1
|
Feghaly C, Challita R, Hadir HB, Mobayed T, Bitar TA, Harbi M, Ghorayeb H, El-Hassan R, Bodgi L. Bladder Cancer Treatments in the Age of Personalized Medicine: A Comprehensive Review of Potential Radiosensitivity Biomarkers. Biomark Insights 2024; 19:11772719241297168. [PMID: 39512649 PMCID: PMC11542137 DOI: 10.1177/11772719241297168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Bladder cancer is one of the most frequently diagnosed cancers in men. While cystectomy remains the primary treatment, advances in radiotherapy and chemotherapy have highlighted the value of bladder-preserving strategies, which can also enhance patients' quality of life. Despise these advances, around 20% of patients may still require salvage cystectomy due to tumor radioresistance. This underscores the need to develop radiosensitivity predictive assays. Radiotherapy acts by inducing DNA damage, primarily through DNA double-strand breaks, which can significantly affect treatment outcomes if left unrepaired. In addition to activating DNA repair pathways, the response to radiation also involves the tumor microenvironment, cell death pathways, immune responses and different types of cell death and proliferation receptors. In recent years, personalized medicine, which tailors treatments to individual patients, has gained increasing attention in cancer care. The development of chemo- and radiosensitivity predictive assays has become a key focus of cancer research. Despite the potential impact of such assays on bladder cancer treatment, there is still no reliable test that can help clinicians and informs patients in choosing the best treatment. This review aims to highlight studies that attempted to characterize bladder cancer radiosensitivity and to discuss the potential biomarkers that could be used to develop bladder cancer radiosensitivity predictive assays.
Collapse
Affiliation(s)
- Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hanine Bou Hadir
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tala Mobayed
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Al Bitar
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad Harbi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hala Ghorayeb
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon-Bérard, Inserm, Lyon, France
| |
Collapse
|
2
|
Bodgi L, Bou-Gharios J, Azzi J, Challita R, Feghaly C, Baalbaki K, Kharroubi H, Chhade F, Geara F, Abou-Kheir W, Ayoub Z. Effect of bisphosphonates and statins on the in vitro radiosensitivity of breast cancer cell lines. Pharmacol Rep 2024; 76:171-184. [PMID: 38151641 DOI: 10.1007/s43440-023-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Early-stage breast cancer is usually treated with breast-conserving surgery followed by adjuvant radiation therapy. Acute skin toxicity is a common radiation-induced side effect experienced by many patients. Recently, a combination of bisphosphonates (zoledronic acid) and statins (pravastatin), or ZOPRA, was shown to radio-protect normal tissues by enhancing DNA double-strand breaks (DSB) repair mechanism. However, there are no studies assessing the effect of ZOPRA on cancerous cells. The purpose of this study is to characterize the in vitro effect of the zoledronic acid (ZO), pravastatin (PRA), and ZOPRA treatment on the molecular and cellular radiosensitivity of breast cancer cell lines. MATERIALS Two breast cancer cell lines, MDA MB 231 and MCF-7, were tested. Cells were treated with different concentrations of pravastatin (PRA), zoledronate (ZO), as well as their ZOPRA combination, before irradiation. Anti-γH2AX and anti-pATM immunofluorescence were performed to study DNA DSB repair kinetics. MTT assay was performed to assess cell proliferation and viability, and flow cytometry was performed to analyze the effect of the drugs on the cell cycle distribution. The clonogenic assay was used to assess cell survival. RESULTS ZO, PRA, and ZOPRA treatments were shown to increase the residual number of γH2AX foci for both cell lines. ZOPRA treatment was also shown to reduce the activity of the ATM kinase in MCF-7. ZOPRA induced a significant decrease in cell survival for both cell lines. CONCLUSIONS Our findings show that pretreatment with ZOPRA can decrease the radioresistance of breast cancer cells at the molecular and cellular levels. The fact that ZOPRA was previously shown to radioprotect normal tissues, makes it a good candidate to become a therapeutic window-widening drug.
