1
|
Glorieux C, Enríquez C, Buc Calderon P. The complex interplay between redox dysregulation and mTOR signaling pathway in cancer: A rationale for cancer treatment. Biochem Pharmacol 2025; 232:116729. [PMID: 39709038 DOI: 10.1016/j.bcp.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that plays a critical role in regulating cellular processes such as growth, proliferation, and metabolism in healthy cells. Dysregulation of mTOR signaling and oxidative stress have been implicated in various diseases including cancer. This review aims to provide an overview of the current understanding of mTOR and its involvement in cell survival and the regulation of cancer cell metabolism as well as its complex interplay with reactive oxygen species (ROS). On the one hand, ROS can inhibit or activate mTOR pathway in cancer cells through various mechanisms. Conversely, mTOR signaling can induce oxidative stress in tumor cells notably due to the inhibition in the expression of antioxidant enzyme genes. Since mTOR is often activated and plays crucial role in cancer cell survival, the use of mTOR inhibitors, which often induce ROS accumulation, could be an interesting approach for cancer treatment. This review will address the advantages, disadvantages, combination strategies, and limitations associated with therapeutic modulation of mTOR signaling pathway in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060 Guangzhou, China.
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Programa de Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000 Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
2
|
Maynard AG, Pohl NK, Mueller AP, Petrova B, Wong AYL, Wang P, Culhane AJ, Brook JR, Hirsch LM, Hoang N, Kirkland O, Braun T, Ducamp S, Fleming MD, Li H, Kanarek N. Folate depletion induces erythroid differentiation through perturbation of de novo purine synthesis. SCIENCE ADVANCES 2024; 10:eadj9479. [PMID: 38295180 PMCID: PMC10830111 DOI: 10.1126/sciadv.adj9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Folate, an essential vitamin, is a one-carbon acceptor and donor in key metabolic reactions. Erythroid cells harbor a unique sensitivity to folate deprivation, as revealed by the primary pathological manifestation of nutritional folate deprivation: megaloblastic anemia. To study this metabolic sensitivity, we applied mild folate depletion to human and mouse erythroid cell lines and primary murine erythroid progenitors. We show that folate depletion induces early blockade of purine synthesis and accumulation of the purine synthesis intermediate and signaling molecule, 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR), followed by enhanced heme metabolism, hemoglobin synthesis, and erythroid differentiation. This is phenocopied by inhibition of folate metabolism using the inhibitor SHIN1, and by AICAR supplementation. Mechanistically, the metabolically driven differentiation is independent of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine 5'-monophosphate-activated protein kinase (AMPK) and is instead mediated by protein kinase C. Our findings suggest that folate deprivation-induced premature differentiation of erythroid progenitor cells is a molecular etiology to folate deficiency-induced anemia.
Collapse
Affiliation(s)
- Adam G. Maynard
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy K. Pohl
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard School of Public Health PhD Program, Boston, MA 02115, USA
| | - Annabel P. Mueller
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alan Y. L. Wong
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Wang
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J. Culhane
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeannette R. Brook
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Leah M. Hirsch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ngoc Hoang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Orville Kirkland
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Tatum Braun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sarah Ducamp
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hojun Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
3
|
Chanda M, Anuntasomboon P, Ruangritchankul K, Cheepsunthorn P, Cheepsunthorn CL. Inhibition of non-small cell lung cancer (NSCLC) proliferation through targeting G6PD. PeerJ 2023; 11:e16503. [PMID: 38077440 PMCID: PMC10704991 DOI: 10.7717/peerj.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Background Mounting evidence has linked cancer metabolic reprogramming with altered redox homeostasis. The pentose phosphate pathway (PPP) is one of the key metabolism-related pathways that has been enhanced to promote cancer growth. The glucose 6-phosphate dehydrogenase (G6PD) of this pathway generates reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is essential for controlling cellular redox homeostasis. Objective This research aimed to investigate the growth-promoting effects of G6PD in non-small cell lung cancer (NSCLC). Methods Clinical characteristics and G6PD expression levels in lung tissues of 64 patients diagnosed with lung cancer at the King Chulalongkorn Memorial Hospital (Bangkok, Thailand) during 2009-2014 were analyzed. G6PD activity in NSCLC cell lines, including NCI-H1975 and NCI-H292, was experimentally inhibited using DHEA and siG6PD to study cancer cell proliferation and migration. Results The positive expression of G6PD in NSCLC tissues was detected by immunohistochemical staining and was found to be associated with squamous cells. G6PD expression levels and activity also coincided with the proliferation rate of NSCLC cell lines. Suppression of G6PD-induced apoptosis in NSCLC cell lines by increasing Bax/Bcl-2 ratio expression. The addition of D-(-)-ribose, which is an end-product of the PPP, increased the survival of G6PD-deficient NSCLC cell lines. Conclusion Collectively, these findings demonstrated that G6PD might play an important role in the carcinogenesis of NSCLC. Inhibition of G6PD might provide a therapeutic strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Makamas Chanda
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Anuntasomboon
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
4
|
Vízkeleti L, Spisák S. Rewired Metabolism Caused by the Oncogenic Deregulation of MYC as an Attractive Therapeutic Target in Cancers. Cells 2023; 12:1745. [PMID: 37443779 PMCID: PMC10341379 DOI: 10.3390/cells12131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
MYC is one of the most deregulated oncogenes on multiple levels in cancer. As a node transcription factor, MYC plays a diverse regulatory role in many cellular processes, including cell cycle and metabolism, both in physiological and pathological conditions. The relentless growth and proliferation of tumor cells lead to an insatiable demand for energy and nutrients, which requires the rewiring of cellular metabolism. As MYC can orchestrate all aspects of cellular metabolism, its altered regulation plays a central role in these processes, such as the Warburg effect, and is a well-established hallmark of cancer development. However, our current knowledge of MYC suggests that its spatial- and concentration-dependent contribution to tumorigenesis depends more on changes in the global or relative expression of target genes. As the direct targeting of MYC is proven to be challenging due to its relatively high toxicity, understanding its underlying regulatory mechanisms is essential for the development of tumor-selective targeted therapies. The aim of this review is to comprehensively summarize the diverse forms of MYC oncogenic deregulation, including DNA-, transcriptional- and post-translational level alterations, and their consequences for cellular metabolism. Furthermore, we also review the currently available and potentially attractive therapeutic options that exploit the vulnerability arising from the metabolic rearrangement of MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Sándor Spisák
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
5
|
Behl T, Makkar R, Anwer MK, Hassani R, Khuwaja G, Khalid A, Mohan S, Alhazmi HA, Sachdeva M, Rachamalla M. Mitochondrial Dysfunction: A Cellular and Molecular Hub in Pathology of Metabolic Diseases and Infection. J Clin Med 2023; 12:jcm12082882. [PMID: 37109219 PMCID: PMC10141031 DOI: 10.3390/jcm12082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are semiautonomous doubly membraned intracellular components of cells. The organelle comprises of an external membrane, followed by coiled structures within the membrane called cristae, which are further surrounded by the matrix spaces followed by the space between the external and internal membrane of the organelle. A typical eukaryotic cell contains thousands of mitochondria within it, which make up 25% of the cytoplasm present in the cell. The organelle acts as a common point for the metabolism of glucose, lipids, and glutamine. Mitochondria chiefly regulate oxidative phosphorylation-mediated aerobic respiration and the TCA cycle and generate energy in the form of ATP to fulfil the cellular energy needs. The organelle possesses a unique supercoiled doubly stranded mitochondrial DNA (mtDNA) which encodes several proteins, including rRNA and tRNA crucial for the transport of electrons, oxidative phosphorylation, and initiating genetic repair processors. Defects in the components of mitochondria act as the principal factor for several chronic cellular diseases. The dysfunction of mitochondria can cause a malfunction in the TCA cycle and cause the leakage of the electron respiratory chain, leading to an increase in reactive oxygen species and the signaling of aberrant oncogenic and tumor suppressor proteins, which further alter the pathways involved in metabolism, disrupt redox balance, and induce endurance towards apoptosis and several treatments which play a major role in developing several chronic metabolic conditions. The current review presents the knowledge on the aspects of mitochondrial dysfunction and its role in cancer, diabetes mellitus, infections, and obesity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Stattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum 11123, Sudan
| | - Syam Mohan
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain P.O. Box 24162, United Arab Emirates
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
6
|
El-Kenawi A, Berglund A, Estrella V, Zhang Y, Liu M, Putney RM, Yoder SJ, Johnson J, Brown J, Gatenby R. Elevated Methionine Flux Drives Pyroptosis Evasion in Persister Cancer Cells. Cancer Res 2023; 83:720-734. [PMID: 36480167 PMCID: PMC9978888 DOI: 10.1158/0008-5472.can-22-1002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Induction of cell death represents a primary goal of most anticancer treatments. Despite the efficacy of such approaches, a small population of "persisters" develop evasion strategies to therapy-induced cell death. While previous studies have identified mechanisms of resistance to apoptosis, the mechanisms by which persisters dampen other forms of cell death, such as pyroptosis, remain to be elucidated. Pyroptosis is a form of inflammatory cell death that involves formation of membrane pores, ion gradient imbalance, water inflow, and membrane rupture. Herein, we investigate mechanisms by which cancer persisters resist pyroptosis, survive, then proliferate in the presence of tyrosine kinase inhibitors (TKI). Lung, prostate, and esophageal cancer persister cells remaining after treatments exhibited several hallmarks indicative of pyroptosis resistance. The inflammatory attributes of persisters included chronic activation of inflammasome, STING, and type I interferons. Comprehensive metabolomic characterization uncovered that TKI-induced pyroptotic persisters display high methionine consumption and excessive taurine production. Elevated methionine flux or exogenous taurine preserved plasma membrane integrity via osmolyte-mediated effects. Increased dependency on methionine flux decreased the level of one carbon metabolism intermediate S-(5'-adenosyl)-L-homocysteine, a determinant of cell methylation capacity. The consequent increase in methylation potential induced DNA hypermethylation of genes regulating metal ion balance and intrinsic immune response. This enabled thwarting TKI resistance by using the hypomethylating agent decitabine. In summary, the evolution of resistance to pyroptosis can occur via a stepwise process of physical acclimation and epigenetic changes without existing or recurrent mutations. SIGNIFICANCE Methionine enables cancer cells to persist by evading pyroptotic osmotic lysis, which leads to genome-wide hypermethylation that allows persisters to gain proliferative advantages.
