moh'd Khushman
- Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Division of Medical Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin J Heslin
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Seema Singh
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Santanu Dasgupta
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
18
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
19
|
Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomed Pharmacother 2022; 153:113451. [DOI: 10.1016/j.biopha.2022.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
|
20
|
Jain A, Katiyar A, Singh R, Bakhshi S, Singh H, Palanichamy JK, Singh A. Implications of mitochondrial DNA variants in pediatric B-cell acute lymphoblastic leukemia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Research on the role of variations in the mitochondrial genome in pathogenesis of acute lymphoblastic leukemia (ALL) has been unfolding at a rapid rate. Our laboratory has previously described higher number of copies of the mitochondrial genomes per cell in pediatric ALL patients as compared to the healthy controls. In the current study, we evaluated the pattern of mitochondrial genome variations in 20 de-novo pediatric B-ALL cases and seven controls. Quantitative real-time Polymerase Chain Reaction was used for estimation of mitochondrial genomes’ copy number in bone marrow samples of each ALL patient and peripheral blood samples of controls. The complete mitochondrial genomes of all samples were sequenced using the Illumina platform.
Results
Sequencing data analysis using multiple mitochondrial genome databases revealed 325 variants in all 27 samples, out of which 221 variants were previously known while 104 were unassigned, new variants. The 325 variants consisted of 7 loss-of-function variants, 131 synonymous variants, 75 missense variants, and 112 non-coding variants. New, missense variants (n = 21) were identified in genes encoding the electron transport chain complexes with most of them encoding ND4, ND5 of complex I. Missense and loss-of-function variants were found to be deleterious by many predictor databases of pathogenicity. MuTect2 identified true somatic variants present only in tumors between patient-sibling pairs and showed overlap with missense and loss-of-function variants. Online MtDNA-server showed heteroplasmic and homoplasmic variants in mitochondrial genome.
Conclusions
The data suggest that some of these variations might have a deleterious impact on the expression of mitochondrial encoded genes with a possible functional relevance in leukemia.
Collapse
|
21
|
Leuthner T, Benzing L, Kohrn B, Bergemann C, Hipp M, Hershberger K, Mello D, Sokolskyi T, Stevenson K, Merutka I, Seay S, Gregory S, Kennedy S, Meyer J. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res 2022; 50:8626-8642. [PMID: 35947695 PMCID: PMC9410910 DOI: 10.1093/nar/gkac666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura Benzing
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Tymofii Sokolskyi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin Stevenson
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ilaria R Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Sarah A Seay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA,Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joel N Meyer
- To whom correspondence should be addressed. Tel: +1 919 613 8109;
| |
Collapse
|
22
|
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, Zhang J, Cao Y, Somasundaram SG, Kirkland CE, Fan R, Aliev G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022; 83:556-569. [PMID: 33035656 DOI: 10.1016/j.semcancer.2020.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China; Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - SubbaRao V Madhunapantula
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Mikhail Y Sinelnikov
- Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China.
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation; Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
23
|
Faria R, Paul M, Biswas S, Vivès E, Boisguérin P, Sousa Â, Costa D. Peptides vs. Polymers: Searching for the Most Efficient Delivery System for Mitochondrial Gene Therapy. Pharmaceutics 2022; 14:757. [PMID: 35456591 PMCID: PMC9026848 DOI: 10.3390/pharmaceutics14040757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Together with the nucleus, the mitochondrion has its own genome. Mutations in mitochondrial DNA are responsible for a variety of disorders, including neurodegenerative diseases and cancer. Current therapeutic approaches are not effective. In this sense, mitochondrial gene therapy emerges as a valuable and promising therapeutic tool. To accomplish this goal, the design/development of a mitochondrial-specific gene delivery system is imperative. In this work, we explored the ability of novel polymer- and peptide-based systems for mitochondrial targeting, gene delivery, and protein expression, performing a comparison between them to reveal the most adequate system for mitochondrial gene therapy. Therefore, we synthesized a novel mitochondria-targeting polymer (polyethylenimine-dequalinium) to load and complex a mitochondrial-gene-based plasmid. The polymeric complexes exhibited physicochemical properties and cytotoxic profiles dependent on the nitrogen-to-phosphate-group ratio (N/P). A fluorescence confocal microscopy study revealed the mitochondrial targeting specificity of polymeric complexes. Moreover, transfection mediated by polymer and peptide delivery systems led to gene expression in mitochondria. Additionally, the mitochondrial protein was produced. A comparative study between polymeric and peptide/plasmid DNA complexes showed the great capacity of peptides to complex pDNA at lower N/P ratios, forming smaller particles bearing a positive charge, with repercussions on their capacity for cellular transfection, mitochondria targeting and, ultimately, gene delivery and protein expression. This report is a significant contribution to the implementation of mitochondrial gene therapy, instigating further research on the development of peptide-based delivery systems towards clinical translation.
