1
|
Amrutkar M, Guttorm SJT, Finstadsveen AV, Labori KJ, Eide L, Rootwelt H, Elgstøen KBP, Gladhaug IP, Verbeke CS. Global metabolomic profiling of tumor tissue and paired serum samples to identify biomarkers for response to neoadjuvant FOLFIRINOX treatment of human pancreatic cancer. Mol Oncol 2025; 19:391-411. [PMID: 39545923 PMCID: PMC11793008 DOI: 10.1002/1878-0261.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Neoadjuvant chemotherapy (NAT) is increasingly used for the treatment of non-metastatic pancreatic ductal adenocarcinoma (PDAC) and is established as a standard of care for borderline resectable and locally advanced PDAC. However, full exploitation of its clinical benefits is limited by the lack of biomarkers that assess treatment response. To address this unmet need, global metabolomic profiling was performed on tumor tissue and paired serum samples from patients with treatment-naïve (TN; n = 18) and neoadjuvant leucovorin calcium (folinic acid), fluorouracil, irinotecan hydrochloride and oxaliplatin (FOLFIRINOX)-treated (NAT; n = 17) PDAC using liquid chromatography mass spectrometry. Differentially abundant metabolites (DAMs) in TN versus NAT groups were identified and their correlation with various clinical parameters was assessed. Metabolomics profiling identified 40 tissue and five serum DAMs in TN versus NAT PDAC. In general, DAMs associated with amino acid and nucleotide metabolism were lower in NAT compared to TN. Four DAMs-3-hydroxybutyric acid (BHB), 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), glycochenodeoxycholate and citrulline-were common to both tissue and serum and showed a similar pattern of differential abundance in both groups. A strong positive correlation was observed between serum carbohydrate 19-9 antigen (CA 19-9) and tissue carnitines (C12, C18, C18:2) and N8-acetylspermidine. The reduction in CA 19-9 following NAT correlated negatively with serum deoxycholate levels, and the latter correlated positively with survival. This study revealed neoadjuvant-chemotherapy-induced changes in metabolic pathways in PDAC, mainly amino acid and nucleotide metabolism, and these correlated with reduced CA 19-9 following neoadjuvant FOLFIRINOX treatment.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pathology, Division of Laboratory MedicineOslo University HospitalNorway
| | - Sander Johannes Thorbjørnsen Guttorm
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | | | - Knut Jørgen Labori
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalOsloNorway
| | - Lars Eide
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Katja Benedikte Prestø Elgstøen
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Ivar P. Gladhaug
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalOsloNorway
| | - Caroline S. Verbeke
- Department of Pathology, Division of Laboratory MedicineOslo University HospitalNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| |
Collapse
|
2
|
Xiang Y, Zhang C, Wang J, Cheng Y, Wang K, Wang L, Tong Y, Yan D. Identification of Metabolic Characteristic-Pancreatic Ductal Adenocarcinoma Associations Using Mendelian Randomization and Metabolomics. J Gastrointest Cancer 2025; 56:48. [PMID: 39833419 PMCID: PMC11753325 DOI: 10.1007/s12029-025-01173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Metabolic reprogramming is increasingly recognized as a crucial factor influencing the development, progression, and prognosis of pancreatic ductal adenocarcinoma (PDAC). Despite this, the potential association of specific metabolic characteristics and PDAC remains ambiguous due to the variability introduced by individual patient differences. In this study, we aimed to find out metabolic pathways that may be associated with the overall survival (OS) of PDAC patients. METHODS We utilized Mendelian randomization (MR) to assess the associations between 1400 metabolites and metabolite ratios and PDAC. We performed functional annotation and pathway enrichment analysis on both significant metabolites and the shared proteins corresponding to the significant metabolite ratios. Additionally, we analyzed peripheral blood metabolites from 32 PDAC patients to correlate metabolites with clinicopathological features and OS. Functional enrichment analysis was also conducted on the significant metabolites. RESULTS Our MR analysis revealed 55 metabolites/metabolite ratios associated with PDAC. Among the top 20 enriched metabolic pathways involving proteins related to significant metabolite ratios, seven were associated with amino acid metabolism, three with carbohydrate metabolism, and two with lipid metabolism. Serum metabolomics of PDAC patients highlighted significant upregulation in pathways related to primary bile acid biosynthesis, as well as taurine and hypotaurine metabolism, which correlated negatively with OS. Conversely, pathways involved in arginine biosynthesis, arginine and proline metabolism, and aminoacyl-tRNA biosynthesis were notably downregulated and positively associated with OS. Both upregulated and downregulated differential metabolites were notably enriched in the pyrimidine metabolism pathway, which was linked to poorer OS. These associations were corroborated by MR analysis. CONCLUSION The study provides valuable insights into the metabolic characteristics associated with PDAC, offering a reference point for improving diagnosis and treatment for PDAC.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Chan Zhang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Kangjie Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Li Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