Collapse
Affiliation(s)
- Asmaa El-Kenawi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Veronica Estrella
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Yonghong Zhang
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Min Liu
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Sean J Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Joseph Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Joel Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
7
|
Alonso LL, Slagboom J, Casewell NR, Samanipour S, Kool J. Metabolome-Based Classification of Snake Venoms by Bioinformatic Tools. Toxins (Basel) 2023; 15:161. [PMID: 36828475 PMCID: PMC9963137 DOI: 10.3390/toxins15020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Snakebite is considered a neglected tropical disease, and it is one of the most intricate ones. The variability found in snake venom is what makes it immensely complex to study. These variations are present both in the big and the small molecules found in snake venom. This study focused on examining the variability found in the venom's small molecules (i.e., mass range of 100-1000 Da) between two main families of venomous snakes-Elapidae and Viperidae-managing to create a model able to classify unknown samples by means of specific features, which can be extracted from their LC-MS data and output in a comprehensive list. The developed model also allowed further insight into the composition of snake venom by highlighting the most relevant metabolites of each group by clustering similarly composed venoms. The model was created by means of support vector machines and used 20 features, which were merged into 10 principal components. All samples from the first and second validation data subsets were correctly classified. Biological hypotheses relevant to the variation regarding the metabolites that were identified are also given.
Collapse
Affiliation(s)
- Luis L. Alonso
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Saer Samanipour
- Van ‘t Hof Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
8
|
Heterogeneity of Amino Acid Profiles of Proneural and Mesenchymal Brain-Tumor Initiating Cells. Int J Mol Sci 2023; 24:ijms24043199. [PMID: 36834608 PMCID: PMC9962848 DOI: 10.3390/ijms24043199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Glioblastomas are highly malignant brain tumors that derive from brain-tumor-initiating cells (BTICs) and can be subdivided into several molecular subtypes. Metformin is an antidiabetic drug currently under investigation as a potential antineoplastic agent. The effects of metformin on glucose metabolism have been extensively studied, but there are only few data on amino acid metabolism. We investigated the basic amino acid profiles of proneural and mesenchymal BTICs to explore a potential distinct utilization and biosynthesis in these subgroups. We further measured extracellular amino acid concentrations of different BTICs at baseline and after treatment with metformin. Effects of metformin on apoptosis and autophagy were determined using Western Blot, annexin V/7-AAD FACS-analyses and a vector containing the human LC3B gene fused to green fluorescent protein. The effects of metformin on BTICs were challenged in an orthotopic BTIC model. The investigated proneural BTICs showed increased activity of the serine and glycine pathway, whereas mesenchymal BTICs in our study preferably metabolized aspartate and glutamate. Metformin treatment led to increased autophagy and strong inhibition of carbon flux from glucose to amino acids in all subtypes. However, oral treatment with metformin at tolerable doses did not significantly inhibit tumor growth in vivo. In conclusion, we found distinct amino acid profiles of proneural and mesenchymal BTICs, and inhibitory effects of metformin on BTICs in vitro. However, further studies are warranted to better understand potential resistance mechanisms against metformin in vivo.
Collapse
|
9
|
A robust Au@Cu 2-xS nanoreactor assembled by silk fibroin for enhanced intratumoral glucose depletion and redox dyshomeostasis. Biomaterials 2023; 293:121970. [PMID: 36549040 DOI: 10.1016/j.biomaterials.2022.121970] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Intracellular redox dyshomeostasis promoted by tumor microenvironment (TME) modulation has become an appealing therapeutic target for cancer management. Herein, a dual plasmonic Au/SF@Cu2-xS nanoreactor (abbreviation as ASC) is elaborately developed by covalent immobilization of sulfur defective Cu2-xS nanodots onto the surface of silk fibroin (SF)-capped Au nanoparticles. Tumor hypoxia can be effectively alleviated by ASC-mediated local oxygenation, owing to the newfound catalase-mimic activity of Cu2-xS. The semiconductor of Cu2-xS with narrow bandgap energy of 2.54 eV enables a more rapid dissociation of electron-hole (e-/h+) pair for a promoted US-triggered singlet oxygen (1O2) generation, in the presence of Au as electron scavenger. Moreover, Cu2-xS is devote to Fenton-like reaction to catalyze H2O2 into ·OH under mild acidity and simultaneously deplete glutathione to aggravate intracellular oxidative stress. In another aspect, Au nanoparticles with glucose oxidase-mimic activity consumes intrinsic glucose, which contributes to a higher degree of oxidative damage and energy exhaustion of cancer cells. Importantly, such tumor starvation and 1O2 yield can be enhanced by Cu2-xS-catalyzed O2 self-replenishment in H2O2-rich TME. ASC-initiated M1 macrophage activation and therapy-triggered immunogenetic cell death (ICD) favors the systematic tumor elimination by eliciting antitumor immunity. This study undoubtedly enriches the rational design of SF-based nanocatalysts for medical utilizations.
Collapse
|
10
|
De Santis MC, Gozzelino L, Margaria JP, Costamagna A, Ratto E, Gulluni F, Di Gregorio E, Mina E, Lorito N, Bacci M, Lattanzio R, Sala G, Cappello P, Novelli F, Giovannetti E, Vicentini C, Andreani S, Delfino P, Corbo V, Scarpa A, Porporato PE, Morandi A, Hirsch E, Martini M. Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer. Gut 2023; 72:360-371. [PMID: 35623884 PMCID: PMC9872233 DOI: 10.1136/gutjnl-2021-325117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified. DESIGN Three independent cohorts of PDAC patients were studied to correlate PI3K-C2γ protein abundance with disease outcome. Mechanisms were then studied in mouse (KPC mice) and cellular models of PDAC, in presence or absence of PI3K-C2γ (WT or KO). PI3K-C2γ-dependent metabolic rewiring and its impact on mTORC1 regulation were assessed in conditions of limiting glutamine availability. Finally, effects of a combination therapy targeting mTORC1 and glutamine metabolism were studied in WT and KO PDAC cells and preclinical models. RESULTS PI3K-C2γ expression was reduced in about 30% of PDAC cases and was associated with an aggressive phenotype. Similarly, loss of PI3K-C2γ in KPC mice enhanced tumour development and progression. The increased aggressiveness of tumours lacking PI3K-C2γ correlated with hyperactivation of mTORC1 pathway and glutamine metabolism rewiring to support lipid synthesis. PI3K-C2γ-KO tumours failed to adapt to metabolic stress induced by glutamine depletion, resulting in cell death. CONCLUSION Loss of PI3K-C2γ prevents mTOR inactivation and triggers tumour vulnerability to RAD001 (mTOR inhibitor) and BPTES/CB-839 (glutaminase inhibitors). Therefore, these results might open the way to personalised treatments in PDAC with PI3K-C2γ loss.
Collapse
Affiliation(s)
- Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Nicla Lorito
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Marina Bacci
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | | | - Silvia Andreani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Morandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| |
Collapse
|
11
|
Dialysis as a Novel Adjuvant Treatment for Malignant Cancers. Cancers (Basel) 2022; 14:cancers14205054. [PMID: 36291840 PMCID: PMC9600214 DOI: 10.3390/cancers14205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary There is a clear need for new cancer therapies as many cancers have a very short long-term survival rate. For most advanced cancers, therapy resistance limits the benefit of any single-agent chemotherapy, radiotherapy, or immunotherapy. Cancer cells show a greater dependence on glucose and glutamine as fuel than healthy cells do. In this article, we propose using 4- to 8-h dialysis treatments to change the blood composition, i.e., lowering glucose and glutamine levels, and elevating ketone levels—thereby disrupting major metabolic pathways important for cancer cell survival. The dialysis’ impact on cancer cells include not only metabolic effects, but also redox balance, immunological, and epigenetic effects. These pleiotropic effects could potentially enhance the effectiveness of traditional cancer treatments, such as radiotherapies, chemotherapies, and immunotherapies—resulting in improved outcomes and longer survival rates for cancer patients. Abstract Cancer metabolism is characterized by an increased utilization of fermentable fuels, such as glucose and glutamine, which support cancer cell survival by increasing resistance to both oxidative stress and the inherent immune system in humans. Dialysis has the power to shift the patient from a state dependent on glucose and glutamine to a ketogenic condition (KC) combined with low glutamine levels—thereby forcing ATP production through the Krebs cycle. By the force of dialysis, the cancer cells will be deprived of their preferred fermentable fuels, disrupting major metabolic pathways important for the ability of the cancer cells to survive. Dialysis has the potential to reduce glucose levels below physiological levels, concurrently increase blood ketone body levels and reduce glutamine levels, which may further reinforce the impact of the KC. Importantly, ketones also induce epigenetic changes imposed by histone deacetylates (HDAC) activity (Class I and Class IIa) known to play an important role in cancer metabolism. Thus, dialysis could be an impactful and safe adjuvant treatment, sensitizing cancer cells to traditional cancer treatments (TCTs), potentially making these significantly more efficient.