Collapse
Affiliation(s)
- Rúben Faria
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilha, Portugal; (R.F.); (Â.S.)
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, India; (M.P.); (S.B.)
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, India; (M.P.); (S.B.)
| | - Eric Vivès
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguérin
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilha, Portugal; (R.F.); (Â.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilha, Portugal; (R.F.); (Â.S.)
| |
Collapse
|
24
|
Mitochondrial Proteins as Source of Cancer Neoantigens. Int J Mol Sci 2022; 23:ijms23052627. [PMID: 35269772 PMCID: PMC8909979 DOI: 10.3390/ijms23052627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the past decade, anti-tumour immune responses have been successfully exploited to improve the outcome of patients with different cancers. Significant progress has been made in taking advantage of different types of T cell functions for therapeutic purposes. Despite these achievements, only a subset of patients respond favorably to immunotherapy. Therefore, there is a need of novel approaches to improve the effector functions of immune cells and to recognize the major targets of anti-tumour immunity. A major hallmark of cancer is metabolic rewiring associated with switch of mitochondrial functions. These changes are a consequence of high energy demand and increased macromolecular synthesis in cancer cells. Such adaptations in tumour cells might generate novel targets of tumour therapy, including the generation of neoantigens. Here, we review the most recent advances in research on the immune response to mitochondrial proteins in different cellular conditions.
Collapse
|
25
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
26
|
Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, Sudhakar K, Alharbi KS, Al-Malki WH, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA, Fuloria NK. A review on epidermal growth factor receptor's role in breast and non-small cell lung cancer. Chem Biol Interact 2022; 351:109735. [PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India
| | - Darnal Hari Kumar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selngor, 47500, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Malaysia
| | - Kathiresan V Sathasivam
- Faculty of Applied Science & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar, 144411, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam BinAbdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia.
| |
Collapse
|
27
|
Liu Z, Tian J, Peng F, Wang J. Hypermethylation of mitochondrial DNA facilitates bone metastasis of renal cell carcinoma. J Cancer 2022; 13:304-312. [PMID: 34976191 PMCID: PMC8692697 DOI: 10.7150/jca.62278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney cancers including clear cell carcinoma (RCC) are identified with very vulnerable mitochondria DNA (mtDNA) and frequent epigenetic aberrations. Bone metastasis from RCC is prevalent and destructive. Bone marrow contains a quite hypoxic microenvironment that usually insitigate 50% of hypermethylation events in conferring a selective advantage for tumor growth. We hypothesized that hypermethylation of mtDNA in RCC cells would significantly contribute to bone metastatic tumor progression. Methylation-specific polymerase chain reaction assay (MSP) was adopted to measure the methylation status of D-loop region of mtDNA in 15 pairs of bone metastatic and primary RCC as well as tumor adjescent normal kidney tissues. mtDNA copy number was examined by the real-time quantitative polymerase chain reaction (qPCR). Western blotting analysis was used to measure the accumulation of several DNA methyltransferases (DNMTs) in the mitochondria and nucleus fractions of bone metastatic RCC cells. mRNA expression of mitochondria encoded genes was examined by RT-PCR. Reactive oxygen species (ROS), mitochondrial membrane potential and ATP content were measured using in vitro cells treated with de-methylation drug 5-Azacytidine (5-Aza). Non-invasive bioluminescent imaging was performed to monitor tumor occurrence in skeleton in mice. Our results showed that the D-loop region in bone metastatic tumor cells was markedly hypermethylated than those in primary RCC tumor cells, that is associated with a decreased mtDNA copy number and accumulation of DNMT1 in the mitochondria. The bone-tropism tumor colonization and progression of RCC cells was significantly suppressed by demethylating the D-loop region of mtDNA and reducing the intracellular level of ROS and ATP by 5-Aza treatment. In conclusion, our study provided a direct association between hypermethylation of mtDNA in RCC with bone metastastic tumor growth.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Oncology, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Jinhai Tian
- Department of Orthopedics, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Fuhong Peng
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Wang
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
28
|
Racial disparities in the genetic landscape of lung cancer. CANCER HEALTH DISPARITIES 2022; 6:210. [PMID: 36819657 PMCID: PMC9937545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Lung cancer has the highest cancer-related mortality worldwide and in the United States. Although reduced tobacco consumption and advancement in therapies have led to a modest decline in lung cancer death rates over the past two decades; the overall survival rate is still disappointing. Moreover, race-associated disparities are also observed, especially in the clinical outcomes. Socioeconomic factors are considered major contributors in cancer health disparities, however, the differences in the genetic landscape of lung cancer among different racial groups have also been reported. In this review, we shed light on the genetic heterogeneity of lung cancer and race-associated differences in genetic alterations to build a framework for future studies to understand the biological basis of lung cancer disparities.