3
|
Liu ZH, Ma P, He Y, Zhang YF, Mou Z, Fang T, Wang W, Yu KH. The Mechanism and Latest Progress of m6A Methylation in the Progression of Pancreatic Cancer. Int J Biol Sci 2025; 21:1187-1201. [PMID: 39897038 PMCID: PMC11781182 DOI: 10.7150/ijbs.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Pancreatic cancer (PC), known as the "king of cancers," is characterized by an exceptionally low five-year survival rate, posing a formidable challenge to global public health. N6-methyladenosine (m6A) methylation is prevalent across various stages of eukaryotic RNA expression, including splicing, maturation, stability, translation, and localization, and represents a pivotal mechanism of epigenetic regulation. m6A methylation influences tumor initiation and progression by modulating post-transcriptional processes, playing a critical role in sustaining cancer cell stemness, promoting cell proliferation, and mediating drug resistance. Extensive research underscores the substantial contribution of m6A modifications to PC development. However, the multiplicity of m6A regulators and their intricate mechanisms of action complicate the landscape. This review aims to deepen the understanding of m6A's role in PC by delineating its involvement in four key areas of tumorigenesis: the hypoxic tumor microenvironment, metabolic reprogramming, immune microenvironment, and resistance mechanisms. Additionally, the review addresses the emerging frontier of m6A interactions with non-coding RNAs (ncRNAs), offering insights into the potential therapeutic and prognostic applications of m6A in the treatment and prognosis prediction of PC.
Collapse
Affiliation(s)
- Ze-Hao Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Peng Ma
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yue-Feng Zhang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuo Mou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Fang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kai-Huan Yu
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
4
|
Maiti A, Mondal S, Choudhury S, Bandopadhyay A, Mukherjee S, Sikdar N. Oncometabolites in pancreatic cancer: Strategies and its implications. World J Exp Med 2024; 14:96005. [PMID: 39713078 PMCID: PMC11551704 DOI: 10.5493/wjem.v14.i4.96005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 10/31/2024] Open
Abstract
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor. To survive, grow and proliferate in such tough TME, pancreatic tumor and stromal cells transform their metabolism. Transformed glucose, glutamine, fat, nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism, impart therapy resistance, and immunosuppression in PanCa. Thus, a finer knowledge of altered metabolism would uncover its metabolic susceptibilities. These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa. In this review, we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
Collapse
Affiliation(s)
- Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata 700156, West Bengal, India
| | - Susmita Mondal
- Department of Zoology, Diamond Harbour Women’s University, Diamond Harbour 743368, West Bengal, India
| | - Sounetra Choudhury
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Sanghamitra Mukherjee
- Department of Pathology, RG Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Scientist G, Estuarine and Coastal Studies Foundation, Howrah 711101, West Bengal, India
| |
Collapse
|
5
|
Bajaj N, Sharma D. Uncovering metabolic signatures in cancer-derived exosomes: LC-MS/MS and NMR profiling. NANOSCALE 2024; 17:287-303. [PMID: 39565062 DOI: 10.1039/d4nr03454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Understanding the intricate interplay between cancer metabolism and intercellular communication within the tumour microenvironment (TME) is crucial for advancing cancer diagnostics and therapeutics. In this study, we investigate the metabolites present in exosomes derived from three distinct cancer cell lines: pancreatic cancer (MiaPaCa-2), lung cancer (A549), and glioma (C6). Exosomes were isolated using ultrafiltration and characterized using a combination of techniques including nanoparticle tracking analysis (NTA), electron microscopy (EM), western blotting (WB) and Fourier-transform infrared (FTIR) spectroscopy. Leveraging state-of-the-art metabolomics techniques, including untargeted LC-MS/MS and NMR analyses, we elucidated the metabolic signatures encapsulated within cancer-derived exosomes. Notably, our investigation represents the first exploration of exosomal metabolites from pancreatic and glioma cells, addressing a significant gap in current knowledge. Furthermore, our study investigates the correlation between metabolites derived from different cancer cells, shedding light on potential metabolic interactions within the TME. Through comprehensive analyses, this study provides insights into dysregulated metabolic pathways driving cancer progression and offers novel perspectives on the diagnostic and therapeutic utility of exosomal metabolites. Importantly, common metabolites identified among cancer types suggest potential markers detectable by multiple techniques, enhancing their clinical applicability.
