1
|
Li YX, Mu BX, Zhou HJ, Qian J, Zhou JY, Chen M. Development and validation of nomograms for predicting overall survival and cancer-specific survival in unresected colorectal cancer patients undergoing chemotherapy. Sci Rep 2025; 15:12477. [PMID: 40216848 PMCID: PMC11992110 DOI: 10.1038/s41598-025-96526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
This study aims to develop nomograms for predicting overall survival (OS) and cancer-specific survival (CSS) in colorectal cancer (CRC) patients who did not receive primary site surgery but underwent chemotherapy. We analyzed data from 3,050 patients treated with chemotherapy without primary site surgery from 2010 to 2015, sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The data were randomly divided into training and validation sets. Initial variable selection was performed using the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis was used to identify independent prognostic factors. Two nomograms were subsequently constructed based on these factors. Survival analysis was conducted using Kaplan-Meier plots and the log-rank test. We identified nine significant predictors of OS and CSS: age, marital status, primary site, grade, histology, T stage, M stage, tumor size, and CEA levels. The models for OS and CSS exhibited excellent predictability, with time-dependent area under the receiver operating characteristic curves (AUCs) exceeding 0.7. Calibration curves confirmed the accuracy of these predictions in the training and validation sets. Additionally, decision curve analysis (DCA) indicated that our models provide greater clinical benefit than traditional TNM staging. Notably, survival outcomes varied significantly across risk categories, affirming the models' effective discrimination. For CRC patients who did not receive primary site surgery but underwent chemotherapy, this validated nomogram enables precision prognostication fundamentally shifting the paradigm from population-level TNM estimates to individualized risk-adaptive management.
Collapse
Affiliation(s)
- Yuan-Xiang Li
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Bai-Xiang Mu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hua-Jian Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jun Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Min Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Renu K, Veeraraghavan VP, Gopalakrishnan AV. Targeting Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) for Oral Squamous Cell Carcinoma management. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101930. [PMID: 38815726 DOI: 10.1016/j.jormas.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
3
|
Filippi J, Casti P, Antonelli G, Murdocca M, Mencattini A, Corsi F, D'Orazio M, Pecora A, De Luca M, Curci G, Ghibelli L, Sangiuolo F, Neale SL, Martinelli E. Cell Electrokinetic Fingerprint: A Novel Approach Based on Optically Induced Dielectrophoresis (ODEP) for In-Flow Identification of Single Cells. SMALL METHODS 2024; 8:e2300923. [PMID: 38693090 DOI: 10.1002/smtd.202300923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/04/2024] [Indexed: 05/03/2024]
Abstract
A novel optically induced dielectrophoresis (ODEP) system that can operate under flow conditions is designed for automatic trapping of cells and subsequent induction of 2D multi-frequency cell trajectories. Like in a "ping-pong" match, two virtual electrode barriers operate in an alternate mode with varying frequencies of the input voltage. The so-derived cell motions are characterized via time-lapse microscopy, cell tracking, and state-of-the-art machine learning algorithms, like the wavelet scattering transform (WST). As a cell-electrokinetic fingerprint, the dynamic of variation of the cell displacements happening, over time, is quantified in response to different frequency values of the induced electric field. When tested on two biological scenarios in the cancer domain, the proposed approach discriminates cellular dielectric phenotypes obtained, respectively, at different early phases of drug-induced apoptosis in prostate cancer (PC3) cells and for differential expression of the lectine-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcript levels in human colorectal adenocarcinoma (DLD-1) cells. The results demonstrate increased discrimination of the proposed system and pose an additional basis for making ODEP-based assays addressing cancer heterogeneity for precision medicine and pharmacological research.
Collapse
Affiliation(s)
- Joanna Filippi
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Paola Casti
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Gianni Antonelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Francesca Corsi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Michele D'Orazio
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Alessandro Pecora
- Italian Nation Research Council (CNR), Via del Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Massimiliano De Luca
- Italian Nation Research Council (CNR), Via del Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Giorgia Curci
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Steven L Neale
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), Via del Politecnico 1, Rome, 00133, Italy
| |
Collapse
|
4
|
Moghadam SG, Ebrahimpour M, Alavizadeh SH, Kesharwani P, Sahebkar A. The association between oxidized low-density lipoprotein and cancer: An emerging targeted therapeutic approach? Bioorg Med Chem Lett 2024; 106:129762. [PMID: 38649117 DOI: 10.1016/j.bmcl.2024.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.