Collapse
|
12
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
13
|
Carsana EV, Audano M, Breviario S, Pedretti S, Aureli M, Lunghi G, Mitro N. Metabolic Profile Variations along the Differentiation of Human-Induced Pluripotent Stem Cells to Dopaminergic Neurons. Biomedicines 2022; 10:biomedicines10092069. [PMID: 36140170 PMCID: PMC9495704 DOI: 10.3390/biomedicines10092069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the availability of induced pluripotent stem cell-based neuronal models has opened new perspectives on the study and therapy of neurological diseases such as Parkinson’s disease. In particular, P. Zhang set up a protocol to efficiently generate dopaminergic neurons from induced pluripotent stem cells. Although the differentiation process of these cells has been widely investigated, there is scant information related to the variation in metabolic features during the differentiation process of pluripotent stem cells to mature dopaminergic neurons. For this reason, we analysed the metabolic profile of induced pluripotent stem cells, neuronal precursors and mature neurons by liquid chromatography–tandem mass spectrometry. We found that induced pluripotent stem cells primarily rely on fatty acid beta-oxidation as a fuel source. Upon progression to neuronal progenitors, it was observed that cells began to shut down fatty acid β-oxidation and preferentially catabolised glucose, which is the principal source of energy in fully differentiated neurons. Interestingly, in neuronal precursors, we observed an increase in amino acids that are likely the result of increased uptake or synthesis, while in mature dopaminergic neurons, we also observed an augmented content of those amino acids needed for dopamine synthesis. In summary, our study highlights a metabolic rewiring occurring during the differentiation stages of dopaminergic neurons.
Collapse
Affiliation(s)
- Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy
| | - Silvia Breviario
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy
- Correspondence: (M.A.); (N.M.)
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy
- Correspondence: (M.A.); (N.M.)
| |
Collapse
|
14
|
Goetting I, Larafa S, Eul K, Kunin M, Jakob B, Matschke J, Jendrossek V. Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation. Front Oncol 2022; 12:920017. [PMID: 35875130 PMCID: PMC9304891 DOI: 10.3389/fonc.2022.920017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance.We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation.TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K.We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision.
Collapse
Affiliation(s)
- Isabell Goetting
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Katharina Eul
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Mikhail Kunin
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| |
Collapse
|
15
|
Semkova V, Haupt S, Segschneider M, Bell C, Ingelman-Sundberg M, Hajo M, Weykopf B, Muthukottiappan P, Till A, Brüstle O. Dynamics of Metabolic Pathways and Stress Response Patterns during Human Neural Stem Cell Proliferation and Differentiation. Cells 2022; 11:cells11091388. [PMID: 35563695 PMCID: PMC9100042 DOI: 10.3390/cells11091388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding early nervous system stress response mechanisms is crucial for studying developmental neurotoxicity and devising neuroprotective treatments. We used hiPSC-derived long-term self-renewing neuroepithelial stem (lt-NES) cells differentiated for up to 12 weeks as an in vitro model of human neural development. Following a transcriptome analysis to identify pathway alterations, we induced acute oxidative stress (OS) using tert-butyl hydroperoxide (TBHP) and assessed cell viability at different stages of neural differentiation. We studied NRF2 activation, autophagy, and proteasomal function to explore the contribution and interplay of these pathways in the acute stress response. With increasing differentiation, lt-NES cells showed changes in the expression of metabolic pathway-associated genes with engagement of the pentose phosphate pathway after 6 weeks, this was accompanied by a decreased susceptibility to TBHP-induced stress. Microarray analysis revealed upregulation of target genes of the antioxidant response KEAP1–NRF2–ARE pathway after 6 weeks of differentiation. Pharmacological inhibition of NRF2 confirmed its vital role in the increased resistance to stress. While autophagy was upregulated alongside differentiation, it was not further increased upon oxidative stress and had no effect on stress-induced cell loss and the activation of NRF2 downstream genes. In contrast, proteasome inhibition led to the aggravation of the stress response resulting in decreased cell viability, derangement of NRF2 and KEAP1 protein levels, and lacking NRF2-pathway activation. Our data provide detailed insight into the dynamic regulation and interaction of pathways involved in modulating stress responses across defined time points of neural differentiation.
Collapse
Affiliation(s)
- Vesselina Semkova
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- LIFE & BRAIN GmbH, Cellomics Unit, 53127 Bonn, Germany
| | - Simone Haupt
- LIFE & BRAIN GmbH, Cellomics Unit, 53127 Bonn, Germany
| | | | - Catherine Bell
- Karolinska Institute, Department of Physiology and Pharmacology, 171 77 Stockholm, Sweden
| | | | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Beatrice Weykopf
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Pathma Muthukottiappan
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Andreas Till
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence: (A.T.); (O.B.)
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence: (A.T.); (O.B.)
| |
Collapse
|
16
|
Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022; 23:ijms23052702. [PMID: 35269843 PMCID: PMC8910662 DOI: 10.3390/ijms23052702] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic environment by deploying a variety of adaptative mechanisms, one of them being the reorientation of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite to their negative role in the inception of oxidative stress, ROS are also key modulatory components of physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of cancer cells.
Collapse
Affiliation(s)
- Ildiko Szanto
- Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, Geneva University Hospitals, Diabetes Center of the Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
17
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
18
|
Hansel C, Hlouschek J, Xiang K, Melnikova M, Thomale J, Helleday T, Jendrossek V, Matschke J. Adaptation to Chronic-Cycling Hypoxia Renders Cancer Cells Resistant to MTH1-Inhibitor Treatment Which Can Be Counteracted by Glutathione Depletion. Cells 2021; 10:3040. [PMID: 34831264 PMCID: PMC8616547 DOI: 10.3390/cells10113040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor hypoxia and hypoxic adaptation of cancer cells represent major barriers to successful cancer treatment. We revealed that improved antioxidant capacity contributes to increased radioresistance of cancer cells with tolerance to chronic-cycling severe hypoxia/reoxygenation stress. We hypothesized, that the improved tolerance to oxidative stress will increase the ability of cancer cells to cope with ROS-induced damage to free deoxy-nucleotides (dNTPs) required for DNA replication and may thus contribute to acquired resistance of cancer cells in advanced tumors to antineoplastic agents inhibiting the nucleotide-sanitizing enzyme MutT Homologue-1 (MTH1), ionizing radiation (IR) or both. Therefore, we aimed to explore potential differences in the sensitivity of cancer cells exposed to acute and chronic-cycling hypoxia/reoxygenation stress to the clinically relevant MTH1-inhibitor TH1579 (Karonudib) and to test whether a multi-targeting approach combining the glutathione withdrawer piperlongumine (PLN) and TH1579 may be suited to increase cancer cell sensitivity to TH1579 alone and in combination with IR. Combination of TH1579 treatment with radiotherapy (RT) led to radiosensitization but was not able to counteract increased radioresistance induced by adaptation to chronic-cycling hypoxia/reoxygenation stress. Disruption of redox homeostasis using PLN sensitized anoxia-tolerant cancer cells to MTH1 inhibition by TH1579 under both normoxic and acute hypoxic treatment conditions. Thus, we uncover a glutathione-driven compensatory resistance mechanism towards MTH1-inhibition in form of increased antioxidant capacity as a consequence of microenvironmental or therapeutic stress.
Collapse
Affiliation(s)
- Christine Hansel
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Margarita Melnikova
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Juergen Thomale
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Thomas Helleday
- Science for Life Laboratory, Karolinska Institutet, 17121 Stockholm, Sweden;
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (J.H.); (K.X.); (M.M.); (J.T.); (V.J.)
| |
Collapse
|
19
|
Emberley E, Pan A, Chen J, Dang R, Gross M, Huang T, Li W, MacKinnon A, Singh D, Sotirovska N, Steggerda SM, Wang T, Parlati F. The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS One 2021; 16:e0259241. [PMID: 34731180 PMCID: PMC8565744 DOI: 10.1371/journal.pone.0259241] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/16/2021] [Indexed: 12/26/2022] Open
Abstract
Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine into the TCA cycle. We found that RCC cells are highly dependent on glutamine for proliferation, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption, which was concomitant with a decrease in the production of glutamate and other glutamine-derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL inhibitor) in combination with telaglenastat resulted in decreased consumption of both glucose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced tumor growth compared to either agent alone. Enhanced anti-tumor activity was also observed with the combination of everolimus plus telaglenastat. Collectively, our results demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose and glutamine consumption.
Collapse
Affiliation(s)
- Ethan Emberley
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Alison Pan
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Jason Chen
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Rosalyn Dang
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Matt Gross
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Tony Huang
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Weiqun Li
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Andrew MacKinnon
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Devansh Singh
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Natalija Sotirovska
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | | | - Tracy Wang
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Francesco Parlati
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Vera MC, Lucci A, Ferretti AC, Abbondanzieri AA, Comanzo CG, Lorenzetti F, Pisani GB, Ceballos MP, Alvarez MDL, Carrillo MC, Quiroga AD. The chemoprotective effects of IFN-α-2b on rat hepatocarcinogenesis are blocked by vitamin E supplementation. J Nutr Biochem 2021; 96:108806. [PMID: 34147603 DOI: 10.1016/j.jnutbio.2021.108806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 01/28/2023]
Abstract
Many cancer patients receive their classical therapies together with vitamin supplements. However, the effectiveness of these strategies is on debate. Here we aimed to evaluate how vitamin E supplementation affects the anticancer effects of interferon (IFN-α) using an early-model of liver cancer development (initiation-promotion, IP). Male Wistar rats subjected to this model were divided as follows: untreated (IP), IP treated with recombinant IFN-α-2b (6.5 × 105 U/kg), IP treated with vitamin E (50 mg/kg), and IP treated with combination of vitamin E and IFN-α-2b. After treatments rats were fasted and euthanized and plasma and livers were collected. Combined administration of vitamin E and IFN-α-2b induced body weight drop, increased liver apoptosis, and low levels of hepatic lipids. Interestingly, vitamin E and IFN-α-2b combination also induced an increase in altered hepatic foci number, but not in size. It seems that vitamin E acts on its antioxidant capability in order to block the oxidative stress induced by IFN-α-2b, blocking in turn its beneficial effects on preneoplastic livers, leading to harmful final effects. In conclusion, this study shows that vitamin E supplementation in IFN-α-2b-treated rats exerts unwanted effects; and highlights that in spite of being natural, nutritional supplements may not always exert beneficial outcomes when used as complementary therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Marina C Vera
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Alvaro Lucci
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Anabela C Ferretti
- Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | | | - Carla G Comanzo
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Gerardo B Pisani
- Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - María P Ceballos
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Maria de L Alvarez
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; CAECIHS, Universidad Abierta Interamericana, Rosario, Argentina
| | - María C Carrillo
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Ariel D Quiroga
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; CAECIHS, Universidad Abierta Interamericana, Rosario, Argentina.
