1
|
Yang Y, Zhang YM, Wang Y, Liu K, Cui SY, Luo YQ, Zheng W, Xu J, Duan W, Wang JY. Genome-wide identification of aberrant alternative splicing and RNA-binding protein regulators in acute myeloid leukaemia which may contribute to immune microenvironment remodelling. Carcinogenesis 2023; 44:418-425. [PMID: 37209099 DOI: 10.1093/carcin/bgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 05/19/2023] [Indexed: 05/22/2023] Open
Abstract
Acute myeloid leukaemia (AML) is one of the most lethal cancers of the haematopoietic system with a poorly understood aetiology. Recent studies have shown that aberrant alternative splicing (AS) and a (RBP) regulators are highly associated with the pathogenesis of AML. This study presents an overview of the abnormal AS and differential expression of RNA-binding proteins (RBPs) in AML and further highlights their close relation to the remodelling of the immune microenvironment in AML patients. An in-depth understanding of the regulatory mechanism underlying AML will contribute to the future development of strategies for the prevention, diagnosis and therapy of AML and thus improve the overall survival of patients with AML.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yu-Mei Zhang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Kui Liu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Si-Yuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Ya-Qin Luo
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wei Zheng
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Jie Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jing-Yi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| |
Collapse
|
2
|
Basu J, Olsson A, Ferchen K, Titerina EK, Chetal K, Nicolas E, Czyzewicz P, Levchenko D, Ge L, Hua X, Grimes HL, Salomonis N, Kappes DJ. ThPOK is a critical multifaceted regulator of myeloid lineage development. Nat Immunol 2023; 24:1295-1307. [PMID: 37474652 PMCID: PMC10792516 DOI: 10.1038/s41590-023-01549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
The transcription factor ThPOK (encoded by Zbtb7b) is well known for its role as a master regulator of CD4 lineage commitment in the thymus. Here, we report an unexpected and critical role of ThPOK as a multifaceted regulator of myeloid lineage commitment, differentiation and maturation. Using reporter and knockout mouse models combined with single-cell RNA-sequencing, progenitor transfer and colony assays, we show that ThPOK controls monocyte-dendritic cell versus granulocyte lineage production during homeostatic differentiation, and serves as a brake for neutrophil maturation in granulocyte lineage-specified cells through transcriptional regulation of lineage-specific transcription factors and RNA via altered messenger RNA splicing to reprogram intron retention.
Collapse
Affiliation(s)
- Jayati Basu
- Fox Chase Cancer Center, Philadelphia, PA, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Andre Olsson
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kyle Ferchen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizaveta K Titerina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kashish Chetal
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | - Lu Ge
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiang Hua
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
3
|
Oppezzo A, Monney L, Kilian H, Slimani L, Maczkowiak-Chartois F, Rosselli F. Fanca deficiency is associated with alterations in osteoclastogenesis that are rescued by TNFα. Cell Biosci 2023; 13:115. [PMID: 37355617 DOI: 10.1186/s13578-023-01067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche, which includes bone-forming and bone-resorbing cells, i.e., osteoblasts (OBs) and osteoclasts (OCs). OBs originate from mesenchymal progenitors, while OCs are derived from HSCs. Self-renewal, proliferation and differentiation of HSCs are under the control of regulatory signals generated by OBs and OCs within the BM niche. Consequently, OBs and OCs control both bone physiology and hematopoiesis. Since the human developmental and bone marrow failure genetic syndrome fanconi anemia (FA) presents with skeletal abnormalities, osteoporosis and HSC impairment, we wanted to test the hypothesis that the main pathological abnormalities of FA could be related to a defect in OC physiology and/or in bone homeostasis. RESULTS We revealed here that the intrinsic differentiation of OCs from a Fanca-/- mouse is impaired in vitro due to overactivation of the p53-p21 axis and defects in NF-kB signaling. The OC differentiation abnormalities observed in vitro were rescued by treating Fanca-/- cells with the p53 inhibitor pifithrin-α, by treatment with the proinflammatory cytokine TNFα or by coculturing them with Fanca-proficient or Fanca-deficient osteoblastic cells. CONCLUSIONS Overall, our results highlight an unappreciated role of Fanca in OC differentiation that is potentially circumvented in vivo by the presence of OBs and TNFα in the BM niche.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Orsay, France
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Lovely Monney
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Orsay, France
| | - Henri Kilian
- URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU-DDS-net, Dental School, Université de Paris, Montrouge, France
| | - Lofti Slimani
- URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU-DDS-net, Dental School, Université de Paris, Montrouge, France
| | - Frédérique Maczkowiak-Chartois
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Orsay, France
| | - Filippo Rosselli
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France.