Collapse
|
29
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
30
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
31
|
Leuthner TC, Meyer JN. Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging. Curr Environ Health Rep 2021; 8:294-308. [PMID: 34761353 PMCID: PMC8826492 DOI: 10.1007/s40572-021-00329-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Mitochondrial dysfunction is a hallmark of aging. Mitochondrial genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis may contribute to aging. However, the origin of mtDNA mutations remains somewhat controversial. The goals of this review are to introduce and review recent literature on mtDNA mutagenesis and aging, address recent animal and epidemiological evidence for the effects of chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest future directions and approaches for environmental health researchers. RECENT FINDINGS Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms of toxicant-induced effects on mtDNA mutagenesis over lifespan: (1) increased de novo mtDNA mutations, (2) altered frequencies of mtDNA mutations, or (3) both. There are remarkably few studies that have investigated the impact of environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in the context of aging. More studies are warranted because people are exposed to tens of thousands of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and mutational signatures may be a sensitive biomarker for some exposures.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA
| | - Joel N Meyer
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA.
| |
Collapse
|
32
|
De Luise M, Iommarini L, Marchio L, Tedesco G, Coadă CA, Repaci A, Turchetti D, Tardio ML, Salfi N, Pagotto U, Kurelac I, Porcelli AM, Gasparre G. Pathogenic Mitochondrial DNA Mutation Load Inversely Correlates with Malignant Features in Familial Oncocytic Parathyroid Tumors Associated with Hyperparathyroidism-Jaw Tumor Syndrome. Cells 2021; 10:2920. [PMID: 34831144 PMCID: PMC8616364 DOI: 10.3390/cells10112920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
While somatic disruptive mitochondrial DNA (mtDNA) mutations that severely affect the respiratory chain are counter-selected in most human neoplasms, they are the genetic hallmark of indolent oncocytomas, where they appear to contribute to reduce tumorigenic potential. A correlation between mtDNA mutation type and load, and the clinical outcome of a tumor, corroborated by functional studies, is currently lacking. Recurrent familial oncocytomas are extremely rare entities, and they offer the chance to investigate the determinants of oncocytic transformation and the role of both germline and somatic mtDNA mutations in cancer. We here report the first family with Hyperparathyroidism-Jaw Tumor (HPT-JT) syndrome showing the inherited predisposition of four individuals to develop parathyroid oncocytic tumors. MtDNA sequencing revealed a rare ribosomal RNA mutation in the germline of all HPT-JT affected individuals whose pathogenicity was functionally evaluated via cybridization technique, and which was counter-selected in the most aggressive infiltrating carcinoma, but positively selected in adenomas. In all tumors different somatic mutations accumulated on this genetic background, with an inverse clear-cut correlation between the load of pathogenic mtDNA mutations and the indolent behavior of neoplasms, highlighting the importance of the former both as modifiers of cancer fate and as prognostic markers.
Collapse
Affiliation(s)
- Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Luisa Iommarini
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Lorena Marchio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Greta Tedesco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Camelia Alexandra Coadă
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Medical Genetics, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maria Lucia Tardio
- Unit of Pathology, IRCCS S.Orsola University Hospital, 40138 Bologna, Italy;
| | - Nunzio Salfi
- Pathology Unit, IRCCS Giannina Gaslini Children’s Research Hospital, 16147 Genova, Italy;
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| |
Collapse
|
33
|
Haupts A, Vogel A, Foersch S, Hartmann M, Maderer A, Wachter N, Huber T, Kneist W, Roth W, Lang H, Moehler M, Hartmann N. Comparative analysis of nuclear and mitochondrial DNA from tissue and liquid biopsies of colorectal cancer patients. Sci Rep 2021; 11:16745. [PMID: 34408162 PMCID: PMC8373949 DOI: 10.1038/s41598-021-95006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/20/2021] [Indexed: 01/05/2023] Open
Abstract
The current standard for molecular profiling of colorectal cancer (CRC) is using resected or biopsied tissue specimens. However, they are limited regarding sampling frequency, representation of tumor heterogeneity, and sampling can expose patients to adverse side effects. The analysis of cell-free DNA (cfDNA) from blood plasma, which is part of a liquid biopsy, is minimally invasive and in principle enables detection of all tumor-specific mutations. Here, we analyzed cfDNA originating from nucleus and mitochondria and investigated their characteristics and mutation status in a cohort of 18 CRC patients and 10 healthy controls using targeted next-generation sequencing (NGS) and digital PCR. Longitudinal analyses of nuclear cfDNA level and size during chemotherapy revealed a decreasing cfDNA content and a shift from short to long fragments, indicating an appropriate therapy response, while shortened cfDNAs and increased cfDNA content corresponded with tumor recurrence. Comparative NGS analysis of nuclear tissue and plasma DNA demonstrated a good patient-level concordance and cfDNA revealed additional variants in three of the cases. Analysis of mitochondrial cfDNA surprisingly revealed a higher plasma copy number in healthy subjects than in CRC patients. These results highlight the potential clinical utility of liquid biopsies in routine diagnostics and surveillance of CRC patients as complementation to tissue biopsies or as an attractive alternative in cases where tissue biopsies are risky or the quantity/quality does not allow testing.