| |
Collapse
|
21
|
Xu L, Xu R, Saw PE, Wu J, Cheng SX, Xu X. Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. NANO LETTERS 2021; 21:7569-7578. [PMID: 34472343 DOI: 10.1021/acs.nanolett.1c02073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selective amplification of reactive oxygen species (ROS) generation in tumor cells has been recognized as an effective strategy for cancer therapy. However, an abnormal tumor metabolism, especially the mitochondrial glutaminolysis, could promote tumor cells to generate high levels of antioxidants (e.g., glutathione) to evade ROS-induced damage. Here, we developed a tumor-targeted nanoparticle (NP) platform for effective breast cancer therapy via combining inhibition of mitochondrial glutaminolysis and chemodynamic therapy (CDT). This NP platform is composed of bovine serum albumin (BSA), ferrocene, and purpurin. After surface decoration with a tumor-targeting aptamer and then intravenous administration, this NP platform could target tumor cells and release ferrocene to catalyze hydrogen peroxide (H2O2) into the hydroxyl radical (·OH) for CDT. More importantly, purpurin could inhibit mitochondrial glutaminolysis to concurrently prevent the nutrient supply for tumor cells and disrupt intracellular redox homeostasis for enhanced CDT, ultimately leading to the combinational inhibition of tumor growth.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
22
|
Carpentieri G, Leoni C, Pietraforte D, Cecchetti S, Iorio E, Belardo A, Pietrucci D, Di Nottia M, Pajalunga D, Megiorni F, Mercurio L, Tatti M, Camero S, Marchese C, Rizza T, Tirelli V, Onesimo R, Carrozzo R, Rinalducci S, Chillemi G, Zampino G, Tartaglia M, Flex E. Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species. Hum Mol Genet 2021; 31:561-575. [PMID: 34508588 DOI: 10.1093/hmg/ddab270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Germline activating mutations in HRAS cause Costello Syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via ROS-dependent AMPKα and p38 hyperactivation, occurs in CS, resulting in accelerated glycolysis, and increased fatty acid synthesis and storage as lipid droplets in primary fibroblasts. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.
Collapse
Affiliation(s)
- Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | | | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Michela Di Nottia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Rome, Italy
| | - Massimo Tatti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simona Camero
- Department Maternal Infantile and Urological Sciences, SAPIENZA University, 00161 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Teresa Rizza
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rosalba Carrozzo
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
23
|
One-Carbon Metabolism Associated Vulnerabilities in Glioblastoma: A Review. Cancers (Basel) 2021; 13:cancers13123067. [PMID: 34205450 PMCID: PMC8235277 DOI: 10.3390/cancers13123067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Glioblastoma tumours are the most malignant and common type of central nervous system tumours. Despite aggressive treatment measures, disease recurrence in patients with glioblastoma is inevitable and survival rates remain low. Glioblastoma cells, like other cancer cells, can leverage metabolic pathways to increase their rate of proliferation, maintain self-renewal, and develop treatment resistance. Furthermore, many of the metabolic strategies employed by cancer cells are similar to those employed by stem cells in order to maintain self-renewal and proliferation. One-carbon metabolism and de novo purine synthesis are metabolic pathways that are essential for biosynthesis of macromolecules and have been found to be essential for tumourigenesis. In this review, we summarize the evidence showing the significance of 1-C-mediated de novo purine synthesis in glioblastoma cell proliferation and tumourigenesis, as well as evidence suggesting the effectiveness of targeting this metabolic pathway as a therapeutic modality. Abstract Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of antimetabolites against glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis. Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for tumour recurrence. Further research is required to elucidate mechanisms through which metabolic vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting this pathway in conjunction with other treatment strategies.
Collapse
|
24
|
Xu C, Yang H, Xiao Z, Zhang T, Guan Z, Chen J, Lai H, Xu X, Huang Y, Huang Z, Zhao C. Reduction-responsive dehydroepiandrosterone prodrug nanoparticles loaded with camptothecin for cancer therapy by enhancing oxidation therapy and cell replication inhibition. Int J Pharm 2021; 603:120671. [PMID: 33961957 DOI: 10.1016/j.ijpharm.2021.120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/18/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The pentose phosphate pathway (PPP) plays a critical role by providing ribulose-5-phosphate (Ru5P) and NADPH for nucleotide synthesis and reduction energy, respectively. Accordingly, blocking the PPP process may be an effective strategy for enhancing oxidation therapy and inhibiting cell replication. Here, we designed a novel reduction-responsive PEGylated prodrug and constructed nanoparticles PsD@CPT to simultaneously deliver a PPP blocker, dehydroepiandrosterone (DHEA), and chemotherapeutic camptothecin (CPT) to integrate amplification of oxidation therapy and enhance cell replication inhibition. Following cellular uptake, DHEA and CPT were released from PsD@CPT in the presence of high glutathione (GSH) levels. As expected, DHEA-mediated reduction level decreases and CPT-induced oxidation level increases synergistically, breaking the redox balance to aggravate cancer oxidative stress. In addition, suppressing nucleotide synthesis by DHEA through the reduction of Ru5P and blocking DNA replication by CPT further motivates a synergistic inhibition effect on tumor cell proliferation. The results showed that PsD@CPT featuring multimodal treatment has satisfactory antitumor activity both in vitro and in vivo. This study provides a new tumor treatment strategy, which combines the amplification of oxidative stress and enhancement of inhibition of cell proliferation based on inhibition of the PPP process.
Collapse
Affiliation(s)
- Congjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Haolan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhanghong Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zilin Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hualu Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
25
|
Chun KS, Kim DH, Surh YJ. Role of Reductive versus Oxidative Stress in Tumor Progression and Anticancer Drug Resistance. Cells 2021; 10:cells10040758. [PMID: 33808242 PMCID: PMC8065762 DOI: 10.3390/cells10040758] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Redox homeostasis is not only essential for the maintenance of normal physiological functions, but also plays an important role in the growth, survival, and therapy resistance of cancer cells. Altered redox balance and consequent disruption of redox signaling are implicated in the proliferation and progression of cancer cells and their resistance to chemo- and radiotherapy. The nuclear factor erythroid 2 p45-related factor (Nrf2) is the principal stress-responsive transcription factor that plays a pivotal role in maintaining cellular redox homeostasis. Aberrant Nrf2 overactivation has been observed in many cancerous and transformed cells. Uncontrolled amplification of Nrf2-mediated antioxidant signaling results in reductive stress. Some metabolic pathways altered due to reductive stress have been identified as major contributors to tumorigenesis. This review highlights the multifaceted role of reductive stress in cancer development and progression.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Korea;
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| |
Collapse
|
26
|
Wu L, Zhang Q, Liang W, Ma Y, Niu L, Zhang L. Phytochemical Analysis Using UPLC-MS n Combined with Network Pharmacology Approaches to Explore the Biomarkers for the Quality Control of the Anticancer Tannin Fraction of Phyllanthus emblica L. Habitat in Nepal. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6623791. [PMID: 33833816 PMCID: PMC8018855 DOI: 10.1155/2021/6623791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 11/28/2022]
Abstract
Phyllanthus emblica L. is widely used in traditional Tibetan medicine for its therapeutic effects on treating liver, kidney, and bladder problems. We have reported that the tannin fraction has a good anti-hepatocellular carcinoma effect, but its active ingredients are not clear. This study was to find the active ingredients of the tannin fraction using UPLC-MSn and network pharmacology. First of all, the UPLC-MSn method was employed to obtain high-resolution mass spectra of different components, and 110 compounds were obtained. Then a network pharmacology method was used to find biomarkers for quality control. Network pharmacology results showed that gallic acid, punicalagin A, punicalagin B, methyl gallate, geraniin, corilagin, chebulinic acid, chebulagic acid, and ellagic acid should be the biomarkers of the tannin fraction. Furthermore, 9 components were detected in the serum, which also proved that they could be biomarkers, because we generally believe that the ingredients which are absorbed into the blood are effective. In the end, a simple method for simultaneously determining the contents of the 9 compounds was constructed by HPLC-DAD. This research established a new method to find biomarkers of traditional Chinese medicine. This is of great significance to improving the quality standards of Tibetan medicine.