Collapse
Affiliation(s)
- Samin Ghorbani Moghadam
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrshad Ebrahimpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:557. [PMID: 38607092 PMCID: PMC11013305 DOI: 10.3390/nano14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.
Collapse
Affiliation(s)
- Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Zhang Y, Hao M, Yang X, Zhang S, Han J, Wang Z, Chen HN. Reactive oxygen species in colorectal cancer adjuvant therapies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166922. [PMID: 37898425 DOI: 10.1016/j.bbadis.2023.166922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Colorectal cancer (CRC), a prevalent global malignancy, often necessitates adjuvant therapies such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy to mitigate tumor burden in advanced stages. The efficacy of these therapies is significantly influenced by reactive oxygen species (ROS). Previous research underscores the pivotal role of ROS in gut pathology, targeted therapy, and drug resistance. ROS-mediated CRC adjuvant therapies encompass a myriad of mechanisms, including cell death and proliferation, survival and cell cycle, DNA damage, metabolic reprogramming, and angiogenesis. Preliminary clinical trials have begun to unveil the potential of ROS-manipulating therapy in enhancing CRC adjuvant therapies. This review aims to provide a comprehensive synthesis of studies exploring the role of ROS in CRC adjuvant therapies.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqiu Hao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hai-Ning Chen
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Wu L, Liu Y, Deng W, Wu T, Bu L, Chen L. OLR1 Is a Pan-Cancer Prognostic and Immunotherapeutic Predictor Associated with EMT and Cuproptosis in HNSCC. Int J Mol Sci 2023; 24:12904. [PMID: 37629087 PMCID: PMC10454104 DOI: 10.3390/ijms241612904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metabolism plays a critical role in cancer. OLR1 has been implicated in cardiovascular and metabolic disorders, while its association with tumorigenesis and tumor immunity remains poorly defined in the literature. We conducted comprehensive pan-cancer analyses based on the TCGA database to examine OLR1 expression and its prognostic implications. Correlations between OLR1 expression level and tumor immunity and immunotherapy were investigated by immune infiltration, enrichment, and TIDE analysis methods. Immunohistochemistry detected OLR1 expression in HNSCC. We used the GSEA method to explore the potential signaling pathways in which OLR1 is involved, and a correlation analysis to investigate the relationships between OLR1 and epithelial-mesenchymal transition (EMT) and cuproptosis. In addition, the effects of OLR1 knockdown on the EMT process, invasion, stemness, and cuproptosis of HNSCC cells were examined by scratch, Transwell, CCK8, sphere formation, and flow cytometry, while changes in related proteins were detected using the immunoblotting method. OLR1 is highly expressed in most cancers, and it is associated with patient prognosis. OLR1 expression positively correlates with immunosuppressive cell infiltration and immune checkpoint molecules, while being negatively associated with effector T cells. Moreover, significant correlations are observed between OLR1 expression and tumor mutation burden (TMB) and microsatellite instability (MSI) in some cancers. In HNSCC, OLR1 expression is related to advanced clinicopathological factors and unfavorable outcomes. Patients with high OLR1 expression levels are prone to experience immune escape and benefit less from immune checkpoint inhibitor (ICI) therapy. Moreover, OLR1 expression may affect EMT, stemness, and cuproptosis resistance outcomes. OLR1 is an immune-related prognostic biomarker with potential as a prognostic indicator for immunotherapy, and it may also be involved in regulating the EMT process and cuproptosis in HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
8
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Tsumita T, Maishi N, Annan DAM, Towfik MA, Matsuda A, Onodera Y, Nam JM, Hida Y, Hida K. The oxidized-LDL/LOX-1 axis in tumor endothelial cells enhances metastasis by recruiting neutrophils and cancer cells. Int J Cancer 2022; 151:944-956. [PMID: 35608341 DOI: 10.1002/ijc.34134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/07/2022]
Abstract
Epidemiological relationships between cancer and cardiovascular diseases have been reported, but a molecular basis remains unclear. Some proteoglycans that strongly bind low-density-lipoprotein (LDL) are abundant both in atherosclerotic regions and in high metastatic-tumor tissue. LDL retention is crucial for the initiation of atherosclerosis, although its contribution to malignancy of cancer is not known. In this study, we show the importance of the accumulation of LDL in tumor metastasis. We demonstrated that high metastatic-tumor tissue contains high amounts of LDL and forms more oxidized LDL (ox-LDL). Interestingly, lectin-like ox-LDL receptor 1 (LOX-1), a receptor for ox-LDL and a recognized key molecule for cardiovascular diseases, was highly expressed in tumor endothelial cells (TECs). Neutrophils are important for ox-LDL formation. Since we observed the accumulation and activation of neutrophils in HM-tumors, we evaluated the involvement of LOX-1 in neutrophil migration and activation. LOX-1 induced neutrophil migration via CCL2 secretion from TECs, which was enhanced by ox-LDL. Finally, we show genetic manipulation of LOX-1 expression in TECs or tumor stroma tended to reduce lung metastasis. Thus, the LOX-1/ox-LDL axis in TECs may lead to the formation of a high metastatic-tumor microenvironment via attracting neutrophils. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takuya Tsumita