Collapse
Affiliation(s)
- Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Khanom Baalbaki
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Kharroubi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Chhade
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fady Geara
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Zeina Ayoub
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
3
|
Gu Y, Lu Y, Xiong Y, Zhan X, Liu T, Tang M, Xie A, Liu X, Fu B. Advances in the bladder cancer research using 3D culture models. Bladder (San Franc) 2023; 10:e21200005. [PMID: 37936584 PMCID: PMC10627085 DOI: 10.14440/bladder.2023.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 11/09/2023] Open
Abstract
Bladder cancer represents the most common malignancy of the urinary system, posing a significant threat to patients' life. Animal models and two-dimensional (2D) cell cultures, among other traditional models, have been used for years to study various aspects of bladder cancer. However, these methods are subject to various limitations when mimicking the tumor microenvironment in vivo, thus hindering the further improvement of bladder cancer treatments. Recently, three-dimensional (3D) culture models have attracted extensive attention since they overcome the shortcomings of their traditional counterparts. Most importantly, 3D culture models more accurately reproduce the tumor microenvironment in the human body because they can recapitulate the cell-cell and cell-extracellular matrix interactions. 3D culture models can thereby help us gain deeper insight into the bladder cancer. The 3D culture models of tumor cells can extend the culture duration and allow for co-culturing with different cell types. Study of patient-specific bladder cancer mutations and subtypes is made possible by the ability to preserve cells isolated from particular patients in 3D culture models. It will be feasible to develop customized treatments that target relevant signaling pathways or biomarkers. This article reviews the development, application, advantages, and limitations of traditional modeling systems and 3D culture models used in the study of bladder cancer and discusses the potential application of 3D culture models.
Collapse
Affiliation(s)
- Yexin Gu
- Cyberiad Intelligent Technology, Shanghai 201112, China
| | - Ye Lu
- Cyberiad Intelligent Technology, Shanghai 201112, China
| | - Yunqiang Xiong
- Department of Urology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang City, Jiangxi Province, China
| | - Xiangpeng Zhan
- Department of Urology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang City, Jiangxi Province, China
| | - Taobin Liu
- Department of Urology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang City, Jiangxi Province, China
| | - Min Tang
- Cyberiad Intelligent Technology, Shanghai 201112, China
| | - An Xie
- Department of Urology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang City, Jiangxi Province, China
| | - Xiaoqiang Liu
- Department of Urology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang City, Jiangxi Province, China
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang City, Jiangxi Province, China
| |
Collapse
|
4
|
Radiation Treatment Timing and Dose Delivery: Effects on Bladder Cancer Cells in 3D in Vitro Culture. RADIATION 2022. [DOI: 10.3390/radiation2040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
While radical cystectomy remains the primary treatment of choice for bladder cancer, increased evidence supports the use of bladder-preservation strategies based on adjuvant radiotherapy. This highlights the need for a better understanding of bladder cancer radiosensitivity to different types of treatment deliveries. The purpose of this study is to analyze the effect of treatment time, dose and fractionation on the number and sizes of grown three-dimensional (3D) bladder cancer spheres, and to assess the capacity of the linear-quadratic model in describing the response of cells cultured in 3D. 3D MatrigelTM-based cultures were employed to enrich for cancer stem cells (CSCs) from three human bladder cancer cell lines, RT4, T24 and UM-UC-3. Three single dose radiation treatments were performed at different time points after plating, and sphere number and sizes were assessed. Anti-CD44 immunofluorescence, clonogenic assay and anti-γH2AX staining were also performed to analyze the cell lines’ radiosensitivity. The radiosensitivity of spheres was dependent on the treatment timing after plating. Current linear quadratic dose fractionation models were shown to over-estimate radiosensitivity in 3D models. Our results showed the importance of treatment timing on the radio-response of bladder cancer spheres. We also demonstrated that bladder cancer spheres are more resistant to dose-fractionation than the estimation from the theoretical linear-quadratic model.