Collapse
Affiliation(s)
- Anna Haupts
- Institute of Pathology, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Anne Vogel
- Institute of Pathology, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Monika Hartmann
- Department of Internal Medicine I, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Annett Maderer
- Department of Internal Medicine I, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Nicolas Wachter
- Department of General, Visceral and Transplantation Surgery, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Tobias Huber
- Department of General, Visceral and Transplantation Surgery, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Werner Kneist
- Department of General, Visceral and Transplantation Surgery, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.,Department of General and Visceral Surgery, St. Georg Hospital Eisenach gGmbH, Mühlhäuser Straße 94, 99817, Eisenach, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplantation Surgery, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Markus Moehler
- Department of Internal Medicine I, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center JGU Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| |
Collapse
|
34
|
Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13133311. [PMID: 34282749 PMCID: PMC8269082 DOI: 10.3390/cancers13133311] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Reprogramming metabolism is a hallmark of cancer. Warburg’s effect, defined as increased aerobic glycolysis at the expense of mitochondrial respiration in cancer cells, opened new avenues of research in the field of cancer. Later findings, however, have revealed that mitochondria remain functional and that they actively contribute to metabolic plasticity of cancer cells. Understanding the mechanisms by which mitochondrial metabolism controls tumor initiation and progression is necessary to better characterize the onset of carcinogenesis. These studies may ultimately lead to the design of novel anti-cancer strategies targeting mitochondrial functions. Abstract Carcinogenesis is a multi-step process that refers to transformation of a normal cell into a tumoral neoplastic cell. The mechanisms that promote tumor initiation, promotion and progression are varied, complex and remain to be understood. Studies have highlighted the involvement of oncogenic mutations, genomic instability and epigenetic alterations as well as metabolic reprogramming, in different processes of oncogenesis. However, the underlying mechanisms still have to be clarified. Mitochondria are central organelles at the crossroad of various energetic metabolisms. In addition to their pivotal roles in bioenergetic metabolism, they control redox homeostasis, biosynthesis of macromolecules and apoptotic signals, all of which are linked to carcinogenesis. In the present review, we discuss how mitochondria contribute to the initiation of carcinogenesis through gene mutations and production of oncometabolites, and how they promote tumor progression through the control of metabolic reprogramming and mitochondrial dynamics. Finally, we present mitochondrial metabolism as a promising target for the development of novel therapeutic strategies.
Collapse
|
35
|
Faria R, Vivés E, Boisguerin P, Sousa A, Costa D. Development of Peptide-Based Nanoparticles for Mitochondrial Plasmid DNA Delivery. Polymers (Basel) 2021; 13:1836. [PMID: 34206125 PMCID: PMC8199553 DOI: 10.3390/polym13111836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022] Open
Abstract
A mitochondrion is a cellular organelle able to produce cellular energy in the form of adenosine triphosphate (ATP). As in the nucleus, mitochondria contain their own genome: the mitochondrial DNA (mtDNA). This genome is particularly susceptible to mutations that are at the basis of a multitude of disorders, especially those affecting the heart, the central nervous system and muscles. Conventional clinical practice applied to mitochondrial diseases is very limited and ineffective; a clear need for innovative therapies is demonstrated. Gene therapy seems to be a promising approach. The use of mitochondrial DNA as a therapeutic, optimized by peptide-based complexes with mitochondrial targeting, can be seen as a powerful tool in the reestablishment of normal mitochondrial function. In line with this requirement, in this work and for the first time, a mitochondrial-targeting sequence (MTS) has been incorporated into previously researched peptides, to confer on them a targeting ability. These peptides were then considered to complex a plasmid DNA (pDNA) which contains the mitochondrial gene ND1 (mitochondrially encoded NADH dehydrogenase 1 protein), aiming at the formation of peptide-based nanoparticles. Currently, the ND1 plasmid is one of the most advanced bioengineered vectors for conducting research on mitochondrial gene expression. The formed complexes were characterized in terms of pDNA complexation capacity, morphology, size, surface charge and cytotoxic profile. These data revealed that the developed carriers possess suitable properties for pDNA delivery. Furthermore, in vitro studies illustrated the mitochondrial targeting ability of the novel peptide/pDNA complexes. A comparison between the different complexes revealed the most promising ones that complex pDNA and target mitochondria. This may contribute to the optimization of peptide-based non-viral systems to target mitochondria, instigating progress in mitochondrial gene therapy.