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- JSPS Research Fellow for Young Scientists, Tokyo, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Dorcas Akuba-Muhyia Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Accra College of Medicine, Accra, Ghana
- West African Genetic Medicine Centre, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mohammad Alam Towfik
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Aya Matsuda
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response. Sci Rep 2022; 12:8545. [PMID: 35595808 PMCID: PMC9123013 DOI: 10.1038/s41598-022-12364-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
High-throughput phenotyping is becoming increasingly available thanks to analytical and bioinformatics approaches that enable the use of very high-dimensional data and to the availability of dynamic models that link phenomena across levels: from genes to cells, from cells to organs, and through the whole organism. The combination of phenomics, deep learning, and machine learning represents a strong potential for the phenotypical investigation, leading the way to a more embracing approach, called machine learning phenomics (MLP). In particular, in this work we present a novel MLP platform for phenomics investigation of cancer-cells response to therapy, exploiting and combining the potential of time-lapse microscopy for cell behavior data acquisition and robust deep learning software architectures for the latent phenotypes extraction. A two-step proof of concepts is designed. First, we demonstrate a strict correlation among gene expression and cell phenotype with the aim to identify new biomarkers and targets for tailored therapy in human colorectal cancer onset and progression. Experiments were conducted on human colorectal adenocarcinoma cells (DLD-1) and their profile was compared with an isogenic line in which the expression of LOX-1 transcript was knocked down. In addition, we also evaluate the phenotypic impact of the administration of different doses of an antineoplastic drug over DLD-1 cells. Under the omics paradigm, proteomics results are used to confirm the findings of the experiments.
Collapse
|
12
|
Gupta R. Epigenetic regulation and targeting of ECM for cancer therapy. Am J Physiol Cell Physiol 2022; 322:C762-C768. [PMID: 35235427 PMCID: PMC8993518 DOI: 10.1152/ajpcell.00022.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
The tumor microenvironment (TME) composed of different types of cells embedded in extracellular matrix (ECM) has crucial effects on cancer growth and metastasis. ECM is made of a variety of proteins that provide structural support to the cells and regulate biological functions by modulating the cross talk among cells, thus effecting tumor growth and progression. In this mini-review, the author discusses epigenetic modifications that regulate the expression of fibrous ECM proteins and glycoproteins and the prospects of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Iftikhar R, Penrose HM, King AN, Kim Y, Ruiz E, Kandil E, Machado HL, Savkovic SD. FOXO3 Expression in Macrophages Is Lowered by a High-Fat Diet and Regulates Colonic Inflammation and Tumorigenesis. Metabolites 2022; 12:250. [PMID: 35323693 PMCID: PMC8949544 DOI: 10.3390/metabo12030250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by augmented inflammation and tumorigenesis, is linked to genetic predispositions, such as FOXO3 polymorphisms. As obesity is associated with aberrant macrophages infiltrating different tissues, including the colon, we aimed to identify FOXO3-dependent transcriptomic changes in macrophages that drive obesity-mediated colonic inflammation and tumorigenesis. We found that in mouse colon, high-fat-diet-(HFD)-related obesity led to diminished FOXO3 levels and increased macrophages. Transcriptomic analysis of mouse peritoneal FOXO3-deficient macrophages showed significant differentially expressed genes (DEGs; FDR < 0.05) similar to HFD obese colons. These DEG-related pathways, linked to mouse colonic inflammation and tumorigenesis, were similar to those in inflammatory bowel disease (IBD) and human colon cancer. Additionally, we identified a specific transcriptional signature for the macrophage-FOXO3 axis (MAC-FOXO382), which separated the transcriptome of affected tissue from control in both IBD (p = 5.2 × 10−8 and colon cancer (p = 1.9 × 10−11), revealing its significance in human colonic pathobiologies. Further, we identified (heatmap) and validated (qPCR) DEGs specific to FOXO3-deficient macrophages with established roles both in IBD and colon cancer (IL-1B, CXCR2, S100A8, S100A9, and TREM1) and those with unexamined roles in these colonic pathobiologies (STRA6, SERPINH1, LAMB1, NFE2L3, OLR1, DNAJC28 and VSIG10). These findings establish an important understanding of how HFD obesity and related metabolites promote colonic pathobiologies.