- Gustave Roussy Cancer Center, Villejuif, France.
- Université Paris Saclay, Orsay, France.
| |
Collapse
|
4
|
Aitken MJL, Malaney P, Zhang X, Herbrich SM, Chan L, Benitez O, Rodriguez A, Ma H, Jacamo R, Duan R, Link T, Kornblau S, Kanagal-Shamanna R, Bueso-Ramos C, Post S. Heterogeneous nuclear ribonucleoprotein K is overexpressed in acute myeloid leukemia and causes myeloproliferation in mice via altered Runx1 splicing. NAR Cancer 2022; 4:zcac039. [PMID: 36518526 PMCID: PMC9732523 DOI: 10.1093/narcan/zcac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1-a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP K's oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity.
Collapse
Affiliation(s)
- Marisa J L Aitken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley M Herbrich
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Chan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oscar Benitez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley G Rodriguez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huaxian Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo Jacamo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruizhi Duan
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Liu Y, Niu H, Song N, Zhang W, Li L, Wang H, Fu R, Shao Z. Single-cell RNA sequencing identifies the properties of myelodysplastic syndrome stem cells. J Transl Med 2022; 20:499. [PMID: 36329516 PMCID: PMC9632008 DOI: 10.1186/s12967-022-03709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yumei Liu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Haiyue Niu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Nan Song
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Wei Zhang
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Lijuan Li
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Huaquan Wang
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Rong Fu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Zonghong Shao
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| |
Collapse
|
6
|
Qin T, Cheng Y, Wang X. RNA-binding proteins as drivers of AML and novel therapeutic targets. Leuk Lymphoma 2022; 63:1045-1057. [PMID: 35075986 DOI: 10.1080/10428194.2021.2008381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acute myeloid leukemia (AML) is a group of genetically complex and heterogeneous invasive hematological malignancies with a low 5-year overall survival rate of 30%, which highlights the urgent need for improved treatment measures. RNA-binding proteins (RBPs) regulate the abundance of isoforms of related proteins by regulating RNA splicing, translation, stability, and localization, thereby affecting cell differentiation and self-renewal. It is increasingly believed that RBPs are essential for normal hematopoiesis, and RBPs play a key role in hematological tumors, especially AML, by acting as oncogenes or tumor suppressors. In addition, targeting an RBP that is significantly related to AML can trigger the apoptosis of leukemic stem cells or promote the proliferation of stem and progenitor cells by modulating the expression of important pathway regulatory factors such as HOXA9, MYC, and CDKN1A. Accordingly, RBPs involved in normal myeloid differentiation and the occurrence of AML may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Tingyu Qin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Schwarz A, Roeder I, Seifert M. Comparative Gene Expression Analysis Reveals Similarities and Differences of Chronic Myeloid Leukemia Phases. Cancers (Basel) 2022; 14:cancers14010256. [PMID: 35008420 PMCID: PMC8750437 DOI: 10.3390/cancers14010256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a slowly progressing blood cancer that primarily affects elderly people. Without successful treatment, CML progressively develops from the chronic phase through the accelerated phase to the blast crisis, and ultimately to death. Nowadays, the availability of targeted tyrosine kinase inhibitor (TKI) therapies has led to long-term disease control for the vast majority of patients. Nevertheless, there are still patients that do not respond well enough to TKI therapies and available targeted therapies are also less efficient for patients in accelerated phase or blast crises. Thus, a more detailed characterization of molecular alterations that distinguish the different CML phases is still very important. We performed an in-depth bioinformatics analysis of publicly available gene expression profiles of the three CML phases. Pairwise comparisons revealed many differentially expressed genes that formed a characteristic gene expression signature, which clearly distinguished the three CML phases. Signaling pathway expression patterns were very similar between the three phases but differed strongly in the number of affected genes, which increased with the phase. Still, significant alterations of MAPK, VEGF, PI3K-Akt, adherens junction and cytokine receptor interaction signaling distinguished specific phases. Our study also suggests that one can consider the phase-wise CML development as a three rather than a two-step process. This is in accordance with the phase-specific expression behavior of 24 potential major regulators that we predicted by a network-based approach. Several of these genes are known to be involved in the accumulation of additional mutations, alterations of immune responses, deregulation of signaling pathways or may have an impact on treatment response and survival. Importantly, some of these genes have already been reported in relation to CML (e.g., AURKB, AZU1, HLA-B, HLA-DMB, PF4) and others have been found to play important roles in different leukemias (e.g., CDCA3, RPL18A, PRG3, TLX3). In addition, increased expression of BCL2 in the accelerated and blast phase indicates that venetoclax could be a potential treatment option. Moreover, a characteristic signaling pathway signature with increased expression of cytokine and ECM receptor interaction pathway genes distinguished imatinib-resistant patients from each individual CML phase. Overall, our comparative analysis contributes to an in-depth molecular characterization of similarities and differences of the CML phases and provides hints for the identification of patients that may not profit from an imatinib therapy, which could support the development of additional treatment strategies.