Collapse
Affiliation(s)
- Lingfang Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
- Hebei TCM Formula Granule Engineering and Technology Research Center, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
- Hebei TCM Quality Evaluation & Standardization Engineering Research Center, Shijiazhuang 050091, China
| | - Qiunan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenyi Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yongben Ma
- Hebei TCM Formula Granule Engineering and Technology Research Center, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
- Hebei TCM Quality Evaluation & Standardization Engineering Research Center, Shijiazhuang 050091, China
| | - Liying Niu
- Hebei TCM Formula Granule Engineering and Technology Research Center, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
- Hebei TCM Quality Evaluation & Standardization Engineering Research Center, Shijiazhuang 050091, China
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
27
|
Zhang H, Fu T, Zhang C. MicroRNA-1249 Targets G Protein Subunit Alpha 11 and Facilitates Gastric Cancer Cell Proliferation, Motility and Represses Cell Apoptosis. Onco Targets Ther 2021; 14:1249-1259. [PMID: 33658793 PMCID: PMC7917321 DOI: 10.2147/ott.s272599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
Aim The purpose of our study was to investigate the effects of miR-1249 in gastric cancer. Methods By analyzing the data obtained from TCGA database, the expression and prognosis of miR-1249 in gastric cancer patients were analyzed. Then, CCK8, colony forming and transwell assays were used to test cell proliferation and motility. The cell apoptosis was detected by flow cytometry. The Pearson correlation coefficient analyzed was applied to analyze the correlation between GNA11 and miR-1249. qRT-PCR and Western blotting assays were employed to detect the mRNA and protein levels. Results We discovered that miR-1249 was highly expressed and was associated with a worse prognosis in gastric cancer patients. Besides, miR-1249 was up-regulated in gastric cancer cell lines (AGS, MKN45 and SNU1). More interestingly, miR-1249 exerted facilitating impacts on gastric cancer cell proliferation and motility, whereas miR-1249 acted as a suppressing effect on gastric cancer apoptosis. G protein subunit alpha 11 (GNA11) was a target gene of miR-1249 and was negatively correlated with miR-1249. Furthermore, GNA11 was negatively regulated by miR-1249. Additionally, GNA11 was lowly expressed in gastric cancer tissues and cell lines, as well as low GNA11 expression, was related to poor overall survival results in gastric cancer patients. The promoting influences of miR-1249 over-expression on AGS cell proliferation and motility was rescued by GNA11 over-expression, which might be achieved by regulating PI3K/AKT/mTOR signalling pathway. Conclusion Above all, we concluded that miR-1249 was concerned with the progression of gastric cancer through regulating GNA11, suggesting that miR-1249 and GNA11 might serve as predictive biomarkers for gastric cancer therapy.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Department of Gastroenterology, Jinan Jigang Hospital, Jinan, Shandong, 250101, People's Republic of China
| | - Tingting Fu
- Department of Gastroenterology, Jinan Jigang Hospital, Jinan, Shandong, 250101, People's Republic of China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| |
Collapse
|
28
|
Diez V, Traikov S, Schmeisser K, Adhikari AKD, Kurzchalia TV. Glycolate combats massive oxidative stress by restoring redox potential in Caenorhabditis elegans. Commun Biol 2021; 4:151. [PMID: 33526793 PMCID: PMC7851149 DOI: 10.1038/s42003-021-01669-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Upon exposure to excessive reactive oxygen species (ROS), organismal survival depends on the strength of the endogenous antioxidant defense barriers that prevent mitochondrial and cellular deterioration. Previously, we showed that glycolic acid can restore the mitochondrial membrane potential of C. elegans treated with paraquat, an oxidant that produces superoxide and other ROS species, including hydrogen peroxide. Here, we demonstrate that glycolate fully suppresses the deleterious effects of peroxide on mitochondrial activity and growth in worms. This endogenous compound acts by entering serine/glycine metabolism. In this way, conversion of glycolate into glycine and serine ameliorates the drastically decreased NADPH/NADP+ and GSH/GSSG ratios induced by H2O2 treatment. Our results reveal the central role of serine/glycine metabolism as a major provider of reducing equivalents to maintain cellular antioxidant systems and the fundamental function of glycolate as a natural antioxidant that improves cell fitness and survival.
Collapse
Affiliation(s)
- Veronica Diez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
29
|
Kurniawan H, Kobayashi T, Brenner D. The emerging role of one-carbon metabolism in T cells. Curr Opin Biotechnol 2021; 68:193-201. [PMID: 33422815 DOI: 10.1016/j.copbio.2020.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
One-carbon metabolism (1CM) supports multiple biological functions, providing 1C units for nucleotide synthesis, epigenetic maintenance, and redox regulation. Although much has been deciphered about the relationship between disruption of 1CM and various diseases, our understanding of 1CM's involvement in the regulation of the immune system is only now evolving. In this review, we summarize key checkpoints of 1CM pathways that govern cellular activities. We also report on recent findings regarding the role of 1CM in T cells and discuss several promising avenues requiring future investigation.
Collapse
Affiliation(s)
- Henry Kurniawan
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Takumi Kobayashi
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Dirk Brenner
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
30
|
Kariagina A, Lunt SY, McCormick JJ. Genomic and metabolomic analysis of step-wise malignant transformation in human skin fibroblasts. Carcinogenesis 2020; 41:656-665. [PMID: 31276576 DOI: 10.1093/carcin/bgz126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022] Open
Abstract
Metabolic changes accompanying a step-wise malignant transformation was investigated using a syngeneic lineage of human fibroblasts. Cell immortalization was associated with minor alterations in metabolism. Consecutive loss of cell cycle inhibition in immortalized cells resulted in increased levels of oxidative phosphorylation (OXPHOS). Overexpression of the H-Ras oncoprotein produced cells forming sarcomas in athymic mice. These transformed cells exhibited increased glucose consumption, glycolysis and a further increase in OXPHOS. Because of the markedly increased OXPHOS in transformed cells, the impact of a transaminase inhibitor, aminooxyacetic acid (AOA), which decreases glutamine influx to the tricarboxylic acid (TCA) cycle, was tested. Indeed, AOA significantly decreased proliferation of malignantly transformed fibroblasts and fibrosarcoma-derived cells in vitro and in vivo. AOA also decreased proliferation of cells susceptible to malignant transformation. Metabolomic studies in normal and transformed cells indicated that, in addition to the anticipated effect on the TCA cycle, AOA decreased production of nucleotides adenosine triphosphate (ATP) and uridine monophosphate. Exogenous nucleotides partially rescued decreased proliferation of the malignant cells treated with AOA. Our data indicate that AOA blocks several metabolic pathways essential for growth of malignant cells. Therefore, OXPHOS may provide important therapeutic targets for treatment of sarcoma.
Collapse
Affiliation(s)
- Anastasia Kariagina
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - J Justin McCormick
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Bortezomib-Loaded Mesoporous Silica Nanoparticles Selectively Alter Metabolism and Induce Death in Multiple Myeloma Cells. Cancers (Basel) 2020; 12:cancers12092709. [PMID: 32967380 PMCID: PMC7565423 DOI: 10.3390/cancers12092709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is the second most common hematological malignancy and, despite the great advances made in its management, the development of novel therapeutic strategies are still needed in order to extend patients’ survival and to improve their quality of life. Here we show the striking ability of a mesoporous silica-based device to selectively deliver the antineoplastic drug bortezomib to Folate Receptor (FR) overexpressing MM cells, without causing injury nor perturbing the metabolic homeostasis of FR-negative healthy cells. Our data highlight the high efficacy and extraordinary safety of the tested nanodevice, paving the way for its future exploitation in the treatment of MM. Abstract A mesoporous silica-based nanodevice bearing the antineoplastic drug bortezomib (BTZ), whose release is triggered in acidic environment and grafted with folic acid (FOL) as a targeting function (FOL-MSN-BTZ) was tested on folate receptor overexpressing (FR+) multiple myeloma (MM) cells and on FR negative (FR−) normal cells. FOL-MSN-BTZ efficacy studies were conducted by means of growth experiments, TEM, TUNEL assay and Western Blotting analysis (WB). Metabolic investigations were performed to assess cells metabolic response to MSNs treatments. FOL-MSN-BTZ exclusively killed FR+ MM cells, leading to an apoptotic rate that was comparable to that induced by free BTZ, and the effect was accompanied by metabolic dysfunction and oxidative stress. Importantly, FOL-MSN-BTZ treated FR− normal cells did not show any significant sign of injury or metabolic perturbation, while free BTZ was still highly toxic. Notably, the vehicle alone (MSN-FOL) did not affect any biological process in both tested cell models. These data show the striking specificity of FOL-MSN-BTZ toward FR+ tumor cells and the outstanding safety of the MSN-FOL vehicle, paving the way for a future exploitation of FOL-MSN-BTZ in MM target therapy.
Collapse
|
32
|
Ye S, Xu Y, Wang L, Zhou K, He J, Lu J, Huang Q, Sun P, Wang T. Estrogen-Related Receptor α (ERRα) and G Protein-Coupled Estrogen Receptor (GPER) Synergistically Indicate Poor Prognosis in Patients with Triple-Negative Breast Cancer. Onco Targets Ther 2020; 13:8887-8899. [PMID: 33061416 PMCID: PMC7520096 DOI: 10.2147/ott.s265372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose The present study aims to demonstrate the correlation between estrogen-related receptor α (ERRα) and G protein-coupled estrogen receptor (GPER) expression and its predictive role in the prognosis of patients with triple-negative breast cancer (TNBC). Methods A retrospective review of 199 cases of TNBC was conducted to assess the GPER and ERRα expression, and its clinicopathologic and prognostic implications. Subsequently, the effects of ERRα and GPER on cell viability, migration, and invasion induced by estrogen were also investigated in vitro. Results Compared to TNBCs with ERRα low expression, ERRα-high patients exhibited higher nuclear grade, more frequent lymph nodal metastasis, a higher rate of local recurrence, and distant metastasis. Survival analyses revealed that ERRα-high patients had decreased overall survival (OS), local recurrence-free survival (LRFS), and distant disease-free survival (DDFS) than ERRα-low patients. The GPER expression level positively correlated with ERRα (R=0.167, P=0.18), and TNBCs with ERRα-low/GPER-low demonstrated the best survival outcomes among groups. In vitro, E2 significantly enhanced cell viability, migration, and invasion in BT-549 and MDA-MB-231 cell lines, which was associated with the increased expression of ERRα. Moreover, the overexpression of ERRα induced by estrogen and G1 (GPER agonist) was reversed by knocking down of GPER and blocking the MAPK signaling with PD98059 in both cell lines. Conclusion Our findings suggest that ERRα and GPER synergistically predict unfavorable prognosis in TNBCs. Mechanically, GPER mediates the upregulation expression of ERRα induced by estrogen and promotes cell viability, migration, and invasion.