Collapse
|
5
|
Jubelin C, Muñoz-Garcia J, Griscom L, Cochonneau D, Ollivier E, Heymann MF, Vallette FM, Oliver L, Heymann D. Three-dimensional in vitro culture models in oncology research. Cell Biosci 2022; 12:155. [PMID: 36089610 PMCID: PMC9465969 DOI: 10.1186/s13578-022-00887-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer is a multifactorial disease that is responsible for 10 million deaths per year. The intra- and inter-heterogeneity of malignant tumors make it difficult to develop single targeted approaches. Similarly, their diversity requires various models to investigate the mechanisms involved in cancer initiation, progression, drug resistance and recurrence. Of the in vitro cell-based models, monolayer adherent (also known as 2D culture) cell cultures have been used for the longest time. However, it appears that they are often less appropriate than the three-dimensional (3D) cell culture approach for mimicking the biological behavior of tumor cells, in particular the mechanisms leading to therapeutic escape and drug resistance. Multicellular tumor spheroids are widely used to study cancers in 3D, and can be generated by a multiplicity of techniques, such as liquid-based and scaffold-based 3D cultures, microfluidics and bioprinting. Organoids are more complex 3D models than multicellular tumor spheroids because they are generated from stem cells isolated from patients and are considered as powerful tools to reproduce the disease development in vitro. The present review provides an overview of the various 3D culture models that have been set up to study cancer development and drug response. The advantages of 3D models compared to 2D cell cultures, the limitations, and the fields of application of these models and their techniques of production are also discussed.
Collapse
|
6
|
Xu J, Yang R, Li J, Wang L, Cohen M, Simeone DM, Costa M, Wu XR. DNMT3A/ miR-129-2-5p/Rac1 Is an Effector Pathway for SNHG1 to Drive Stem-Cell-like and Invasive Behaviors of Advanced Bladder Cancer Cells. Cancers (Basel) 2022; 14:4159. [PMID: 36077697 PMCID: PMC9454896 DOI: 10.3390/cancers14174159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The stem-cell-like behavior of cancer cells plays a central role in tumor heterogeneity and invasion and correlates closely with drug resistance and unfavorable clinical outcomes. However, the molecular underpinnings of cancer cell stemness remain incompletely defined. Here, we show that SNHG1, a long non-coding RNA that is over-expressed in ~95% of human muscle-invasive bladder cancers (MIBCs), induces stem-cell-like sphere formation and the invasion of cultured bladder cancer cells by upregulating Rho GTPase, Rac1. We further show that SNHG1 binds to DNA methylation transferase 3A protein (DNMT3A), and tethers DNMT3A to the promoter of miR-129-2, thus hyper-methylating and repressing miR-129-2-5p transcription. The reduced binding of miR-129-2 to the 3'-UTR of Rac1 mRNA leads to the stabilization of Rac1 mRNA and increased levels of Rac1 protein, which then stimulates MIBC cell sphere formation and invasion. Analysis of the Human Protein Atlas shows that a high expression of Rac1 is strongly associated with poor survival in patients with MIBC. Our data strongly suggest that the SNHG1/DNMT3A/miR-129-2-5p/Rac1 effector pathway drives stem-cell-like and invasive behaviors in MIBC, a deadly form of bladder cancer. Targeting this pathway, alone or in combination with platinum-based therapy, may reduce chemoresistance and improve longer-term outcomes in MIBC patients.
Collapse
Affiliation(s)
- Jiheng Xu
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Rui Yang
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jingxia Li
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lidong Wang
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Mitchell Cohen
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Diane M. Simeone
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Max Costa
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA
| |
Collapse
|
7
|
Gray TM, David S, Bassiri N, Patel DY, Kirby N, Mayer KM. Microdosimetric and radiobiological effects of gold nanoparticles at therapeutic radiation energies. Int J Radiat Biol 2022; 99:308-317. [PMID: 35709481 PMCID: PMC10089366 DOI: 10.1080/09553002.2022.2087931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to quantify the microscopic dose distribution surrounding gold nanoparticles (GNPs) irradiated at therapeutic energies and to measure the changes in cell survival in vitro caused by this dose enhancement. METHODS The dose distributions from secondary electrons surrounding a single gold nanosphere and single gold nanocube of equal volume were both simulated using MCNP6. Dose enhancement factors (DEFs) in the 1 μm3 volume surrounding a GNP were calculated and compared between a nanosphere and nanocube and between 6 and 18 MV energies. This microscopic effect was explored further by experimentally measuring the cell survival of C-33a cervical cancer cells irradiated at 18 MV with varying doses of energy and concentrations of GNPs. Survival of cells receiving no irradiation, a 3 Gy dose, and a 6 Gy dose of 18 MV energy were determined for each concentration of GNPs. RESULTS It was observed that the dose from electrons surrounding the gold nanocube surpasses that of a gold nanosphere up to a distance of 1.1 μm by 18.5% for the 18 MV energy spectrum and by 23.1% for the 6 MV spectrum. DEFs ranging from ∼2 to 8 were found, with the maximum DEF resulting from the case of the gold nanocube irradiated at 6 MV energy. Experimentally, for irradiation at 18 MV, incubating cells with 6 nM (0.10% gold by mass) GNPs produces an average 6.7% decrease in cell survival, and incubating cells with 9 nM (0.15% gold by mass) GNPs produces an average 14.6% decrease in cell survival, as compared to cells incubated and irradiated without GNPs. CONCLUSION We have successfully demonstrated the potential radiation dose enhancing effects in vitro and microdosimetrically from gold nanoparticles.