Collapse
Affiliation(s)
- Rida Iftikhar
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Harrison M. Penrose
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Angelle N. King
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Yunah Kim
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA 70012, USA; (E.R.); (E.K.)
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA 70012, USA; (E.R.); (E.K.)
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70012, USA;
| | - Suzana D. Savkovic
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| |
Collapse
|
14
|
Myeloperoxidase-Oxidized LDL Activates Human Aortic Endothelial Cells through the LOX-1 Scavenger Receptor. Int J Mol Sci 2022; 23:ijms23052837. [PMID: 35269979 PMCID: PMC8910860 DOI: 10.3390/ijms23052837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease as a result of atherosclerosis is a leading cause of death worldwide. Atherosclerosis is primarily caused by the dysfunction of vascular endothelial cells and the subendothelial accumulation of oxidized forms of low-density lipoprotein (LDL). Early observations have linked oxidized LDL effects in atherogenesis to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) scavenger receptor. It was shown that LOX-1 is upregulated by many inflammatory mediators and proatherogenic stimuli including cytokines, reactive oxygen species (ROS), hemodynamic blood flow, high blood sugar levels and, most importantly, modified forms of LDL. Oxidized LDL signaling pathways in atherosclerosis were first explored using LDL that is oxidized by copper (Cuox-LDL). In our study, we used a more physiologically relevant model of LDL oxidation and showed, for the first time, that myeloperoxidase oxidized LDL (Mox-LDL) may affect human aortic endothelial cell (HAEC) function through the LOX-1 scavenger receptor. We report that Mox-LDL increases the expression of its own LOX-1 receptor in HAECs, enhancing inflammation and simultaneously decreasing tubulogenesis in the cells. We hypothesize that Mox-LDL drives endothelial dysfunction (ED) through LOX-1 which provides an initial hint to the pathways that are initiated by Mox-LDL during ED and the progression of atherosclerosis.
Collapse
|
15
|
Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao DF, Qin L. Involvement of LDL and ox-LDL in Cancer Development and Its Therapeutical Potential. Front Oncol 2022; 12:803473. [PMID: 35251975 PMCID: PMC8889620 DOI: 10.3389/fonc.2022.803473] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023] Open
Abstract
Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in the rapid growth of cancer cells as well as the formation of metastatic lesions. Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer, colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and ox-LDL play important roles during the occurrence and development of cancers. LDL can deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-binding proteins (SREBPs), which subsequently promotes cholesterol uptake and synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer. Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential therapeutic effect of targeting lipid metabolism in cancer therapy warrants more investigation.
Collapse
Affiliation(s)
- Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
16
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
17
|
Knockdown of OLR1 weakens glycolytic metabolism to repress colon cancer cell proliferation and chemoresistance by downregulating SULT2B1 via c-MYC. Cell Death Dis 2021; 13:4. [PMID: 34921134 PMCID: PMC8683511 DOI: 10.1038/s41419-021-04174-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Chemoresistance is one of the major problems of colon cancer treatment. In tumors, glycolytic metabolism has been identified to promote cell proliferation and chemoresistance. However, the molecular mechanisms underlying glycolytic metabolism and chemoresistance in colon cancer remains enigmatic. Hence, this research was designed to explore the mechanism underlying the OLR1/c-MYC/SULT2B1 axis in the regulation of glycolytic metabolism, to affect colon cancer cell proliferation and chemoresistance. Colon cancer tissues and LoVo cells were attained, where OLR1, c-MYC, and SULT2B1 expression was detected by immunohistochemistry, RT-qPCR, and western blot analysis. Next, ectopic expression and knockdown assays were implemented in LoVo cells. Cell proliferation was detected by MTS assay and clone formation. Extracellular acidification, glucose uptake, lactate production, ATP/ADP ratio, and GLUT1 and LDHA expression were measured to evaluate glycolytic metabolism. Then, the transfected cells were treated with chemotherapeutic agents to assess drug resistance by MTS experiments and P-gp and SMAD4 expression by RT-qPCR. A nude mouse model of colon cancer transplantation was constructed for in vivo verification. The levels of OLR1, c-MYC, and SULT2B1 were upregulated in colon cancer tissues and cells. Mechanistically, OLR1 increased c-MYC expression to upregulate SULT2B1 in colon cancer cells. Moreover, knockdown of OLR1, c-MYC, or SULT2B1 weakened glycolytic metabolism, proliferation, and chemoresistance of colon cancer cells. In vivo experiments authenticated that OLR1 knockdown repressed the tumorigenesis and chemoresistance in nude mice by downregulating c-MYC and SULT2B1. Conclusively, knockdown of OLR1 might diminish SULT2B1 expression by downregulating c-MYC, thereby restraining glycolytic metabolism to inhibit colon cancer cell proliferation and chemoresistance.