Collapse
Affiliation(s)
- Rúben Faria
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.F.); (A.S.)
| | - Eric Vivés
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguerin
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Angela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.F.); (A.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (R.F.); (A.S.)
| |
Collapse
|
36
|
Pliss A, Kuzmin AN, Lita A, Kumar R, Celiku O, Atilla-Gokcumen GE, Gokcumen O, Chandra D, Larion M, Prasad PN. A Single-Organelle Optical Omics Platform for Cell Science and Biomarker Discovery. Anal Chem 2021; 93:8281-8290. [PMID: 34048235 DOI: 10.1021/acs.analchem.1c01131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research in fundamental cell biology and pathology could be revolutionized by developing the capacity for quantitative molecular analysis of subcellular structures. To that end, we introduce the Ramanomics platform, based on confocal Raman microspectrometry coupled to a biomolecular component analysis algorithm, which together enable us to molecularly profile single organelles in a live-cell environment. This emerging omics approach categorizes the entire molecular makeup of a sample into about a dozen of general classes and subclasses of biomolecules and quantifies their amounts in submicrometer volumes. A major contribution of our study is an attempt to bridge Raman spectrometry with big-data analysis in order to identify complex patterns of biomolecules in a single cellular organelle and leverage discovery of disease biomarkers. Our data reveal significant variations in organellar composition between different cell lines. We also demonstrate the merits of Ramanomics for identifying diseased cells by using prostate cancer as an example. We report large-scale molecular transformations in the mitochondria, Golgi apparatus, and endoplasmic reticulum that accompany the development of prostate cancer. Based on these findings, we propose that Ramanomics datasets in distinct organelles constitute signatures of cellular metabolism in healthy and diseased states.
Collapse
Affiliation(s)
- Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Andrey N Kuzmin
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Adrian Lita
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Orieta Celiku
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Omer Gokcumen
- Department of Biological Sciences, Cooke Hall, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
37
|
Zhunina OA, Yabbarov NG, Grechko AV, Starodubova AV, Ivanova E, Nikiforov NG, Orekhov AN. The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes. Front Mol Biosci 2021; 8:671908. [PMID: 34026846 PMCID: PMC8138126 DOI: 10.3389/fmolb.2021.671908] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.
Collapse
Affiliation(s)
- Olga A. Zhunina
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Nikita G. Yabbarov
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | | | - Ekaterina Ivanova
- Department of Basic Research, Skolkovo Innovative Center, Institute for Atherosclerosis Research, Moscow, Russia
| | - Nikita G. Nikiforov
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia
- Institute of Gene Biology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
38
|
Miree O, Srivastava SK, Dasgupta S, Singh S, Rocconi R, Singh AP. Current and Futuristic Roadmap of Ovarian Cancer Management: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:1-19. [PMID: 34339027 DOI: 10.1007/978-3-030-73359-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy among women worldwide. In most cases, it is diagnosed late at an advanced stage and does not respond well to existing therapies leading to its poor prognosis. In addition, other factors including epidemiological, complex histological diversity, multiple molecular alterations, and overlapping signaling pathways are also important contributors to poor disease outcome. Efforts have continued to develop a deeper understanding of the molecular pathogenesis and altered signaling nodes that provide hope for better clinical management through the development of novel approaches for early diagnosis, disease subtyping, prognosis, and therapy. In this chapter, we provide a detailed overview of OC and its histological subtypes and discuss prevalent molecular aberrations and active signaling pathways that drive OC progression. We also summarize various diagnostic and prognostic markers and therapeutic approaches currently being employed and discuss emerging findings that hold the potential to change the future course of OC management.