Collapse
Affiliation(s)
- Tara M Gray
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Shaquan David
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nema Bassiri
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kathryn M Mayer
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
9
|
3D Cell Culture Technology – A New Insight Into in Vitro Research – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Most in vitro cell-based research is based on two-dimensional (2D) systems where growth and development take place on a flat surface, which does not reflect the natural environment of the cells. The imperfection and limitations of culture in 2D systems eventually led to the creation of three-dimensional (3D) culture models that more closely reproduce the actual conditions of physiological cell growth. Since the inception of 3D culture technology, many culture models have been developed, such as technologies of multicellular spheroids, organoids, and organs on chips in the technology of scaffolding, hydrogels, bio-printing and liquid media. In this review we will focus on the advantages and disadvantages of the 2D vs. 3D cell cultures technologies. We will also try to sum up available 3D culture systems and materials for building 3D scaffolds.
Collapse
|
10
|
Azzi J, Waked A, Bou-Gharios J, Al Choboq J, Geara F, Bodgi L, Maalouf M. Radiosensitizing Effect of Curcumin on Human Bladder Cancer Cell Lines: Impact on DNA Repair Mechanisms. Nutr Cancer 2021; 74:2207-2221. [PMID: 34643466 DOI: 10.1080/01635581.2021.1985534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemo-radiotherapy is one of the promising approaches to treat bladder cancer, but its effectiveness is limited to sensitive patients. Polyphenol curcumin has shown anticancer and radiosensitizing potentials, but the mechanism is not fully understood. Here, the In Vitro response of UM-UC5 and UM-UC6 bladder cell lines to curcumin and radiation treatments was evaluated. The effect of curcumin on the DNA double-strand breaks repair system after treatment with ionizing radiation (2 Gy) was determined by immunofluorescence. Cell viability, proliferation, and survival were performed using trypan blue, MTT, clonogenic, and sphere-forming assays. The migratory ability of both cells was assessed by wound healing. We showed that curcumin treatment increased the radiosensitivity by modifying the DNA double-strand breaks repair kinetics of the most radioresistant cells UM-UC6 without affecting the radiosensitive UM-UC5. Moreover, UM-UC6 cell survival and proliferation was significantly decreased after the combination of curcumin with radiation. Bladder cell migration was also inhibited considerably. Curcumin was also shown to reduce the number and the volume of bladder cancer spheres of both cell lines. This study revealed that curcumin was able to radiosensitize resistant bladder cell line without affecting the sensitive one with minimal side effects through enhancing DNA damage signaling and repair pathway.