Collapse
Affiliation(s)
- Nandini Bajaj
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Li Z, Chen S, Wu X, Liu F, Zhu J, Chen J, Lu X, Chi R. Research advances in branched-chain amino acid metabolism in tumors. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
|
7
|
Feng L, Chen Y, Mei X, Wang L, Zhao W, Yao J. Prognostic Signature in Osteosarcoma Based on Amino Acid Metabolism-Associated Genes. Cancer Biother Radiopharm 2024; 39:517-531. [PMID: 38512709 DOI: 10.1089/cbr.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Background: Osteosarcoma (OS) is undeniably a formidable bone malignancy characterized by a scarcity of effective treatment options. Reprogramming of amino acid (AA) metabolism has been associated with OS development. The present study was designed to identify metabolism-associated genes (MAGs) that are differentially expressed in OS and to construct a MAG-based prognostic risk signature for this disease. Methods: Expression profiles and clinicopathological data were downloaded from Gene Expression Omnibus (GEO) and UCSC Xena databases. A set of AA MAGs was obtained from the MSigDB database. Differentially expressed genes (DEGs) in GEO dataset were identified using "limma." Prognostic MAGs from UCSC Xena database were determined through univariate Cox regression and used in the prognostic signature development. This signature was validated using another dataset from GEO database. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, single sample gene set enrichment analysis, and GDSC2 analyses were performed to explore the biological functions of the MAGs. A MAG-based nomogram was established to predict 1-, 3-, and 5-year survival. Real-time quantitative polymerase chain reaction, Western blot, and immunohistochemical staining confirmed the expression of MAGs in primary OS and paired adjacent normal tissues. Results: A total of 790 DEGs and 62 prognostic MAGs were identified. A MAG-based signature was constructed based on four MAGs: PIPOX, PSMC2, SMOX, and PSAT1. The prognostic value of this signature was successfully validated, with areas under the receiver operating characteristic curves for 1-, 3-, and 5-year survival of 0.714, 0.719, and 0.715, respectively. This MAG-based signature was correlated with the infiltration of CD56dim natural killer cells and resistance to several antiangiogenic agents. The nomogram was accurate in predictions, with a C-index of 0.77. The expression of MAGs verified by experiment was consistent with the trends observed in GEO database. Conclusion: Four AA MAGs were prognostic of survival in OS patients. This MAG-based signature has the potential to offer valuable insights into the development of treatments for OS.