Collapse
Affiliation(s)
- Annemarie Schwarz
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (A.S.); (I.R.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (A.S.); (I.R.)
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany: German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany; Helmholtz-Zentrum Dresden—Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany; (A.S.); (I.R.)
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany: German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany; Helmholtz-Zentrum Dresden—Rossendorf (HZDR), D-01328 Dresden, Germany
- Correspondence:
| |
Collapse
|
8
|
RNA-binding protein 39: a promising therapeutic target for cancer. Cell Death Discov 2021; 7:214. [PMID: 34389703 PMCID: PMC8363639 DOI: 10.1038/s41420-021-00598-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
RNA-binding motif protein 39 (RBM39), as a key factor in tumor-targeted mRNA and protein expression, not only plays a vital role in tumorigenesis, but also has broad development prospects in clinical treatment and drug research. Moreover, since RBM39 was identified as a target of sulfonamides, it has played a key role in the emerging field of molecule drug development. Hence, it is of great significance to study the interaction between RBM39 and tumors and the clinical application of drug-targeted therapy. In this paper, we describe the possible multi-level regulation of RBM39, including gene transcription, protein translation, and alternative splicing. Importantly, the molecular function of RBM39 as an important splicing factor in most common tumors is systematically outlined. Furthermore, we briefly introduce RBM39’s tumor-targeted drug research and its clinical application, hoping to give reference significance for the molecular mechanism of RBM39 in tumors, and provide reliable ideas for in-depth research for future therapeutic strategies.
Collapse
|
9
|
Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the Tumor Microenvironment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:93-122. [PMID: 33497262 DOI: 10.1146/annurev-pathmechdis-012418-013058] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy has revolutionized cancer treatment over the past decade. Nonetheless, prolonged survival is limited to relatively few patients. Cancers enforce a multifaceted immune-suppressive network whose nature is progressively shaped by systemic and local cues during tumor development. Monocytes bridge innate and adaptive immune responses and can affect the tumor microenvironment through various mechanisms that induce immune tolerance, angiogenesis, and increased dissemination of tumor cells. Yet monocytes can also give rise to antitumor effectors and activate antigen-presenting cells. This yin-yang activity relies on the plasticity of monocytes in response to environmental stimuli. In this review, we summarize current knowledge of the ontogeny, heterogeneity, and functions of monocytes and monocyte-derived cells in cancer, pinpointing the main pathways that are important for modeling the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| | - Vincenzo Bronte
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| |
Collapse
|
10
|
Tatebayashi R, Nakamura S, Minabe S, Furusawa T, Abe R, Kajisa M, Morita Y, Ohkura S, Kimura K, Matsuyama S. Gene-expression profile and postpartum transition of bovine endometrial side population cells†. Biol Reprod 2021; 104:850-860. [PMID: 33438005 DOI: 10.1093/biolre/ioab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
The mechanism of bovine endometrial regeneration after parturition remains unclear. Here, we hypothesized that bovine endometrial stem/progenitor cells participate in the postpartum regeneration of the endometrium. Flow cytometry analysis identified the presence of side population (SP) cells among endometrial stromal cells. Endometrial SP cells were shown to differentiate into osteoblasts and adipocytes. RNA-seq data showed that the gene expression pattern was different between bovine endometrial SP cells and main population cells. Gene Set Enrichment Analysis identified the enrichment of stemness genes in SP cells. Significantly (false discovery rate < 0.01) upregulated genes in SP cells contained several stem cell marker genes. Gene ontology (GO) analysis of the upregulated genes in SP cells showed enrichment of terms related to RNA metabolic process and transcription. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of upregulated genes in SP cells revealed enrichment of signaling pathways associated with maintenance and differentiation of stem/progenitor cells. The terms involved in TCA cycles were enriched in GO and KEGG pathway analysis of downregulated genes in SP cells. These results support the assumption that bovine endometrial SP cells exhibit characteristics of somatic stem/progenitor cells. The ratio of SP cells to endometrial cells was lowest on days 9-11 after parturition, which gradually increased thereafter. SP cells were shown to differentiate into epithelial cells. Collectively, these results suggest that bovine endometrial SP cells were temporarily reduced immediately after calving possibly due to their differentiation to provide new endometrial cells.