Collapse
Affiliation(s)
- Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Anthony Waked
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joelle Al Choboq
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fady Geara
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mira Maalouf
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| |
Collapse
|
11
|
Tse RTH, Zhao H, Wong CYP, Chiu PKF, Teoh JYC, Ng CF. Current status of organoid culture in urological malignancy. Int J Urol 2021; 29:102-113. [PMID: 34643976 DOI: 10.1111/iju.14727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022]
Abstract
Urological cancers are common malignancies worldwide. Several conventional models, for example, two-dimensional cell culture and animal models have been used for decades to study tumor genetics. Nonetheless, these methods have limitations in reflecting the real tumor microenvironment in vivo, thereby hindering the development of anti-cancer therapeutic agents. Recently, three-dimensional culture models have gained attention because they can overcome the drawbacks of traditional methods. Above all, three-dimensional organoid models are able to mimic the tumor microenvironment in human bodies more closely as they are able to demonstrate the interactions between cells and extracellular matrix. This type of model has therefore extended our understanding of urological cancers. Tumor cells in organoid models can also be co-cultured with other cellular components, such as peripheral blood lymphocytes, and allow further understanding of the effect of tumor microenvironments on tumor growth. Furthermore, organoid models allow a prolonged culturing period, therefore, tumor evolution, progression and maintenance can also be assessed. Organoid models can be derived from each specific patient, and this facilitates investigation of individual cancer-specific mutations and their subtypes. As a result, the development of personalized medication targeting the signaling pathways or biomolecules of interest will be possible. In the present review, we summarize the development and applications of three-dimensional organoid cultures in urological cancers, mainly focusing on prostate, urinary bladder and kidney cancers, and assess the future prospects of this model.
Collapse
Affiliation(s)
- Ryan Tsz-Hei Tse
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongda Zhao
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Christine Yim-Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Li XG, Gao S, Yang WS, Sun S. Investigation of the Inhibitory Effect of Platycodin D in Human Transitional Cell Carcinoma Cell Line 5637. Folia Biol (Praha) 2021; 67:37-47. [PMID: 34273265 DOI: 10.14712/fb2021067010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Platycodin D is an active component isolated from Chinese herb Platycodonis radix with various pharmacological activities, such as antitussive, expectorant, anti-inflammatory, and analgesic effects. Interestingly, platycodin D also exerts anticancer effects against several types of cancer. However, few studies on the anti-tumour effects of platycodin against urinary bladder cancer have been reported. In this study, we explored the anti-tumour effect of platycodin D against human bladder cancer and its mechanisms in vitro and in vivo. We found that platycodin D had significant anti-proliferative effects on four types of cancer cells, especially the 5637 bladder cancer cell line, and exerted these effects by preventing cell cycle progression from G0/G1 to S phase, down-regulating Ki-67 and cyclin D1 protein expression and up-regulating P21 protein expression. Furthermore, platycodin D inhibited 5637 cell migration by decreasing twist-related protein 1 (Twist1) and matrix metallopeptidase 2 (MMP2) expression and exerted significant tumour-suppressive effects in tumour-bearing nude mice. Platycodin D also increased caspase-9, caspase-8, caspase-3, and p53 expression and decreased Bcl-2 expression in tumour tissues. Taken together, our results provide a theoretical basis for application of platycodin D in treating urinary bladder cancer.
Collapse
Affiliation(s)
- X G Li
- Department of Urinary Surgery, Yanbian University Affiliated Hospital, Yanji, Jilin, China
| | - S Gao
- Department of Pathology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - W S Yang
- Department of Pathology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - S Sun
- Department of Pathology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
13
|
Cuenca MB, Canedo L, Perez-Castro C, Grecco HE. An Integrative and Modular Framework to Recapitulate Emergent Behavior in Cell Migration. Front Cell Dev Biol 2020; 8:615759. [PMID: 33415111 PMCID: PMC7783155 DOI: 10.3389/fcell.2020.615759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cell migration has been a subject of study in a broad variety of biological systems, from morphogenetic events during development to cancer progression. In this work, we describe single-cell movement in a modular framework from which we simulate the collective behavior of glioblastoma cells, the most prevalent and malignant primary brain tumor. We used the U87 cell line, which can be grown as a monolayer or spatially closely packed and organized in 3D structures called spheroids. Our integrative model considers the most relevant mechanisms involved in cell migration: chemotaxis of attractant factor, mechanical interactions and random movement. The effect of each mechanism is integrated into the overall probability of the cells to move in a particular direction, in an automaton-like approach. Our simulations fit and reproduced the emergent behavior of the spheroids in a set of migration assays where single-cell trajectories were tracked. We also predicted the effect of migration inhibition on the colonies from simple experimental characterization of single treated cell tracks. The development of tools that allow complementing molecular knowledge in migratory cell behavior is relevant for understanding essential cellular processes, both physiological (such as organ formation, tissue regeneration among others) and pathological perspectives. Overall, this is a versatile tool that has been proven to predict individual and collective behavior in U87 cells, but that can be applied to a broad variety of scenarios.