Collapse
Affiliation(s)
- Shuang Ye
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Yuanyuan Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Ling Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Jiehua He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Jiabin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qitao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
33
|
Chan CH, Wu CY, Dubey NK, Wei HJ, Lu JH, Mao S, Liang J, Liang YH, Cheng HC, Deng WP. Modulating redox homeostasis and cellular reprogramming through inhibited methylenetetrahydrofolate dehydrogenase 2 enzymatic activities in lung cancer. Aging (Albany NY) 2020; 12:17930-17947. [PMID: 32759461 PMCID: PMC7585109 DOI: 10.18632/aging.103471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
Recent reports have indicated the role of highly expressed methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) enzyme in cancers, showing poor survival; however, detailed mechanistic insight of metabolic functions of MTHFD2 have not been well-defined. Therefore, we aimed to examine the metabolic functions and cellular reprograming potential of MTHFD2 in lung cancer (LCa). In this study, we initially confirmed the expression levels of MTHFD2 in LCa not only in tissue and OncomineTM database, but also at molecular levels. Further, we reprogrammed metabolic activities in these cells through MTHFD2 gene knockdown via lentiviral transduction, and assessed their viability, transformation and self-renewal ability. In vivo tumorigenicity was also evaluated in NOD/SCID mice. Results showed that MTHFD2 was highly expressed in stage-dependent LCa tissues as well in cell lines, A549, H1299 and H441. Cellular viability, transformation and self-renewal abilities were significantly inhibited in MTHFD2-knockdown LCa cell lines. These cells also showed suppressed tumor-initiating ability and reduced tumor size compared to vector controls. Under low oxygen tension, MTHFD2-knockdown groups showed no significant increase in sphere formation, and hence the stemness. Conclusively, the suppressed levels of MTHFD2 is essential for cellular metabolic reprogramming leading to inhibited LCa growth and tumor aggressiveness.
Collapse
Affiliation(s)
- Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Yu Wu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan,School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Samantha Mao
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Joy Liang
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Liang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan,Department of Dentistry, Taipei Medical University Hospital, Taipei 110131, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan,Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
| |
Collapse
|
34
|
Alfarouk KO, Ahmed SBM, Elliott RL, Benoit A, Alqahtani SS, Ibrahim ME, Bashir AHH, Alhoufie STS, Elhassan GO, Wales CC, Schwartz LH, Ali HS, Ahmed A, Forde PF, Devesa J, Cardone RA, Fais S, Harguindey S, Reshkin SJ. The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH. Metabolites 2020; 10:E285. [PMID: 32664469 PMCID: PMC7407102 DOI: 10.3390/metabo10070285] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the "Warburg Effect". However, cytoplasmic glucose utilization can also occur in cancer through the PPP. This pathway contributes to cancer cells by operating in many different ways: (i) as a defense mechanism via the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to prevent apoptosis, (ii) as a provision for the maintenance of energy by intermediate glycolysis, (iii) by increasing genomic material to the cellular pool of nucleic acid bases, (iv) by promoting survival through increasing glycolysis, and so increasing acid production, and (v) by inducing cellular proliferation by the synthesis of nucleic acid, fatty acid, and amino acid. Each step of the PPP can be upregulated in some types of cancer but not in others. An interesting aspect of this metabolic pathway is the shared regulation of the glycolytic and PPP pathways by intracellular pH (pHi). Indeed, as with glycolysis, the optimum activity of the enzymes driving the PPP occurs at an alkaline pHi, which is compatible with the cytoplasmic pH of cancer cells. Here, we outline each step of the PPP and discuss its possible correlation with cancer.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
- American Biosciences Inc., New York, NY 10913, USA;
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
| | | | - Robert L. Elliott
- The Elliott-Elliott-Baucom Breast Cancer Research and Treatment Center, Baton Rouge, LA 70806, USA;
- The Sallie A. Burdine Breast Foundation, Baton Rouge, LA 70806, USA;
| | - Amanda Benoit
- The Sallie A. Burdine Breast Foundation, Baton Rouge, LA 70806, USA;
| | - Saad S. Alqahtani
- Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Muntaser E. Ibrahim
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Adil H. H. Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Sari T. S. Alhoufie
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah 42353, Saudi Arabia;
| | - Gamal O. Elhassan
- Unaizah College of Pharmacy, Qassim University, Unaizah 56264, Saudi Arabia;
| | | | | | - Heyam S. Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
| | - Ahmed Ahmed
- Department of Oesphogastric and General Surgery, University Hospitals of Leicester, Leicester LE5 4PW, UK;
| | - Patrick F. Forde
- CancerResearch@UCC, Western Gateway Building, University College Cork, Cork T12 XF62, Ireland;
| | - Jesus Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (R.A.C.); (S.J.R.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Salvador Harguindey
- Department of Oncology, Institute for Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (R.A.C.); (S.J.R.)
| |
Collapse
|
35
|
Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M. PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 2020; 10:360. [PMID: 32296634 PMCID: PMC7136497 DOI: 10.3389/fonc.2020.00360] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) are central regulators of glycolysis, cancer metabolism, and cancer cell proliferation. At the molecular level, PI3K signaling involves the generation of the second messenger lipids phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. There is increasing evidence that PI(3,4)P2 is not only the waste product for the removal of PI(3,4,5)P3 but can also act as a signaling molecule. The selective cellular functions for PI(3,4)P2 independent of PI(3,4,5)P3 have been recently described, including clathrin-mediated endocytosis and mTOR regulation. However, the specific spatiotemporal dynamics and signaling role of PI3K minor lipid messenger PI(3,4)P2 are not well-understood. This review aims at highlighting the biological functions of this lipid downstream of phosphoinositide kinases and phosphatases and its implication in cancer metabolism.
Collapse
Affiliation(s)
- Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|
36
|
Grasso R, Dell'Albani P, Carbone C, Spatuzza M, Bonfanti R, Sposito G, Puglisi G, Musumeci F, Scordino A, Campisi A. Synergic pro-apoptotic effects of Ferulic Acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and Delayed Luminescence studies. Sci Rep 2020; 10:4680. [PMID: 32170186 PMCID: PMC7070080 DOI: 10.1038/s41598-020-61670-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Herein, we assessed the effect of Ferulic Acid (FA), a natural antioxidant with anti-cancer effect, on the human glioblastoma cells through molecular and Delayed Luminescence (DL) studies. DL, a phenomenon of ultra-week emission of optical photons, was used to monitor mitochondrial assessment. The effect of FA loaded in nanostructured lipid carriers (NLCs) was also assessed. To validate NLCs as a drug delivery system for glioblastoma treatment, particular attention was focused on their effect. We found that free FA induced a significant decrease in c-Myc and Bcl-2 expression levels accompanied by the apoptotic pathway activation. Blank NLCs, even if they did not induce cytotoxicity and caspase-3 cleavage, decreased Bcl-2, ERK1/2, c-Myc expression levels activating PARP-1 cleavage. The changes in DL intensity and kinetics highlighted a possible effect of nanoparticle matrix on mitochondria, through the involvement of the NADH pool and ROS production that, in turn, activates ERK1/2 pathways. All the effects on protein expression levels and on the activation of apoptotic pathway appeared more evident when the cells were exposed to FA loaded in NLCs. We demonstrated that the observed effects are due to a synergic pro-apoptotic influence exerted by FA, whose bio-availability increases in the glioblastoma cells, and NLCs formulation.
Collapse
Affiliation(s)
- Rosaria Grasso
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy. .,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy.
| | - Paola Dell'Albani
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, Laboratory of Drug Delivery Technology, University of Catania, 95123, Catania, Italy
| | - Michela Spatuzza
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), 94018, Troina, Italy
| | - Roberta Bonfanti
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126, Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giovanni Puglisi
- Department of Drug Sciences, Laboratory of Drug Delivery Technology, University of Catania, 95123, Catania, Italy
| | - Francesco Musumeci
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
37
|
Kou L, Jiang X, Huang H, Lin X, Zhang Y, Yao Q, Chen R. The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines. Asian J Pharm Sci 2020; 15:145-157. [PMID: 32373196 PMCID: PMC7193452 DOI: 10.1016/j.ajps.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cell usually exhibits high levels of reactive oxygen species and adaptive antioxidant system due to the metabolic, genetic, and microenvironment-associated alterations. The altered redox homeostasis can promote tumor progression, development, and treatment resistance. Several membrane transporters are involved in the resetting redox homeostasis and play important roles in tumor progression. Therefore, targeting the involved transporters to disrupt the altered redox balance emerges as a viable strategy for cancer therapy. In addition, nanomedicines have drawn much attention in the past decades. Using nanomedicines to target or reset the redox homeostasis alone or combined with other therapies has brought convincing data in cancer treatment. In this review, we will introduce the altered redox balance in cancer metabolism and involved transporters, and highlight the recent advancements of redox-modulating nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youting Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325035, China
- Corresponding author. Wenzhou Medical University, University Town, Wenzhou 325035, China. Tel: +86 18958969225
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Corresponding author. Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China. Tel: +86 13806890233
| |
Collapse
|
38
|
Ippolito L, Giannoni E, Chiarugi P, Parri M. Mitochondrial Redox Hubs as Promising Targets for Anticancer Therapy. Front Oncol 2020; 10:256. [PMID: 32185131 PMCID: PMC7058804 DOI: 10.3389/fonc.2020.00256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondria play multifaceted roles in malignant tumor progression. Beyond their bioenergetic role, mitochondria are essential for providing malignant cells a higher plasticity to face the harsh environmental conditions. Cell-autonomous metabolic deregulation of cancer cells, or metabolic adaptation to microenvironmental cues (lack of nutrients, stromal supply, hypoxia, etc.), represent the triggering event of mitochondria overexploitation to orchestrate nutrient sensing and upload, signaling, and redox circuits. As readout of their higher function, mitochondria produce high amounts of reactive oxygen species (ROS) that are functional for multiple signaling networks underlying tumor proliferation, survival, and metastatic process. To compensate for the higher rate of mitochondrial ROS production, cancer cells have evolved adaptive mechanisms to increase their antioxidant systems and to address ROS activating pathways useful for the tumor cell adaptation to environmental changes. As these properties are critical for cancer progression, mitochondrial ROS have recently become an attractive target for anti-cancer therapies. We discuss how understanding of mitochondrial function in the tumor-specific generation of ROS will impact on the development of novel redox-based targeted therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Mitophagy contributes to alpha-tocopheryl succinate toxicity in GSNOR-deficient hepatocellular carcinoma. Biochem Pharmacol 2020; 176:113885. [PMID: 32112881 DOI: 10.1016/j.bcp.2020.113885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
The downregulation of the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR, EC:1.1.1.284), is a feature of hepatocellular carcinoma (HCC). This condition causes mitochondrial rearrangements that sensitize these tumors to mitochondrial toxins, in particular to the mitochondrial complex II inhibitor alpha-tocopheryl succinate (αTOS). It has also been reported the GSNOR depletion impairs the selective degradation of mitochondria through mitophagy; however, if this contributes to GSNOR-deficient HCC cell sensitivity to αTOS and can be applied to anticancer therapies, is still not known. Here, we provide evidence that GSNOR-deficient HCC cells show defective mitophagy which contributes to αTOS toxicity. Mitophagy inhibition by Parkin (EC: 2.3.2.31) depletion enhances αTOS anticancer effects, thus suggesting that this drug could be effective in treating mitophagy-defective tumors.