Collapse
Affiliation(s)
- Liwen Feng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Mei
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjing Zhao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Zhang J, Sun Y, Ma J, Guo X. Deciphering the molecular mechanism of long non-coding RNA HIF1A-AS1 regulating pancreatic cancer cells. Ann Med Surg (Lond) 2024; 86:3367-3377. [PMID: 38846874 PMCID: PMC11152846 DOI: 10.1097/ms9.0000000000002097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
Background HIF1A-AS1, an antisense transcript of HIF1α gene, is a 652-bp LncRNA that is globally expressed in multiple tissues of animals. Recent evidence indicated that HIF1A-AS1 was involved in tumorigenesis of several types of cancer. However, the role of lncRNA in PC has not been reported, and the molecular mechanism remains elusive. Results In order to investigate the role of HIF1A-AS1 in PC, it was overexpressed in some PC cell lines (PANC-1, PATU8988 and SW1990), and a series of experiments including cell viability detection, flow cytometry, transwell migration, clone formation and wound healing were performed. Functionally, the results indicated that overexpression of HIF1A-AS1 could greatly inhibit proliferation and migration and promote apoptosis of PC cells. Moreover, the isobaric tags for relative and absolute quantification (iTRAQ) quantitative proteomics analysis was implemented to explore the underlying mechanism and the results indicated that OE of HIF1A-AS1 globally affected the expression levels of multiple proteins associated with metabolism of cancer. At last, the network analysis revealed that most of these differentially expressed proteins (DEPs) were integrated and severed essential roles in regulatory function. In view of this, we guessed HIF1A-AS1 overexpression induced the dysfunction of metabolism and disordered proteins' translation, which may account for its excellent tumour suppressor effect. Conclusions HIF1A-AS1 altered the cell function of PC cell lines via affecting the expression of numerous proteins. In summary, HIF1A-AS1 may exhibit a potential therapeutic effect on PC, and our study provided useful information in this filed.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Physical Education, Xinxiang Medical University, Xinxiang, Henan
| | - Yifeng Sun
- Department of Occupational Health and Occupational Disease, School of Public Health, Zhengzhou University, Zhengzhou
| | - Jiahui Ma
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Guo
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
9
|
Zygmunt A, Gubernator J. Metabolism and structure of PDA as the target for new therapies: possibilities and limitations for nanotechnology. Expert Opin Drug Deliv 2024; 21:845-865. [PMID: 38899424 DOI: 10.1080/17425247.2024.2370492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Certainly, pancreatic ductal adenocarcinoma poses one of the greatest challenges in current oncology. The dense extracellular matrix and low vessel density in PDA tumor impede the effective delivery of drugs, primarily due to the short pharmacokinetics of most drugs and potential electrostatic interactions with stroma components. AREA COVERED Owing to the distinctive metabolism of PDA and challenges in accessing nutrients, there is a growing interest in cell metabolism inhibitors as a potential means to inhibit cancer development. However, even if suitable combinations of inhibitors are identified, the question about their administration remains, as the same hindrances that impede effective treatment with conventional drugs will also hinder the delivery of inhibitors. Methods including nanotechnology to increase drugs in PDA penetrations are reviewed and discussed. EXPERT OPINION Pancreatic cancer is one of the most difficult tumors to treat due to the small number of blood vessels, high content of extracellular matrix, and specialized resistance mechanisms of tumor cells. One possible method of treating this tumor is the use of metabolic inhibitors in combinations that show synergy. Despite promising results in in vitro tests, their effect is uncertain due to the tumor's structure. In the case of pancreatic cancer, priming of the tumor tissue is required through the sequential administration of drugs that generate blood vessels, increase blood flow, and enhance vascular permeability and extracellular matrix. The use of drug carriers with a size of 10-30 nm may be crucial in the therapy of this cancer.
Collapse
Affiliation(s)
- Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
10
|
Akinlalu A, Flaten Z, Rasuleva K, Mia MS, Bauer A, Elamurugan S, Ejjigu N, Maity S, Arshad A, Wu M, Xia W, Fan J, Guo A, Mathew S, Sun D. Integrated proteomic profiling identifies amino acids selectively cytotoxic to pancreatic cancer cells. Innovation (N Y) 2024; 5:100626. [PMID: 38699777 PMCID: PMC11063643 DOI: 10.1016/j.xinn.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers, characterized by extremely limited therapeutic options and a poor prognosis, as it is often diagnosed during late disease stages. Innovative and selective treatments are urgently needed, since current therapies have limited efficacy and significant side effects. Through proteomics analysis of extracellular vesicles, we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells. Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids, including isoleucine and histidine, via extracellular vesicles. These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells. Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells. Mechanistically, we also identified XRN1 as a potential target for these amino acids. The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues. Furthermore, we found this treatment approach is easy-to-administer and with sustained tumor-killing effects. Together, our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.