Collapse
Affiliation(s)
- Marina B Cuenca
- Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Canedo
- Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Hernan E Grecco
- Instituto de Investigación en Biomedicina de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| |
Collapse
|
14
|
Yakavets I, Francois A, Benoit A, Merlin JL, Bezdetnaya L, Vogin G. Advanced co-culture 3D breast cancer model for investigation of fibrosis induced by external stimuli: optimization study. Sci Rep 2020; 10:21273. [PMID: 33277538 PMCID: PMC7718236 DOI: 10.1038/s41598-020-78087-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced fibrosis (RIF) is the main late radiation toxicity in breast cancer patients. Most of the current 3D in vitro breast cancer models are composed by cancer cells only and are unable to reproduce the complex cellular homeostasis within the tumor microenvironment to study RIF mechanisms. In order to account complex cellular interactions within the tumor microenvironment, an advanced 3D spheroid model, consisting of the luminal breast cancer MCF-7 cells and MRC-5 fibroblasts, was developed. The spheroids were generated using the liquid overlay technique in culture media into 96-well plates previously coated with 1% agarose (m/v, in water). In total, 21 experimental setups were tested during the optimization of the model. The generated spheroids were characterized using fluorescence imaging, immunohistology and immunohistochemistry. The expression of ECM components was confirmed in co-culture spheroids. Using α-SMA staining, we confirmed the differentiation of healthy fibroblasts into myofibroblasts upon the co-culturing with cancer cells. The induction of fibrosis was studied in spheroids treated 24 h with 10 ng/mL TGF-β and/or 2 Gy irradiation. Overall, the developed advanced 3D stroma-rich in vitro model of breast cancer provides a possibility to study fibrosis mechanisms taking into account 3D arrangement of the complex tumor microenvironment.
Collapse
Affiliation(s)
- Ilya Yakavets
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Aurelie Francois
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Alice Benoit
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.
| | - Guillaume Vogin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.,UMR 7365 CNRS-UL, IMoPA, Vandœuvre-lès-Nancy, France.,Centre François Baclesse, Centre National de Radiothérapie du Grand-Duché du Luxembourg, Esch Sur Alzette, Luxembourg
| |
Collapse
|
15
|
Ingram SP, Henthorn NT, Warmenhoven JW, Kirkby NF, Mackay RI, Kirkby KJ, Merchant MJ. Hi-C implementation of genome structure for in silico models of radiation-induced DNA damage. PLoS Comput Biol 2020; 16:e1008476. [PMID: 33326415 PMCID: PMC7773326 DOI: 10.1371/journal.pcbi.1008476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/30/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Developments in the genome organisation field has resulted in the recent methodology to infer spatial conformations of the genome directly from experimentally measured genome contacts (Hi-C data). This provides a detailed description of both intra- and inter-chromosomal arrangements. Chromosomal intermingling is an important driver for radiation-induced DNA mis-repair. Which is a key biological endpoint of relevance to the fields of cancer therapy (radiotherapy), public health (biodosimetry) and space travel. For the first time, we leverage these methods of inferring genome organisation and couple them to nano-dosimetric radiation track structure modelling to predict quantities and distribution of DNA damage within cell-type specific geometries. These nano-dosimetric simulations are highly dependent on geometry and are benefited from the inclusion of experimentally driven chromosome conformations. We show how the changes in Hi-C contract maps impact the inferred geometries resulting in significant differences in chromosomal intermingling. We demonstrate how these differences propagate through to significant changes in the distribution of DNA damage throughout the cell nucleus, suggesting implications for DNA repair fidelity and subsequent cell fate. We suggest that differences in the geometric clustering for the chromosomes between the cell-types are a plausible factor leading to changes in cellular radiosensitivity. Furthermore, we investigate changes in cell shape, such as flattening, and show that this greatly impacts the distribution of DNA damage. This should be considered when comparing in vitro results to in vivo systems. The effect may be especially important when attempting to translate radiosensitivity measurements at the experimental in vitro level to the patient or human level.