Collapse
|
40
|
Armentano B, Curcio R, Brindisi M, Mancuso R, Rago V, Ziccarelli I, Frattaruolo L, Fiorillo M, Dolce V, Gabriele B, Cappello AR. 5-(Carbamoylmethylene)-oxazolidin-2-ones as a Promising Class of Heterocycles Inducing Apoptosis Triggered by Increased ROS Levels and Mitochondrial Dysfunction in Breast and Cervical Cancer. Biomedicines 2020; 8:biomedicines8020035. [PMID: 32085547 PMCID: PMC7168333 DOI: 10.3390/biomedicines8020035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use.
Collapse
Affiliation(s)
- Biagio Armentano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Ida Ziccarelli
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| |
Collapse
|
41
|
Exercise shapes redox signaling in cancer. Redox Biol 2020; 35:101439. [PMID: 31974046 PMCID: PMC7284915 DOI: 10.1016/j.redox.2020.101439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/05/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
In this paper of the special issue dedicated for the Olympics 2020, we put the light on an exciting facet of exercise-oncology, which may still be unknown to some audience. Accumulating convincing evidences show that exercise reduces cancer progression and recurrence mainly in colon and breast cancer patients. Interestingly, the positive effects of exercise on cancer outcomes were mainly observed when patients practiced vigorous exercise of 6 METs or more. At the molecular level, experimental studies highlighted that regular vigorous exercise could reduce tumor growth by driving changes in immune system, metabolism, hormones, systemic inflammation, angiogenesis and redox status. In the present review, we describe the main redox-sensitive mechanisms mediated by exercise. These redox mechanisms are of particular therapeutic interest as they may explain the emerging preclinical findings proving that the association of vigorous exercise with chemotherapy or radiotherapy improves the anti-cancer responses of both interventions. Clinical and preclinical studies converge to support the practice of exercise as an adjuvant therapy that improves cancer outcomes. The understanding of the underpinning molecular mechanisms of exercise in cancer can open new avenues to improve cancer care in patients.
Collapse
|
42
|
Abd El Maksoud AI, Taher RF, Gaara AH, Abdelrazik E, Keshk OS, Elawdan KA, Morsy SE, Salah A, Khalil H. Selective Regulation of B-Raf Dependent K-Ras/Mitogen-Activated Protein by Natural Occurring Multi-kinase Inhibitors in Cancer Cells. Front Oncol 2019; 9:1220. [PMID: 31781509 PMCID: PMC6861212 DOI: 10.3389/fonc.2019.01220] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: Cancer is one of the most difficult challenges faced by humanity due to its many associated issues, such as inability to prevent diseases, treatment safety, and high mortality rate. In cancer, a variety of cellular signaling is activated to ensure malignancy transformation, angiogenesis and metastasis. The most efficient signaling pathway in cancer is mitogen-activated protein kinase (MAPK), which controls malignancy and regulates apoptosis. Methods: Four different flavonoid glycosides have been isolated from Pulicaria jaubertii using the phytochemical characterization of hydro-methanol extract. The purified glycosides (PJs) were investigated for their potential repression of cancer development using human lung epithelial cells and hepatocellular carcinoma (HCC) and compared with Sorafenib (SOR), the standard systemic drug for HCC. In PJ-treated cells, the expression profile of K-Ras, B-Raf, and P53 were detected using qRT-PCR, flow cytometry, confocal microscopy and western blot. Steady-state mRNA and levels of transforming growth factor-beta (TGF-β) and interleukin 8 (IL-8) were monitored in the fluids media at different time points following treatment. Results: Our results showed that the qurictine glycosides (PJ-1 and PJ-9) selectively inhibited the mutant K-Ras/B-Raf proteins expression and interaction in both cancer cells; while SOR showed obvious depletion of total Raf-1 protein in cancer cells and normal cells as well. Interestingly, the combination of PJ-1 or PJ-9 with SOR exhibited restoring cell viability of normal cells via controlling Raf-1 and P53 genes expression. Further, these identified PJ agents significantly adjusted the levels of TGF-β and IL-8 in cancer treated cells accompanied by restoring the activation of P53 expression. These findings were confirmed by docking analysis of PJs ligand and the crystal structure of K-Ras, B-Raf, and ERK transcription factor. Conclusion: The current data provide novel and natural multi-kinase inhibitors with competitive regulation of the mutant proteins; K-Ras and B-Raf and sustained MAPK signaling without any detectable toxic effect in normal cells.
Collapse
Affiliation(s)
- Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Rehab F. Taher
- Natural Compounds Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed H. Gaara
- Natural Compounds Chemistry Department, National Research Centre, Giza, Egypt
| | - Eman Abdelrazik
- The Center for Informatics Science, Nile University, 6th of October City, Egypt
| | - Omar S. Keshk
- College of Biotechnology, Misr University for Science and Technology, 6th of October City, Egypt
| | - Khaled A. Elawdan
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Salwa E. Morsy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
43
|
Margaria JP, Campa CC, De Santis MC, Hirsch E, Franco I. The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium. Cell Signal 2019; 66:109468. [PMID: 31715259 DOI: 10.1016/j.cellsig.2019.109468] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Carlo Cosimo Campa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
44
|
Pes GM, Errigo A, Soro S, Longo NP, Dore MP. Glucose-6-phosphate dehydrogenase deficiency reduces susceptibility to cancer of endodermal origin. Acta Oncol 2019; 58:1205-1211. [PMID: 31109224 DOI: 10.1080/0284186x.2019.1616815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzyme defect worldwide. There is a growing scientific evidence for a protective role of G6PD deficiency against carcinogenesis. In this retrospective analysis, we tested the hypothesis that G6PD deficiency may reduce the risk of developing cancer in a tissue-specific manner. Material and methods: The study was conducted using data from 11,708 subjects undergoing gastrointestinal endoscopic procedures between 2002 and 2018 and tested for G6PD status in a teaching hospital of Northern Sardinia, Italy. Results: A 40% reduction of risk for cancer of endodermal origin was observed among G6PD-deficient patients compared with subjects with normal enzyme activity (relative risk (RR) 0.61, 95% confidence interval (CI) 0.47-0.80) in both genders, confirmed by multivariable generalized linear regression after adjusting for age, sex, smoking habits, body mass index, diabetes and socio-economic status. The 'protective' effect of G6PD deficiency was larger for gastric cancer (RR 0.41, 95% CI 0.18-0.99), hepatocellular carcinoma (RR 0.48, 95% CI 0.26-0.92) and colorectal cancer (RR 0.72, 95% CI 0.53-0.98), while a non-significant risk was observed for breast, prostate, lung, hematopoietic and metastases (primary site unknown). Conclusions: Our results suggest a reduced susceptibility to develop cancers, mostly of endodermal origin (stomach, colon and liver), but not of ectodermal/mesodermal origin, in carriers of G6PD deficiency. The effects of G6PD deficiency on carcinogenesis need further studies to better understand how cancer cells originating from different germ layers use pentose phosphate pathway to proliferate.
Collapse
Affiliation(s)
- Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Errigo
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Sara Soro
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Nunzio Pio Longo
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Maria Pina Dore
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
MYC Expression and Metabolic Redox Changes in Cancer Cells: A Synergy Able to Induce Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7346492. [PMID: 31341534 PMCID: PMC6614970 DOI: 10.1155/2019/7346492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
Chemoresistance is due to multiple factors including the induction of a metabolic adaptation of tumor cells. In fact, in these cells, stress conditions induced by therapies stimulate a metabolic reprogramming which involves the strengthening of various pathways such as glycolysis, glutaminolysis and the pentose phosphate pathway. This metabolic reprogramming is the result of a complex network of mechanisms that, through the activation of oncogenes (i.e., MYC, HIF1, and PI3K) or the downregulation of tumor suppressors (i.e., TP53), induces an increased expression of glucose and/or glutamine transporters and of glycolytic enzymes. Therefore, in order to overcome chemoresistance, it is necessary to develop combined therapies which are able to selectively and simultaneously act on the multiple molecular targets responsible for this adaptation. This review is focused on highlighting the role of MYC in modulating the epigenetic redox changes which are crucial in the acquisition of therapy resistance.