Collapse
Affiliation(s)
- Orlandric Miree
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Santanu Dasgupta
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Rodney Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA. .,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
39
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
40
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
41
|
Muresanu C, Somasundaram SG, Vissarionov SV, Torres Solis LF, Solís Herrera A, Kirkland CE, Aliev G. Updated Understanding of Cancer as a Metabolic and Telomere-Driven Disease, and Proposal for Complex Personalized Treatment, a Hypothesis. Int J Mol Sci 2020; 21:E6521. [PMID: 32906638 PMCID: PMC7555410 DOI: 10.3390/ijms21186521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we propose a holistic approach to understanding cancer as a metabolic disease. Our search for relevant studies in medical databases concludes that cancer cells do not evolve directly from normal healthy cells. We hypothesize that aberrant DNA damage accumulates over time-avoiding the natural DNA controls that otherwise repair or replace the rapidly replicating cells. DNA damage starts to accumulate in non-replicating cells, leading to senescence and aging. DNA damage is linked with genetic and epigenetic factors, but the development of cancer is favored by telomerase activity. Evidence indicates that telomere length is affected by chronic inflammations, alterations of mitochondrial DNA, and various environmental factors. Emotional stress also influences telomere length. Chronic inflammation can cause oxidative DNA damage. Oxidative stress, in turn, can trigger mitochondrial changes, which ultimately alter nuclear gene expression. This vicious cycle has led several scientists to view cancer as a metabolic disease. We have proposed complex personalized treatments that seek to correct multiple changes simultaneously using a psychological approach to reduce chronic stress, immune checkpoint therapy with reduced doses of chemo and radiotherapy, minimal surgical intervention, if any, and mitochondrial metabolic reprogramming protocols supplemented by intermittent fasting and personalized dietary plans without interfering with the other therapies.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Str. Trifoiului nr. 12 G, 400478 Cluj-Napoca, Romania;
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Sergey V. Vissarionov
- The Department of Spinal Pathology and Neurosurgery, Turner Scientific and Research Institute for Children’s Orthopedics, Street Parkovskya 64-68, Pushkin, 196603 Saint-Petersburg, Russia;
| | | | | | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
| |
Collapse
|
42
|
Jaberi E, Tresse E, Grønbæk K, Weischenfeldt J, Issazadeh-Navikas S. Identification of unique and shared mitochondrial DNA mutations in neurodegeneration and cancer by single-cell mitochondrial DNA structural variation sequencing (MitoSV-seq). EBioMedicine 2020; 57:102868. [PMID: 32629384 PMCID: PMC7334819 DOI: 10.1016/j.ebiom.2020.102868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Point mutations and structural variations (SVs) in mitochondrial DNA (mtDNA) contribute to many neurodegenerative diseases. Technical limitations and heteroplasmy, however, have impeded their identification, preventing these changes from being examined in neurons in healthy and disease states. Methods We have developed a high-resolution technique—Mitochondrial DNA Structural Variation Sequencing (MitoSV-seq)—that identifies all types of mtDNA SVs and single-nucleotide variations (SNVs) in single neurons and novel variations that have been undetectable with conventional techniques. Findings Using MitoSV-seq, we discovered SVs/SNVs in dopaminergic neurons in the Ifnar1−/− murine model of Parkinson disease. Further, MitoSV-seq was found to have broad applicability, delivering high-quality, full-length mtDNA sequences in a species-independent manner from human PBMCs, haematological cancers, and tumour cell lines, regardless of heteroplasmy. We characterised several common SVs in haematological cancers (AML and MDS) that were linked to the same mtDNA region, MT-ND5, using only 10 cells, indicating the power of MitoSV-seq in determining single-cancer-cell ontologies. Notably, the MT-ND5 hotspot, shared between all examined cancers and Ifnar1−/− dopaminergic neurons, suggests that its mutations have clinical value as disease biomarkers. Interpretation MitoSV-seq identifies disease-relevant mtDNA mutations in single cells with high resolution, rendering it a potential drug screening platform in neurodegenerative diseases and cancers. Funding The Lundbeck Foundation, Danish Council for Independent Research-Medicine, and European Union Horizon 2020 Research and Innovation Programme.
Collapse
Affiliation(s)
- Elham Jaberi
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Emilie Tresse
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Kirsten Grønbæk
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; Department of Hematology, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen, Denmark
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
43
|
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53:214-223. [PMID: 32544465 DOI: 10.1016/j.mito.2020.06.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker of mitochondrial function and levels of mtDNA-CN have been reproducibly associated with overall mortality and a number of age-related diseases, including cardiovascular disease, chronic kidney disease, and cancer. Recent advancements in techniques for estimating mtDNA-CN, in particular the use of DNA microarrays and next-generation sequencing data, have led to the comprehensive assessment of mtDNA-CN across these and other diseases and traits. The importance of mtDNA-CN measures to disease and these advancing technologies suggest the potential for mtDNA-CN to be a useful biomarker in the clinic. While the exact mechanism(s) underlying the association of mtDNA-CN with disease remain to be elucidated, we review the existing literature which supports roles for inflammatory dynamics, immune function and alterations to cell signaling as consequences of variation in mtDNA-CN. We propose that future studies should focus on characterizing longitudinal, cell-type and cross-tissue profiles of mtDNA-CN as well as improving methods for measuring mtDNA-CN which will expand the potential for its use as a clinical biomarker.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