Collapse
Affiliation(s)
- Alfred Akinlalu
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
| | - Zachariah Flaten
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Komila Rasuleva
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Aaron Bauer
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Santhalingam Elamurugan
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Nega Ejjigu
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Amara Arshad
- Materials and Nanotechnology Program, North Dakota State University, 1410 North 14th Avenue, CIE 201, Fargo, ND 58102, USA
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ang Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Dali Sun
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
| |
Collapse
|
11
|
Kim JH, Lee J, Im SS, Kim B, Kim EY, Min HJ, Heo J, Chang EJ, Choi KC, Shin DM, Son J. Glutamine-mediated epigenetic regulation of cFLIP underlies resistance to TRAIL in pancreatic cancer. Exp Mol Med 2024; 56:1013-1026. [PMID: 38684915 PMCID: PMC11058808 DOI: 10.1038/s12276-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.
Collapse
MESH Headings
- Humans
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- CASP8 and FADD-Like Apoptosis Regulating Protein/genetics
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- Epigenesis, Genetic
- Glutamine/metabolism
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Jumonji Domain-Containing Histone Demethylases/genetics
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Apoptosis/drug effects
- Ketoglutaric Acids/metabolism
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Animals
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinyoung Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Se Seul Im
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Boyun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinbeom Heo
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jaekyoung Son
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
12
|
Norrsell R, Bauden M, Andersson R, Ansari D. L-type Amino Acid Transporter 1 as a Therapeutic Target in Pancreatic Cancer. Cancer Control 2024; 31:10732748241251583. [PMID: 38683590 PMCID: PMC11060026 DOI: 10.1177/10732748241251583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic rewiring is a key feature of cancer cells to support the demands of growth and proliferation. The metabolism of amino acids is altered in many cancers, including pancreatic cancer. The cellular uptake of amino acids is regulated by amino acid transporters, such as L-type amino acid transporter 1 (LAT1). Accumulating evidence suggests that LAT1 is overexpressed in pancreatic cancer and confers a poor prognosis. Here we discuss the prospects of utilizing LAT1 as a novel target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ragnar Norrsell
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Xu J, Zhou L, Du X, Qi Z, Chen S, Zhang J, Cao X, Xia J. Transcriptome and Lipidomic Analysis Suggests Lipid Metabolism Reprogramming and Upregulating SPHK1 Promotes Stemness in Pancreatic Ductal Adenocarcinoma Stem-like Cells. Metabolites 2023; 13:1132. [PMID: 37999228 PMCID: PMC10673379 DOI: 10.3390/metabo13111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to play a key role in the development and progression of pancreatic ductal adenocarcinoma (PDAC). However, little is known about lipid metabolism reprogramming in PDAC CSCs. Here, we assigned stemness indices, which were used to describe and quantify CSCs, to every patient from the Cancer Genome Atlas (TCGA-PAAD) database and observed differences in lipid metabolism between patients with high and low stemness indices. Then, tumor-repopulating cells (TRCs) cultured in soft 3D (three-dimensional) fibrin gels were demonstrated to be an available PDAC cancer stem-like cell (CSLCs) model. Comprehensive transcriptome and lipidomic analysis results suggested that fatty acid metabolism, glycerophospholipid metabolism, and, especially, the sphingolipid metabolism pathway were mostly associated with CSLCs properties. SPHK1 (sphingosine kinases 1), one of the genes involved in sphingolipid metabolism and encoding the key enzyme to catalyze sphingosine to generate S1P (sphingosine-1-phosphate), was identified to be the key gene in promoting the stemness of PDAC. In summary, we explored the characteristics of lipid metabolism both in patients with high stemness indices and in novel CSLCs models, and unraveled a molecular mechanism via which sphingolipid metabolism maintained tumor stemness. These findings may contribute to the development of a strategy for targeting lipid metabolism to inhibit CSCs in PDAC treatment.