Collapse
Affiliation(s)
- Samuel P. Ingram
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Nicholas T. Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John W. Warmenhoven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Norman F. Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ranald I. Mackay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Karen J. Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael J. Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
16
|
Consales C, Butera A, Merla C, Pasquali E, Lopresto V, Pinto R, Pierdomenico M, Mancuso M, Marino C, Benassi B. Exposure of the SH-SY5Y Human Neuroblastoma Cells to 50-Hz Magnetic Field: Comparison Between Two-Dimensional (2D) and Three-Dimensional (3D) In Vitro Cultures. Mol Neurobiol 2020; 58:1634-1649. [PMID: 33230715 PMCID: PMC7932966 DOI: 10.1007/s12035-020-02192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
We here characterize the response to the extremely low-frequency (ELF) magnetic field (MF, 50 Hz, 1 mT) of SH-SY5Y human neuroblastoma cells, cultured in a three-dimensional (3D) Alvetex® scaffold compared to conventional two-dimensional (2D) monolayers. We proved that the growing phenotype of proliferating SH-SY5Y cells is not affected by the culturing conditions, as morphology, cell cycle distribution, proliferation/differentiation gene expression of 3D-cultures overlap what reported in 2D plates. In response to 72-h exposure to 50-Hz MF, we demonstrated that no proliferation change and apoptosis activation occur in both 2D and 3D cultures. Consistently, no modulation of Ki67, MYCN, CCDN1, and Nestin, of invasiveness and neo-angiogenesis-controlling genes (HIF-1α, VEGF, and PDGF) and of microRNA epigenetic signature (miR-21-5p, miR-222-3p and miR-133b) is driven by ELF exposure. Conversely, intracellular glutathione content and SOD1 expression are exclusively impaired in 3D-culture cells in response to the MF, whereas no change of such redox modulators is observed in SH-SY5Y cells if grown on 2D monolayers. Moreover, ELF-MF synergizes with the differentiating agents to stimulate neuroblastoma differentiation into a dopaminergic (DA) phenotype in the 3D-scaffold culture only, as growth arrest and induction of p21, TH, DAT, and GAP43 are reported in ELF-exposed SH-SY5Y cells exclusively if grown on 3D scaffolds. As overall, our findings prove that 3D culture is a more reliable experimental model for studying SH-SY5Y response to ELF-MF if compared to 2D conventional monolayer, and put the bases for promoting 3D systems in future studies addressing the interaction between electromagnetic fields and biological systems.
Collapse
Affiliation(s)
- Claudia Consales
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Alessio Butera
- Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Caterina Merla
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Emanuela Pasquali
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Vanni Lopresto
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Rosanna Pinto
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Maria Pierdomenico
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Carmela Marino
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Barbara Benassi
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
17
|
Konishi H, Hayashi M, Taniguchi K, Nakamura M, Kuranaga Y, Ito Y, Kondo Y, Sasaki H, Terai Y, Akao Y, Ohmichi M. The therapeutic potential of exosomal miR-22 for cervical cancer radiotherapy. Cancer Biol Ther 2020; 21:1128-1135. [PMID: 33190594 PMCID: PMC7722788 DOI: 10.1080/15384047.2020.1838031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is the fourth-most prevalent malignancy in women. For advanced cervical cancer, radiotherapy is a major treatment. Micro RNAs (miRNAs) are small, noncoding RNAs that negatively regulate the target gene expression posttranscriptionally. miR-22 is frequently downregulated in various cancers including cervical cancer, and is associated with a poor prognosis in cervical cancer. Exosomes are small endosomally secreted vesicles that carry components such as proteins, messenger RNA (mRNA), DNA and miRNA. We investigated whether or not exosomes can efficiently deliver miR-22 to recipient cervical cancer cells and affect the gene expression in the cells, as well as assessed the role of exosomal miR-22 in radiosensitivity. Exosomes containing high levels of miR-22 were extracted by ultracentrifugation and then characterized by Western blotting, a nanoparticle tracking analysis and electron microscopy. The high presence of miR-22 in the exosome was confirmed by real-time polymerase chain reaction. After the administration of the collected exosomal miR-22 to SKG-II and C4-I cervical cancer cells, the level of miR-22 in the cells was significantly increased, indicating the absorption of the exosomal miR-22. When miR-22 encapsulated in exosomes was administered to the SKG-II cells, the level of c-Myc binding protein (MYCBP) and human telomerase reverse transcriptase (hTERT) was significantly decreased in correlation with increased radiosensitivity determined by a clonogenic assay. Taken together, these results suggest that the administration of exosomal miR-22 may be a novel drug delivery system for cervical cancer radiotherapy.