Collapse
|
18
|
Fas signaling in adipocytes promotes low-grade inflammation and lung metastasis of colorectal cancer through interaction with Bmx. Cancer Lett 2021; 522:93-104. [PMID: 34536556 DOI: 10.1016/j.canlet.2021.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Obesity is a global public health issue. Obesity-related chronic low-grade inflammation (meta-inflammation) can lead to aberrant adipokine release and promote cardiometabolic diseases and obesity-related tumors. However, the mechanisms involved in the initiation of inflammatory responses in obesity and obesity-related tumors as well as metastasis are not fully understood. In this study, we found that the increased tumor necrosis factor-alpha (TNF-α) in adipocytes promoted the lung metastasis of MC38 colon cancer cells via Fas signaling. The release of TNF-α and interleukin (IL)-6 by Fas signaling in adipocytes was caused by the activation of the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways mediated by the interaction of Fas with Bmx, a non-receptor tyrosine kinase. Moreover, the Fas/Bmx complex is involved in the inflammation of adipocytes via Fas at the Tyr189 site and SH2 domain of Bmx. This is the first study to report the interaction between Fas and Bmx in adipocyte inflammation, which may provide clues for the development of potential new treatment strategies for obesity-related diseases.
Collapse
|
19
|
Murdocca M, De Masi C, Pucci S, Mango R, Novelli G, Di Natale C, Sangiuolo F. LOX-1 and cancer: an indissoluble liaison. Cancer Gene Ther 2021; 28:1088-1098. [PMID: 33402733 PMCID: PMC8571092 DOI: 10.1038/s41417-020-00279-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Recently, a strong correlation between metabolic disorders, tumor onset, and progression has been demonstrated, directing new therapeutic strategies on metabolic targets. OLR1 gene encodes the LOX-1 receptor protein, responsible for the recognition, binding, and internalization of ox-LDL. In the past, several studied, aimed to clarify the role of LOX-1 receptor in atherosclerosis, shed light on its role in the stimulation of the expression of adhesion molecules, pro-inflammatory signaling pathways, and pro-angiogenic proteins, including NF-kB and VEGF, in vascular endothelial cells and macrophages. In recent years, LOX-1 upregulation in different tumors evidenced its involvement in cancer onset, progression and metastasis. In this review, we outline the role of LOX-1 in tumor spreading and metastasis, evidencing its function in VEGF induction, HIF-1alpha activation, and MMP-9/MMP-2 expression, pushing up the neoangiogenic and the epithelial-mesenchymal transition process in glioblastoma, osteosarcoma prostate, colon, breast, lung, and pancreatic tumors. Moreover, our studies contributed to evidence its role in interacting with WNT/APC/β-catenin axis, highlighting new pathways in sporadic colon cancer onset. The application of volatilome analysis in high expressing LOX-1 tumor-bearing mice correlates with the tumor evolution, suggesting a closed link between LOX-1 upregulation and metabolic changes in individual volatile compounds and thus providing a viable method for a simple, non-invasive alternative monitoring of tumor progression. These findings underline the role of LOX-1 as regulator of tumor progression, migration, invasion, metastasis formation, and tumor-related neo-angiogenesis, proposing this receptor as a promising therapeutic target and thus enhancing current antineoplastic strategies.