Collapse
Affiliation(s)
- Jinzhi Xu
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaojing Du
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhuoran Qi
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Sinuo Chen
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jian Zhang
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xin Cao
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
14
|
Ponzini FM, Schultz CW, Leiby BE, Cannaday S, Yeo T, Posey J, Bowne WB, Yeo C, Brody JR, Lavu H, Nevler A. Repurposing the FDA-approved anthelmintic pyrvinium pamoate for pancreatic cancer treatment: study protocol for a phase I clinical trial in early-stage pancreatic ductal adenocarcinoma. BMJ Open 2023; 13:e073839. [PMID: 37848297 PMCID: PMC10582846 DOI: 10.1136/bmjopen-2023-073839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Recent reports of the utilisation of pyrvinium pamoate (PP), an FDA-approved anti-helminth, have shown that it inhibits pancreatic ductal adenocarcinoma (PDAC) cell growth and proliferation in-vitro and in-vivo in preclinical models. Here, we report about an ongoing phase I open-label, single-arm, dose escalation clinical trial to determine the safety and tolerability of PP in PDAC surgical candidates. METHODS AND ANALYSIS In a 3+3 dose design, PP is initiated 3 days prior to surgery. The first three patients will be treated with the initial dose of PP at 5 mg/kg orally for 3 days prior to surgery. Dose doubling will be continued to a reach a maximum of 20 mg/kg orally for 3 days, if the previous two dosages (5 mg/kg and 10 mg/kg) were tolerated. Dose-limiting toxicity grade≥3 is used as the primary endpoint. The pharmacokinetic and pharmacodynamic (PK/PD) profile of PP and bioavailability in humans will be used as the secondary objective. Each participant will be monitored weekly for a total of 30 days from the final dose of PP for any side effects. The purpose of this clinical trial is to examine whether PP is safe and tolerable in patients with pancreatic cancer, as well as assess the drug's PK/PD profile in plasma and fatty tissue. Potential implications include the utilisation of PP in a synergistic manner with chemotherapeutics for the treatment of pancreatic cancer. ETHICS AND DISSEMINATION This study was approved by the Thomas Jefferson Institutional Review Board. The protocol number for this study is 20F.041 (Version 3.1 as of 27 October 2021). The data collected and analysed from this study will be used to present at local and national conferences, as well as, written into peer-reviewed manuscript publications. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT05055323.
Collapse
Affiliation(s)
- Francesca M Ponzini
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Benjamin E Leiby
- Sidney Kimmel Medical College, Department of Pharmacology and Experimental Therapeutics, Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shawnna Cannaday
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - T Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - James Posey
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
- Department of Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wilbur B Bowne
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Charles Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care; Departments of Surgery and Cell, Developmental & Cancer Biology, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Harish Lavu
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Avinoam Nevler
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Sniegowski T, Rajasekaran D, Sennoune SR, Sunitha S, Chen F, Fokar M, Kshirsagar S, Reddy PH, Korac K, Mahmud Syed M, Sharker T, Ganapathy V, Bhutia YD. Amino acid transporter SLC38A5 is a tumor promoter and a novel therapeutic target for pancreatic cancer. Sci Rep 2023; 13:16863. [PMID: 37803043 PMCID: PMC10558479 DOI: 10.1038/s41598-023-43983-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells have a great demand for nutrients in the form of sugars, amino acids, and lipids. Particularly, amino acids are critical for cancer growth and, as intermediates, connect glucose, lipid and nucleotide metabolism. PDAC cells meet these requirements by upregulating selective amino acid transporters. Here we show that SLC38A5 (SN2/SNAT5), a neutral amino acid transporter is highly upregulated and functional in PDAC cells. Using CRISPR/Cas9-mediated knockout of SLC38A5, we show its tumor promoting role in an in vitro cell line model as well as in a subcutaneous xenograft mouse model. Using metabolomics and RNA sequencing, we show significant reduction in many amino acid substrates of SLC38A5 as well as OXPHOS inactivation in response to SLC38A5 deletion. Experimental validation demonstrates inhibition of mTORC1, glycolysis and mitochondrial respiration in KO cells, suggesting a serious metabolic crisis associated with SLC38A5 deletion. Since many SLC38A5 substrates are activators of mTORC1 as well as TCA cycle intermediates/precursors, we speculate amino acid insufficiency as a possible link between SLC38A5 deletion and inactivation of mTORC1, glycolysis and mitochondrial respiration, and the underlying mechanism for PDAC attenuation. Overall, we show that SLC38A5 promotes PDAC, thereby identifying a novel, hitherto unknown, therapeutic target for PDAC.