44
|
Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, Falparado Ahmad A, Abdullah MA, Teh LK, Maniam S. Mitochondrial DNA mutations in Malaysian female breast cancer patients. PLoS One 2020; 15:e0233461. [PMID: 32442190 PMCID: PMC7244147 DOI: 10.1371/journal.pone.0233461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
Collapse
Affiliation(s)
- Raevathi Omasanggar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Choo Yee Yu
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Geik Yong Ang
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nor Aina Emran
- Department of General Surgery, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Normayah Kitan
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | - Anita Baghawi
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | | | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
45
|
Sukhorukov VS, Voronkova AS, Litvinova NA, Baranich TI, Illarioshkin SN. The Role of Mitochondrial DNA Individuality in the Pathogenesis of Parkinson’s Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Wang SF, Chen S, Tseng LM, Lee HC. Role of the mitochondrial stress response in human cancer progression. Exp Biol Med (Maywood) 2020; 245:861-878. [PMID: 32326760 PMCID: PMC7268930 DOI: 10.1177/1535370220920558] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT Dysregulated mitochondria often occurred in cancers. Mitochondrial dysfunction might contribute to cancer progression. We reviewed several mitochondrial stresses in cancers. Mitochondrial stress responses might contribute to cancer progression. Several mitochondrion-derived molecules (ROS, Ca2+, oncometabolites, exported mtDNA, mitochondrial double-stranded RNA, humanin, and MOTS-c), integrated stress response, and mitochondrial unfolded protein response act as retrograde signaling pathways and might be critical in the development and progression of cancer. Targeting these mitochondrial stress responses may be an important strategy for cancer treatment.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, 112 Taipei
- School of Pharmacy, Taipei Medical University, 110 Taipei
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA 91010, USA
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, 112 Taipei
- Department of Surgery, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| |
Collapse
|
47
|
Tiphania Kotelawala J, Ranasinghe R, Rodrigo C, Tennekoon KH, Silva KD. Evaluation of non-coding region sequence variants and mitochondrial haplogroups as potential biomarkers of sporadic breast cancer in individuals of Sri Lankan Sinhalese ethnicity. Biomed Rep 2020; 12:339-347. [PMID: 32346478 DOI: 10.3892/br.2020.1292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations have been reported to be associated with various diseases, including cancer. The present study investigated the mtDNA non-coding region mutations and mitochondrial haplogroups as potential biomarkers of sporadic breast cancer in Sri Lankan Sinhalese women. Mitochondrial macro-haplogroups were determined using PCR-restriction fragment length polymorphism, whereas non-coding region sequences were determined using Sanger sequencing. The sequence of the non-coding region was also used to confirm haplogroup status. Neither the mutations in the non-coding region nor the mitochondrial haplogroups that were reported as risk factors in other populations, were determined to be potential risk factors for sporadic breast cancer in the present study. Furthermore, several novel mutations were identified in the present matched pairs case-controlled study. The M65a haplogroup with an additional mutation at position 16311 (P=0.0771) and mutations at the ori-b site (P=0.05) were considered a weak risk factor and protective factor, respectively, for sporadic breast cancer in Sinhalese women. Previous studies have indicated the use of mtDNA mutations as a biomarker; however, the present study showed that such biomarkers need to be validated for individual ethnic groups before they can be recommended for use in the prediction of disease.
Collapse
Affiliation(s)
- Joanne Tiphania Kotelawala
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Ruwandi Ranasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Chrishani Rodrigo
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Kanishka De Silva
- National Cancer Institute, Apeksha Hospital, Maharagama 10280, Sri Lanka
| |
Collapse
|
48
|
Raghav L, Chang YH, Hsu YC, Li YC, Chen CY, Yang TY, Chen KC, Hsu KH, Tseng JS, Chuang CY, Lee MH, Wang CL, Chen HW, Yu SL, Su SF, Yuan SS, Chen JJ, Ho SY, Li KC, Yang PC, Chang GC, Chen HY. Landscape of Mitochondria Genome and Clinical Outcomes in Stage 1 Lung Adenocarcinoma. Cancers (Basel) 2020; 12:E755. [PMID: 32210009 PMCID: PMC7140061 DOI: 10.3390/cancers12030755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Risk factors including genetic effects are still being investigated in lung adenocarcinoma (LUAD). Mitochondria play an important role in controlling imperative cellular parameters, and anomalies in mitochondrial function might be crucial for cancer development. The mitochondrial genomic aberrations found in lung adenocarcinoma and their associations with cancer development and progression are not yet clearly characterized. Here, we identified a spectrum of mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with prognosis and clinical outcomes. Next-generation sequencing was used to reveal the mitochondrial genomes of tumor and conditionally normal adjacent tissues from 61 Stage 1 LUADs. Mitochondrial somatic mutations and clinical outcomes including relapse-free survival (RFS) were analyzed. Patients with somatic mutations in the D-loop region had longer RFS (adjusted hazard ratio, adjHR = 0.18, p = 0.027), whereas somatic mutations in mitochondrial Complex IV and Complex V genes were associated with shorter RFS (adjHR = 3.69, p = 0.012, and adjHR = 6.63, p = 0.002, respectively). The risk scores derived from mitochondrial somatic mutations were predictive of RFS (adjHR = 9.10, 95%CI: 2.93-28.32, p < 0.001). Our findings demonstrated the vulnerability of the mitochondrial genome to mutations and the potential prediction ability of somatic mutations. This research may contribute to improving molecular guidance for patient treatment in precision medicine.