Collapse
Affiliation(s)
- M Murdocca
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.
| | - C De Masi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - S Pucci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - R Mango
- Cardiology Unit, Department of Emergency and Critical Care, Tor Vergata Hospital, Rome, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - C Di Natale
- Department of Electronic Engineering, Tor Vergata University, Rome, Italy
| | - F Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
20
|
Urine LOX-1 and Volatilome as Promising Tools towards the Early Detection of Renal Cancer. Cancers (Basel) 2021; 13:cancers13164213. [PMID: 34439368 PMCID: PMC8393749 DOI: 10.3390/cancers13164213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is often late diagnosed at an advanced stage, worsening the prognosis of the patients. Thus, an early marker is desirable. This paper presents an innovative combined approach useful to identify, for the first time, the presence of LOX-1 protein within the urine of clear cell RCC patients. The LOX-1 protein is related to metabolic disorder-associated carcinogenesis and is shown to be quantitatively correlated to tumor grade and stage. The analysis of volatile compounds released by urine shows the diagnostic potentialities of volatilome and indicates that at least one volatile compound is correlated with both LOX-1 and cancer. In this work, we propose the potential use of a noninvasive approach that enables an early, routine ccRCC diagnosis and leads to a better management of the patients. Abstract Renal cell carcinoma (RCC) represents around 3% of all cancers, within which clear cell RCC (ccRCC) are the most common type (70–75%). The RCC disease regularly progresses asymptomatically and upon presentation is recurrently metastatic, therefore, an early method of detection is necessary. The identification of one or more specific biomarkers measurable in biofluids (i.e., urine) by combined approaches could surely be appropriate for this kind of cancer, especially due to easy obtainability by noninvasive method. OLR1 is a metabolic gene that encodes for the Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), implicated in inflammation, atherosclerosis, ROS, and metabolic disorder-associated carcinogenesis. Specifically, LOX-1 is clearly involved in tumor insurgence and progression of different human cancers. This work reports for the first time the presence of LOX-1 protein in ccRCC urine and its peculiar distribution in tumoral tissues. The urine samples headspace has also been analyzed for the presence of the volatile compounds (VOCs) by SPME-GC/MS and gas sensor array. In particular, it was found by GC/MS analysis that 2-Cyclohexen-1-one,3-methyl-6-(1-methylethyl)- correlates with LOX-1 concentration in urine. The combined approach of VOCs analysis and protein quantification could lead to promising results in terms of diagnostic and prognostic potential for ccRCC tumors.
Collapse
|
21
|
Mougang YK, Di Zazzo L, Minieri M, Capuano R, Catini A, Legramante JM, Paolesse R, Bernardini S, Di Natale C. Sensor array and gas chromatographic detection of the blood serum volatolomic signature of COVID-19. iScience 2021; 24:102851. [PMID: 34308276 PMCID: PMC8272622 DOI: 10.1016/j.isci.2021.102851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Volatolomics is gaining consideration as a viable approach to diagnose several diseases, and it also shows promising results to discriminate COVID-19 patients via breath analysis. This paper extends the study of the relationship between volatile compounds (VOCs) and COVID-19 to blood serum. Blood samples were collected from subjects recruited at the emergency department of a large public hospital. The VOCs were analyzed with a gas chromatography mass spectrometer (GC/MS). GC/MS data show that in more than 100 different VOCs, the pattern of abundances of 17 compounds identifies COVID-19 from non-COVID with an accuracy of 89% (sensitivity 94% and specificity 83%). GC/MS analysis was complemented by an array of gas sensors whose data achieved an accuracy of 89% (sensitivity 94% and specificity 80%).
Collapse
Affiliation(s)
- Yolande Ketchanji Mougang
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Lorena Di Zazzo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Jacopo Maria Legramante
- Department of Medicine's Systems, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.,Emerging Technologies Division of International Federation Clinical Chemistry and Laboratory Medicine (IFCC), Milano, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
22
|
Akhmedov A, Sawamura T, Chen CH, Kraler S, Vdovenko D, Lüscher TF. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J 2021; 42:1797-1807. [PMID: 36282110 DOI: 10.1093/eurheartj/ehaa770] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.
Collapse
Affiliation(s)
- Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Shinshu University 3-1-1, Asahi, Matsumoto 390-8621, Japan
| | - Chu-Huang Chen
- Vascular and Medical Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland.,Royal Brompton and Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Dovehause Street, London SW3 6LY, UK
| |
Collapse
|
23
|
Effect of Oxidized Low-Density Lipoprotein on Head and Neck Squamous Cell Carcinomas. Biomedicines 2021; 9:biomedicines9050513. [PMID: 34063116 PMCID: PMC8148131 DOI: 10.3390/biomedicines9050513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are two major causes of death worldwide. The question is, "Could there be a link between these two pathologies in addition to their shared, common risk factors?" To find some answers, we studied the effect of oxidized low-density lipoproteins (oxLDL) on head and neck cancer (HNC) cell lines, since oxLDL is a major contributor to atherosclerosis and the principal cause of CVD. In this study, we exposed three HNC cell lines (Detroit 562, UPCI-SCC-131 and FaDu) to oxLDL. We investigated two oxLDL receptors, CD36 and Lox-1, using immunofluorescence. Cancer cell migration was evaluated using Boyden chambers and the Wnt/β-catenin pathway was investigated using Western blotting. We demonstrated that the expression of CD36 and Lox-1 significantly increases after exposure to oxLDL. Moreover, we found that oxLDL reduces the migration of HNC cell lines, an observation that is in line with an increased degradation of β-catenin under oxLDL. Finally, the inhibition of CD36 with sulfosuccinimidyl oleate (SSO) reverses the inhibition of cell migration. In conclusion, we report that oxLDL seems to induce an increase in CD36 expression on HNC cell lines, enhancing the uptake of these lipids in cells to finally decrease cancer cell migration via the CD36/β-catenin pathway.