Collapse
Affiliation(s)
- Hiromi Konishi
- Department of Obstetrics and Gynecology, Osaka Medical College , Takatsuki, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College , Takatsuki, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College , Takatsuki, Japan.,Translational Research Program, Osaka Medical College , Takatsuki, Japan
| | - Mayumi Nakamura
- Department of Obstetrics and Gynecology, Osaka Medical College , Takatsuki, Japan
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Gifu Japan.,Department of Neurosurgery, The University of Alabama at Birmingham , Birmingham, AL, USA
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College , Takatsuki, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College , Takatsuki, Japan
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Osaka Medical College , Takatsuki, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine , Kobe Chuo-ku Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Gifu Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College , Takatsuki, Japan
| |
Collapse
|
18
|
Chen YC, Zhang Z, Yoon E. Early Prediction of Single-Cell Derived Sphere Formation Rate Using Convolutional Neural Network Image Analysis. Anal Chem 2020; 92:7717-7724. [PMID: 32427465 DOI: 10.1021/acs.analchem.0c00710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional identification of cancer stem-like cells (CSCs) is an established method to identify and study this cancer subpopulation critical for cancer progression and metastasis. The method is based on the unique capability of single CSCs to survive and grow to tumorspheres in harsh suspension culture environment. Recent advances in microfluidic technology have enabled isolating and culturing thousands of single cells on a chip. However, tumorsphere assay takes a relatively long period of time, limiting the throughput of this assay. In this work, we incorporated machine learning with single-cell analysis to expedite tumorsphere assay. We collected 1,710 single-cell events as the database and trained a convolutional neural network model that predicts whether a single cell could grow to a tumorsphere on Day 14 based on its Day 4 image. With this future-telling model, we precisely estimated the sphere formation rate of SUM159 breast cancer cells to be 17.8% based on Day 4 images. The estimation was close to the ground truth of 17.6% on Day 14. The preliminary work demonstrates not only the feasibility to significantly accelerate tumorsphere assay but also a synergistic combination between single-cell analysis with machine learning, which can be applied to many other biomedical applications.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States.,Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States.,Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, Michigan 48109-2099, United States.,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
19
|
Abugomaa A, Elbadawy M. Patient-derived organoid analysis of drug resistance in precision medicine: is there a value? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020; 5:1-5. [DOI: 10.1080/23808993.2020.1715794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
20
|
Tunesi M, Izzo L, Raimondi I, Albani D, Giordano C. A miniaturized hydrogel-based in vitro model for dynamic culturing of human cells overexpressing beta-amyloid precursor protein. J Tissue Eng 2020; 11:2041731420945633. [PMID: 32922719 PMCID: PMC7446262 DOI: 10.1177/2041731420945633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Recent findings have highlighted an interconnection between intestinal microbiota and the brain, referred to as microbiota-gut-brain axis, and suggested that alterations in microbiota composition might affect brain functioning, also in Alzheimer's disease. To investigate microbiota-gut-brain axis biochemical pathways, in this work we developed an innovative device to be used as modular unit in an engineered multi-organ-on-a-chip platform recapitulating in vitro the main players of the microbiota-gut-brain axis, and an innovative three-dimensional model of brain cells based on collagen/hyaluronic acid or collagen/poly(ethylene glycol) semi-interpenetrating polymer networks and β-amyloid precursor protein-Swedish mutant-expressing H4 cells, to simulate the pathological scenario of Alzheimer's disease. We set up the culturing conditions, assessed cell response, scaled down the three-dimensional models to be hosted in the organ-on-a-chip device, and cultured them both in static and in dynamic conditions. The results suggest that the device and three-dimensional models are exploitable for advanced engineered models representing brain features also in Alzheimer's disease scenario.
Collapse
Affiliation(s)
- Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
| | - Ilaria Raimondi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri – IRCSS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|