Collapse
|
46
|
Park AK, Lee JY, Cheong H, Ramaswamy V, Park SH, Kool M, Phi JH, Choi SA, Cavalli F, Taylor MD, Kim SK. Subgroup-specific prognostic signaling and metabolic pathways in pediatric medulloblastoma. BMC Cancer 2019; 19:571. [PMID: 31185958 PMCID: PMC6560914 DOI: 10.1186/s12885-019-5742-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Using a pathway-focused approach, we aimed to provide a subgroup-specific basis for finding novel therapeutic strategies and further refinement of the risk stratification in pediatric medulloblastoma. Method Based on genome-wide Cox regression and Gene Set Enrichment Analysis, we investigated prognosis-related signaling pathways and core genes in pediatric medulloblastoma subgroups using 530 patient data from Medulloblastoma Advanced Genomic International Consortium (MAGIC) project. We further examined the relationship between expression of the prognostic core genes and frequent chromosome aberrations using broad range copy number change data. Results In SHH subgroup, relatively high expression of the core genes involved in p53, PLK1, FOXM1, and Aurora B signaling pathways are associated with poor prognosis, and their average expression synergistically increases with co-occurrence of losses of 17p, 14q, or 10q, or gain of 17q. In Group 3, in addition to high MYC expression, relatively elevated expression of PDGFRA, IGF1R, and FGF2 and their downstream genes in PI3K/AKT and MAPK/ERK pathways are related to poor survival outcome, and their average expression is increased with the presence of isochromosome 17q [i(17q)] and synergistically down-regulated with simultaneous losses of 16p, 8q, or 4q. In Group 4, up-regulation of the genes encoding various immune receptors and those involved in NOTCH, NF-κB, PI3K/AKT, or RHOA signaling pathways are associated with worse prognosis. Additionally, the expressions of Notch genes correlate with those of the prognostic immune receptors. Besides the Group 4 patients with previously known prognostic aberration, loss of chromosome 11, those with loss of 8q but without i(17q) show excellent survival outcomes and low average expression of the prognostic core genes whereas those harboring 10q loss, 1q gain, or 12q gain accompanied by i(17q) show bad outcomes. Finally, several metabolic pathways known to be reprogrammed in cancer cells are detected as prognostic pathways including glutamate metabolism in SHH subgroup, pentose phosphate pathway and TCA cycle in Group 3, and folate-mediated one carbon-metabolism in Group 4. Conclusions The results underscore several subgroup-specific pathways for potential therapeutic interventions: SHH-GLI-FOXM1 pathway in SHH subgroup, receptor tyrosine kinases and their downstream pathways in Group 3, and immune and inflammatory pathways in Group 4. Electronic supplementary material The online version of this article (10.1186/s12885-019-5742-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ae Kyung Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy, Neural Development and Anomaly Lab, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Heesun Cheong
- Division of Cancer Biology, National Cancer Center, Goyang, Korea
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Marcel Kool
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Florence Cavalli
- Programme in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Michael D Taylor
- Programme in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Santolini J, Wootton SA, Jackson AA, Feelisch M. The Redox architecture of physiological function. CURRENT OPINION IN PHYSIOLOGY 2019; 9:34-47. [PMID: 31417975 PMCID: PMC6686734 DOI: 10.1016/j.cophys.2019.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability of organisms to accommodate variations in metabolic need and environmental conditions is essential for their survival. However, an explanation is lacking as to how the necessary accommodations in response to these challenges are organized and coordinated from (sub)cellular to higher-level physiological functions, especially in mammals. We propose that the chemistry that enables coordination and synchronization of these processes dates to the origins of Life. We offer a conceptual framework based upon the nature of electron exchange (Redox) processes that co-evolved with biological complexification, giving rise to a multi-layered system in which intra/intercellular and inter-organ exchange processes essential to sensing and adaptation stay fully synchronized. Our analysis explains why Redox is both the lingua franca and the mechanism that enable integration by connecting the various elements of regulatory processes. We here define these interactions across levels of organization as the 'Redox Interactome'. This framework provides novel insight into the chemical and biological basis of Redox signalling and may explain the recent convergence of metabolism, bioenergetics, and inflammation as well as the relationship between Redox stress and human disease.
Collapse
Affiliation(s)
- Jerome Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Universite Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Stephen A Wootton
- Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
48
|
Hughey CC, James FD, Wang Z, Goelzer M, Wasserman DH. Dysregulated transmethylation leading to hepatocellular carcinoma compromises redox homeostasis and glucose formation. Mol Metab 2019; 23:1-13. [PMID: 30850319 PMCID: PMC6479583 DOI: 10.1016/j.molmet.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Objective The loss of liver glycine N-methyltransferase (GNMT) promotes liver steatosis and the transition to hepatocellular carcinoma (HCC). Previous work showed endogenous glucose production is reduced in GNMT-null mice with gluconeogenic precursors being used in alternative biosynthetic pathways that utilize methyl donors and are linked to tumorigenesis. This metabolic programming occurs before the appearance of HCC in GNMT-null mice. The metabolic physiology that sustains liver tumor formation in GNMT-null mice is unknown. The studies presented here tested the hypothesis that nutrient flux pivots from glucose production to pathways that incorporate and metabolize methyl groups in GNMT-null mice with HCC. Methods 2H/13C metabolic flux analysis was performed in conscious, unrestrained mice lacking GNMT to quantify glucose formation and associated nutrient fluxes. Molecular analyses of livers from mice lacking GNMT including metabolomic, immunoblotting, and immunochemistry were completed to fully interpret the nutrient fluxes. Results GNMT knockout (KO) mice showed lower blood glucose that was accompanied by a reduction in liver glycogenolysis and gluconeogenesis. NAD+ was lower and the NAD(P)H-to-NAD(P)+ ratio was higher in livers of KO mice. Indices of NAD+ synthesis and catabolism, pentose phosphate pathway flux, and glutathione synthesis were dysregulated in KO mice. Conclusion Glucose precursor flux away from glucose formation towards pathways that regulate redox status increase in the liver. Moreover, synthesis and scavenging of NAD+ are both impaired resulting in reduced concentrations. This metabolic program blunts an increase in methyl donor availability, however, biosynthetic pathways underlying HCC are activated. Loss of glycine N-methyltransferase results in hepatocellular carcinoma. Metabolic reprogramming ensues to attenuate the increased S-adenosylmethionine. The metabolic changes include dysregulated liver NAD+ homeostasis and redox state. Liver glucose formation is reduced and precursors directed to biosynthetic pathways.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Freyja D James
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| | - Zhizhang Wang
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| | - Mickael Goelzer
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
49
|
Zhao B, Hu T. JTC-801 inhibits the proliferation and metastasis of the Hep G2 hepatoblastoma cell line by regulating the phosphatidylinositol 3-kinase/protein kinase B signalling pathway. Oncol Lett 2018; 17:1939-1945. [PMID: 30675258 DOI: 10.3892/ol.2018.9780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
The increased worldwide mortality rate due to liver cancer may be attributed to the aggressive nature of the disease. Signal transduction through G-protein-coupled receptors (GPCRs) can affect a number of aspects of cancer biology, including invasion, migration and vascular remodelling. JTC-801, a novel GPCR antagonist, has demonstrated promising anticancer effects in adenocarcinoma and osteosarcoma cells. In the present study, the effect of JTC-801 on the proliferation and migration of hepatoblastoma Hep G2 cells was investigated. The Cell Counting Kit-8 assay revealed that JTC-801 markedly suppressed the growth of the Hep G2 cells. Additionally, JTC-801 significantly inhibited cell invasion and migration in a Transwell assay. Furthermore, the expression of anti-apoptotic protein B-cell lymphoma 2 decreased and the expression of the pro-apoptotic proteins active caspase-3 and apoptosis regulator BAX increased in the Hep G2 cells following JTC-801 treatment. Additionally, JTC-801 suppressed the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway in the Hep G2 cells. Therefore, the present study revealed that JTC-801 can induce the apoptosis of Hep G2 cells by regulating the PI3K/AKT signalling pathway, which suggests that JTC-801 may be a potential novel drug target for clinical liver cancer treatment.
Collapse
Affiliation(s)
- Bufei Zhao
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Ting Hu
- Department of Oncology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
50
|
Derle A, De Santis MC, Gozzelino L, Ratto E, Martini M. The role of metabolic adaptation to nutrient stress in pancreatic cancer. Cell Stress 2018; 2:332-339. [PMID: 31225458 PMCID: PMC6551672 DOI: 10.15698/cst2018.12.166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related mortality, with a dismal prognosis that has changed little over the past few decades. Despite extensive efforts in understanding the oncogenetics of this pathology, pancreatic cancer remained largely elusive. One of the main characteristics of pancreatic cancer is the reduced level of oxygen and nutrient perfusion, caused by the new matrix formation, through the activation of stromal cells (desmoplasia). This stromal reaction leads to metabolic adaptations in surviving tumor cells in order to cope with these challenging conditions. The oncogenic signaling driven by KRAS mutation is necessary to fuel pancreatic tumors by activating key metabolic processes, including enhanced glycolysis and glutamine consumption. Here we review our current understanding of the pancreatic cancer metabolism as well as discuss recent work pointing to the importance of various metabolic strategies as well as autophagy and macropinocytosis as critical nutrient supply pathways. The elucidation of these metabolic networks may highlight new opportunities to further develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Abhishek Derle
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy.,Contributed equally to this manuscript
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy.,Contributed equally to this manuscript
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy.,Contributed equally to this manuscript
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy.,Contributed equally to this manuscript
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|