Collapse
|
24
|
Katayama C, Yokobori T, Ozawa N, Suga K, Shiraishi T, Okada T, Osone K, Katoh R, Suto T, Motegi Y, Ogawa H, Sano A, Sakai M, Sohda M, Erkhem-Ochir B, Gombodorj N, Katayama A, Oyama T, Shirabe K, Kuwano H, Saeki H. Low level of stromal lectin-like oxidized LDL receptor 1 and CD8 + cytotoxic T-lymphocytes indicate poor prognosis of colorectal cancer. Cancer Rep (Hoboken) 2021; 4:e1364. [PMID: 33675293 PMCID: PMC8388181 DOI: 10.1002/cnr2.1364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background Lectin‐like oxidized LDL receptor‐1 (LOX‐1) has been identified as a new marker for functional myeloid‐derived suppressor cells (MDSCs) that exhibit an immunosuppressive phenotype in the tumor microenvironment (TME). However, the role of LOX‐1+ cells in the TME of colorectal cancer (CRC) remains unknown. Aim This study aimed to determine the expression and significance of LOX‐1 in the TME of clinical CRC specimens. Methods and results We performed immunohistochemical and genetic analyses of LOX‐1, CD8, KRAS, and BRAF in 128 resected CRC specimens and determined the expression of IFN‐γ and IL‐10 using real‐time reverse transcription‐polymerase chain reaction. We analyzed the correlation between LOX‐1, TME factors, gene alteration, clinicopathological factors, and disease prognosis. The co‐expression pattern of LOX‐1, hematopoietic markers, and a fibroblast marker was evaluated using multiplex immunofluorescence staining. Low stromal LOX‐1 expression and low intratumoral CD8+ cytotoxic T‐lymphocyte (CTL) status correlated with poor prognosis. Moreover, stromal LOX‐1‐low/CD8+ CTL‐low status was the most important independent prognostic factor of poor overall survival. Most of the LOX‐1+ stromal cells were positive for CD163+, indicating they were CD163+ M2 macrophages. Conclusions The MDSC marker, LOX‐1, was mainly expressed by M2 macrophages in CRC tissues. LOX‐1+ macrophages and CD8+ CTLs may serve as useful biomarkers for predicting the prognosis of CRC.
Collapse
Affiliation(s)
- Chika Katayama
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kunihiko Suga
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryuji Katoh
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Toshinaga Suto
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoko Motegi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Bilguun Erkhem-Ochir
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Navchaa Gombodorj
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan.,Department of Radiation Oncology, National Cancer Center, Ulaanbaatar, Mongolia
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
25
|
Despotović SZ, Milićević ĐN, Krmpot AJ, Pavlović AM, Živanović VD, Krivokapić Z, Pavlović VB, Lević S, Nikolić G, Rabasović MD. Altered organization of collagen fibers in the uninvolved human colon mucosa 10 cm and 20 cm away from the malignant tumor. Sci Rep 2020; 10:6359. [PMID: 32286443 PMCID: PMC7156654 DOI: 10.1038/s41598-020-63368-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Remodelling of collagen fibers has been described during every phase of cancer genesis and progression. Changes in morphology and organization of collagen fibers contribute to the formation of microenvironment that favors cancer progression and development of metastasis. However, there are only few data about remodelling of collagen fibers in healthy looking mucosa distant from the cancer. Using SHG imaging, electron microscopy and specialized softwares (CT-FIRE, CurveAlign and FiberFit), we objectively visualized and quantified changes in morphology and organization of collagen fibers and investigated possible causes of collagen remodelling (change in syntheses, degradation and collagen cross-linking) in the colon mucosa 10 cm and 20 cm away from the cancer in comparison with healthy mucosa. We showed that in the lamina propria this far from the colon cancer, there were changes in collagen architecture (width, straightness, alignment of collagen fibers and collagen molecules inside fibers), increased representation of myofibroblasts and increase expression of collagen-remodelling enzymes (LOX and MMP2). Thus, the changes in organization of collagen fibers, which were already described in the cancer microenvironment, also exist in the mucosa far from the cancer, but smaller in magnitude.