Collapse
Affiliation(s)
- Ryoki Tatebayashi
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Shiori Minabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tadashi Furusawa
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Ryoya Abe
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Miki Kajisa
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yasuhiro Morita
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan.,Asian Satellite Campuses Institute, Nagoya University, Nagoya, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shuichi Matsuyama
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| |
Collapse
|
11
|
Zhang Z, Wang L, Wang Q, Zhang M, Wang B, Jiang K, Ye Y, Wang S, Shen Z. Molecular Characterization and Clinical Relevance of RNA Binding Proteins in Colorectal Cancer. Front Genet 2020; 11:580149. [PMID: 33193701 PMCID: PMC7597397 DOI: 10.3389/fgene.2020.580149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Abnormal expression of RNA binding proteins (RBPs) has been reported across various cancers. However, the potential role of RBPs in colorectal cancer (CRC) remains unclear. In this study, we performed a systematic bioinformatics analysis of RBPs in CRC. We downloaded CRC data from The Cancer Genome Atlas (TCGA) database. Our analysis identified 242 differentially expressed RBPs between tumor and normal tissues, including 200 upregulated and 42 downregulated RBPs. Next, we found eight RBPs (RRS1, PABPC1L, TERT, SMAD6, UPF3B, RP9, NOL3, and PTRH1) related to the prognoses of CRC patients. Among these eight prognosis-related RBPs, four RBPs (NOL3, PTRH1, UPF3B, and SMAD6) were selected to construct a prognostic risk score model. Furthermore, our results indicated that the prognostic risk score model accurately predicted the prognosis of CRC patients [area under the receiver operating characteristic curve (AUC)for 3- and 5-year overall survival (OS) and was 0.645 and 0.672, respectively]. Furthermore, we developed a nomogram based on a prognostic risk score model. The nomogram was able to demonstrate the wonderful performance in predicting 3- and 5-year OS. Additionally, we validated the clinical value of four risk genes in the prognostic risk score model and identified that these risk genes were associated with tumorigenesis, lymph node metastasis, distant metastasis, clinical stage, and prognosis. Finally, we used the TIMER and Human Protein Atlas (HPA)database to validate the expression of four risk genes at the transcriptional and translational levels, respectively, and used a clinical cohort to validate the roles of NOL3 and UPF3B in predicting the prognosis of CRC patients. In summary, our study demonstrated that RBPs have an effect on CRC tumor progression and might be potential prognostic biomarkers for CRC patients.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ling Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Mengmeng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| |
Collapse
|
12
|
Li Z, Qu X, Liu X, Huan C, Wang H, Zhao Z, Yang X, Hua S, Zhang W. GBP5 Is an Interferon-Induced Inhibitor of Respiratory Syncytial Virus. J Virol 2020; 94:e01407-20. [PMID: 32796072 PMCID: PMC7565618 DOI: 10.1128/jvi.01407-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
Guanylate binding protein 5 (GBP5) belongs to the GTPase subfamily, which is mainly induced by interferon gamma (IFN-γ) and is involved in many important cellular processes, including inflammasome activation and innate immunity against a wide variety of microbial pathogens. However, it is unknown whether GBP5 inhibits respiratory syncytial virus (RSV) infection. In this study, we identified GBP5 as an effector of the anti-RSV activity of IFN-γ and found that in children, the weaker immune response, especially the weaker IFN-γ response and the decreased GBP5 expression, leads to RSV susceptibility. Furthermore, we revealed that GBP5 reduced the cell-associated levels of the RSV small hydrophobic (SH) protein, which was identified as a viroporin. In contrast, overexpression of the SH protein rescued RSV replication in the presence of GBP5. The GBP5-induced decrease in intracellular SH protein levels is because GBP5 promotes the release of the SH protein into the cell culture. Moreover, the GBP5 C583A mutants with changes at the C terminus or the GBP5 ΔC mutant lacking the C-terminal region, which impairs GBP5 localization in the Golgi, could not inhibit RSV infection, whereas the GTPase-defective GBP5 maintained RSV inhibition, suggesting that Golgi localization but not the GTPase activity of GBP5 is required for RSV inhibition. Interestingly, we found that RSV infection or RSV G protein downregulates GBP5 expression by upregulating DZIP3, an E3 ligase, which induces GBP5 degradation through the K48 ubiquitination and proteasomal pathways. Thus, this study reveals a complicated interplay between host restrictive factor GBP5 and RSV infection and provides important information for understanding the pathogenesis of RSV.IMPORTANCE RSV is a highly contagious virus that causes multiple infections in infants within their first year of life. It can also easily cause infection in elderly or immunocompromised individuals, suggesting that individual differences in immunity play an important role in RSV infection. Therefore, exploring the pathogenic mechanisms of RSV and identifying essential genes which inhibit RSV infection are necessary to develop an effective strategy to control RSV infection. Here, we report that the IFN-inducible gene GBP5 potently inhibits RSV replication by reducing the cell-associated levels of the RSV small hydrophobic (SH) protein, which is a viroporin. In contrast, the RSV G protein was shown to upregulate the expression of the DZIP3 protein, an E3 ligase that degrades GBP5 through the proteasomal pathway. Our study provides important information for the understanding of the pathogenic mechanisms of RSV and host immunity as well as the complicated interplay between the virus and host.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xinglong Qu