Collapse
Affiliation(s)
- Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Chih-Yi Chen
- Institute of Medicine, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Tsung-Ying Yang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Kuo-Hsuan Hsu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jeng-Sen Tseng
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chih-Liang Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, Taipei 10617, Taiwan;
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Sheng-Fang Su
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan;
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Jeremy J.W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095-1554, USA
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung 40704, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
49
|
Schubert AD, Channah Broner E, Agrawal N, London N, Pearson A, Gupta A, Wali N, Seiwert TY, Wheelan S, Lingen M, Macleod K, Allen H, Chatterjee A, Vassiliki S, Gaykalova D, Hoque MO, Sidransky D, Suresh K, Izumchenko E. Somatic mitochondrial mutation discovery using ultra-deep sequencing of the mitochondrial genome reveals spatial tumor heterogeneity in head and neck squamous cell carcinoma. Cancer Lett 2020; 471:49-60. [PMID: 31830557 PMCID: PMC6980748 DOI: 10.1016/j.canlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been linked to risk, progression, and treatment response of head and neck squamous cell carcinoma (HNSCC). Due to their clonal nature and high copy number, mitochondrial mutations could serve as powerful molecular markers for detection of cancer cells in bodily fluids, surgical margins, biopsies and lymph node (LN) metastasis, especially at sites where tumor involvement is not histologically apparent. Despite a pressing need for high-throughput, cost-effective mtDNA mutation profiling system, current methods for library preparation are still imperfect for detection of low prevalence heteroplasmic mutations. To this end, we have designed an ultra-deep amplicon-based sequencing library preparation approach that covers the entire mitochondrial genome. We sequenced mtDNA in 28 HNSCCs, matched LNs, surgical margins and bodily fluids, and applied multiregional sequencing approach on 14 primary tumors. Our results demonstrate that this quick, sensitive and cost-efficient method allows obtaining a snapshot on the mitochondrial heterogeneity, and can be used for detection of low frequency tumor-associated mtDNA mutations in LNs, sputum and serum specimens. These findings provide the foundation for using mitochondrial sequencing for risk assessment, early detection, and tumor surveillance.
Collapse
Affiliation(s)
- Adrian D Schubert
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Esther Channah Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nishant Agrawal
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Nyall London
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alexander Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Neha Wali
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Tanguy Y Seiwert
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Sarah Wheelan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mark Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Kay Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Hailey Allen
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Saloura Vassiliki
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daria Gaykalova
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mohammad O Hoque
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Karthik Suresh
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine. Baltimore, MD, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, Grove ML, Guallar E, Pankratz N, Taylor KD, Rotter JI, Boerwinkle E, Arking DE. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One 2020; 15:e0228166. [PMID: 32004343 PMCID: PMC6994099 DOI: 10.1371/journal.pone.0228166] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has been associated with several aging-related diseases. Although quantitative real-time PCR (qPCR) is the current gold standard method for measuring mtDNA-CN, mtDNA-CN can also be measured from genotyping microarray probe intensities and DNA sequencing read counts. To conduct a comprehensive examination on the performance of these methods, we use known mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus genotype, incident cardiovascular disease) to evaluate mtDNA-CN calculated from qPCR, two microarray platforms, as well as whole genome (WGS) and whole exome sequence (WES) data across 1,085 participants from the Atherosclerosis Risk in Communities (ARIC) study and 3,489 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). We observe mtDNA-CN derived from WGS data is significantly more associated with known correlates compared to all other methods (p < 0.001). Additionally, mtDNA-CN measured from WGS is on average more significantly associated with traits by 5.6 orders of magnitude and has effect size estimates 5.8 times more extreme than the current gold standard of qPCR. We further investigated the role of DNA extraction method on mtDNA-CN estimate reproducibility and found mtDNA-CN estimated from cell lysate is significantly less variable than traditional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and silica-based column selection (p = 2.82x10-7). In conclusion, we recommend the field moves towards more accurate methods for mtDNA-CN, as well as re-analyze trait associations as more WGS data becomes available from larger initiatives such as TOPMed.
Collapse
Affiliation(s)
- Ryan J. Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christina A. Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie Y. Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles E. Newcomb
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Sumpter
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Kent D. Taylor
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Jerome I. Rotter
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|