Collapse
Affiliation(s)
- Sanja Z Despotović
- University of Belgrade, Faculty of Medicine, Institute of Histology and embryology, Belgrade, Serbia.
| | - Đorđe N Milićević
- Saarland University, Department of Internal Medicine V- Pulmonology, Allergology, Intensive Care Medicine, Homburg/Saar, Germany
| | | | | | | | - Zoran Krivokapić
- Clinic for Abdominal Surgery- First surgical clinic, Clinical Center of Serbia, Belgrade, Serbia
| | | | - Steva Lević
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | - Gorana Nikolić
- University of Belgrade, Faculty of Medicine, Institute of Pathology, Belgrade, Serbia
| | | |
Collapse
|
26
|
Nakashima-Nakasuga C, Hazama S, Suzuki N, Nakagami Y, Xu M, Yoshida S, Tomochika S, Fujiwara N, Matsukuma S, Matsui H, Tokumitsu Y, Kanekiyo S, Shindo Y, Maeda N, Tsunedomi R, Iida M, Takeda S, Yoshino S, Ueno T, Hamamoto Y, Ogihara H, Hoshii Y, Nagano H. Serum LOX-1 is a novel prognostic biomarker of colorectal cancer. Int J Clin Oncol 2020; 25:1308-1317. [PMID: 32277394 DOI: 10.1007/s10147-020-01673-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer is the third most common cancer worldwide. If biomarkers can be identified in liquid biopsy, diagnosis and treatment can be optimized even when cancerous tissues are not available. The purpose of this study was to identify proteins from liquid biopsy that would be useful as markers of poor prognosis. METHODS First, we comprehensively analyzed serum proteins to identify potential biomarkers and focused on serum lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). The relationship between LOX-1 and the prognosis of patients with colorectal cancer has not been reported. Next, we validated this marker using serum samples from 238 patients with colorectal cancer by ELISA and 100 tissue samples by immunohistochemical staining. RESULTS The optimal cut-off value of serum LOX-1 was 538.7 pg/mL according to time-dependent receiver operating characteristics curve analysis. The overall survival of patients with high levels of serum LOX-1 was significantly poorer than that of individuals with low levels of LOX-1 in the training and test datasets. In multivariate analysis for overall survival, serum LOX-1 was an independent prognostic factor identified in liquid biopsy (hazard ratio = 1.729, p = 0.027). The prognosis of patients with high LOX-1 expression in tumor tissues was significantly poorer than that of individuals with low expression (p =0.047 ). Additionally, inflammatory factors such as white blood cell count, C-reactive protein level, neutrophil/lymphocyte ratio, and monocyte/lymphocyte ratio were significantly higher in the group with high serum LOX-1 levels. CONCLUSIONS Serum LOX-1 might be a useful biomarker of poor prognosis in colorectal cancer.
Collapse
Affiliation(s)
- Chiyo Nakashima-Nakasuga
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University School of Medicine, Ube, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University School of Medicine, Ube, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuyuki Fujiwara
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinsuke Kanekiyo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | | | - Tomio Ueno
- Department of Gastroenterological Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihiko Hamamoto
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Japan
| | - Hiroyuki Ogihara
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
27
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
28
|
Ceelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends Cancer 2020; 6:236-246. [PMID: 32101726 DOI: 10.1016/j.trecan.2019.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/01/2023]
Abstract
Peritoneal metastasis (PM) occurs in approximately one in four colorectal cancer (CRC) patients. The pathophysiology of colorectal PM remains poorly characterized. Also, the efficacy of current treatment modalities, including surgery and intraperitoneal (IP) delivery of chemotherapy, is limited. Increasingly, therefore, efforts are being developed to unravel the PM cascade and at understanding the PM-associated tumor microenvironment (TME) and peritoneal ecosystem as potential therapeutic targets. Here, we review recent insights in the structure and components of the TME in colorectal PM, and discuss how these may translate into novel therapeutic approaches aimed at re-engineering the metastasis-promoting activity of the stroma.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium; Department of GI Surgery, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Vignesh Narasimhan
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander G Heriot
- Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory for Experimental Cancer Research, Ghent University, Ghent, Belgium
| |
Collapse
|