- Respiratory Department of the First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xin Liu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhilei Zhao
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xu Yang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Shucheng Hua
- Respiratory Department of the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
13
|
Bauer M, Vaxevanis C, Heimer N, Al-Ali HK, Jaekel N, Bachmann M, Wickenhauser C, Seliger B. Expression, Regulation and Function of microRNA as Important Players in the Transition of MDS to Secondary AML and Their Cross Talk to RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21197140. [PMID: 32992663 PMCID: PMC7582632 DOI: 10.3390/ijms21197140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS), heterogeneous diseases of hematopoietic stem cells, exhibit a significant risk of progression to secondary acute myeloid leukemia (sAML) that are typically accompanied by MDS-related changes and therefore significantly differ to de novo acute myeloid leukemia (AML). Within these disorders, the spectrum of cytogenetic alterations and oncogenic mutations, the extent of a predisposing defective osteohematopoietic niche, and the irregularity of the tumor microenvironment is highly diverse. However, the exact underlying pathophysiological mechanisms resulting in hematopoietic failure in patients with MDS and sAML remain elusive. There is recent evidence that the post-transcriptional control of gene expression mediated by microRNAs (miRNAs), long noncoding RNAs, and/or RNA-binding proteins (RBPs) are key components in the pathogenic events of both diseases. In addition, an interplay between RBPs and miRNAs has been postulated in MDS and sAML. Although a plethora of miRNAs is aberrantly expressed in MDS and sAML, their expression pattern significantly depends on the cell type and on the molecular make-up of the sample, including chromosomal alterations and single nucleotide polymorphisms, which also reflects their role in disease progression and prediction. Decreased expression levels of miRNAs or RBPs preventing the maturation or inhibiting translation of genes involved in pathogenesis of both diseases were found. Therefore, this review will summarize the current knowledge regarding the heterogeneity of expression, function, and clinical relevance of miRNAs, its link to molecular abnormalities in MDS and sAML with specific focus on the interplay with RBPs, and the current treatment options. This information might improve the use of miRNAs and/or RBPs as prognostic markers and therapeutic targets for both malignancies.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Christoforos Vaxevanis
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Haifa Kathrin Al-Ali
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Nadja Jaekel
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-345-557-4054
| |
Collapse
|
14
|
Pararajalingam P, Coyle KM, Arthur SE, Thomas N, Alcaide M, Meissner B, Boyle M, Qureshi Q, Grande BM, Rushton C, Slack GW, Mungall AJ, Tam CS, Agarwal R, Dawson SJ, Lenz G, Balasubramanian S, Gascoyne RD, Steidl C, Connors J, Villa D, Audas TE, Marra MA, Johnson NA, Scott DW, Morin RD. Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing. Blood 2020; 136:572-584. [PMID: 32160292 PMCID: PMC7440974 DOI: 10.1182/blood.2019002385] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology.
Collapse
Affiliation(s)
- Prasath Pararajalingam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah E Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Nicole Thomas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Barbara Meissner
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Merrill Boyle
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Quratulain Qureshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Christopher Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Graham W Slack
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Constantine S Tam
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Rishu Agarwal
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | | | - Randy D Gascoyne
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Christian Steidl
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Joseph Connors
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Diego Villa
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Marco A Marra
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - David W Scott
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| |
Collapse
|
15
|
Ribosome and Translational Control in Stem Cells. Cells 2020; 9:cells9020497. [PMID: 32098201 PMCID: PMC7072746 DOI: 10.3390/cells9020497] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate.
Collapse
|