Collapse
Affiliation(s)
- Tyler Sniegowski
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Devaraja Rajasekaran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Souad R Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sukumaran Sunitha
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Fang Chen
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ksenija Korac
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Mosharaf Mahmud Syed
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Tanima Sharker
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
16
|
Tang YC, Chuang YJ, Chang HH, Juang SH, Yen GC, Chang JY, Kuo CC. How to deal with frenemy NRF2: Targeting NRF2 for chemoprevention and cancer therapy. J Food Drug Anal 2023; 31:387-407. [PMID: 39666284 PMCID: PMC10629913 DOI: 10.38212/2224-6614.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 12/13/2024] Open
Abstract
Induction of antioxidant proteins and phase 2 detoxifying enzymes that neutralize reactive electrophiles are important mechanisms for protection against carcinogenesis. Normal cells provide multifaceted pathways to tightly control NF-E2-related factor 2 (NRF2)-mediated gene expression in response to an assault by a range of endogenous and exogenous oncogenic molecules. Transient activation of NRF2 by its activators is able to induce ARE-mediated cytoprotective proteins which are essential for protection against various toxic and oxidative damages, and NRF2 activators thereby have efficacy in cancer chemoprevention. Because NRF2 has a cytoprotective function, it can protect normal cells from carcinogens like an angel, but when the protective effect acts on cancer cells, it will give rise to invincible cancer cells and play a devilish role in tumor progression. Indeed, aberrant activation of NRF2 has been found in a variety of cancers that create a favorable environment for the proliferation and survival of cancer cells and leads to drug resistance, ultimately leading to the poor clinical prognosis of patients. Therefore, pharmacological inhibition of NRF2 signaling has emerged as a promising approach for cancer therapy. This review aims to compile the regulatory mechanisms of NRF2 and its double-edged role in cancer. In addition, we also summarize the research progress of NRF2 modulators, especially phytochemicals, in chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu,
Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu,
Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung,
Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei,
Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei,
Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung,
Taiwan
| |
Collapse
|
17
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Perazzoli G, García-Valdeavero OM, Peña M, Prados J, Melguizo C, Jiménez-Luna C. Evaluating Metabolite-Based Biomarkers for Early Diagnosis of Pancreatic Cancer: A Systematic Review. Metabolites 2023; 13:872. [PMID: 37512579 PMCID: PMC10384620 DOI: 10.3390/metabo13070872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates around 10%. The only curative option remains complete surgical resection, but due to the delay in diagnosis, less than 20% of patients are eligible for surgery. Therefore, discovering diagnostic biomarkers for early detection is crucial for improving clinical outcomes. Metabolomics has become a powerful technology for biomarker discovery, and several metabolomic-based panels have been proposed for PDAC diagnosis, but these advances have not yet been translated into the clinic. Therefore, this review focused on summarizing metabolites identified for the early diagnosis of PDAC in the last five years. Bibliographic searches were performed in the PubMed, Scopus and WOS databases, using the terms "Biomarkers, Tumor", "Pancreatic Neoplasms", "Early Diagnosis", "Metabolomics" and "Lipidome" (January 2018-March 2023), and resulted in the selection of fourteen original studies that compared PDAC patients with subjects with other pancreatic diseases. These investigations showed amino acid and lipid metabolic pathways as the most commonly altered, reflecting their potential for biomarker research. Furthermore, other relevant metabolites such as glucose and lactate were detected in the pancreas tissue and body fluids from PDAC patients. Our results suggest that the use of metabolomics remains a robust approach to improve the early diagnosis of PDAC. However, these studies showed heterogeneity with respect to the metabolomics techniques used and further studies will be needed to validate the clinical utility of these biomarkers.
Collapse
Affiliation(s)
- Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Olga M García-Valdeavero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
19
|
Muranaka H, Hendifar A, Osipov A, Moshayedi N, Placencio-Hickok V, Tatonetti N, Stotland A, Parker S, Van Eyk J, Pandol SJ, Bhowmick NA, Gong J. Plasma Metabolomics Predicts Chemotherapy Response in Advanced Pancreatic Cancer. Cancers (Basel) 2023; 15:3020. [PMID: 37296982 PMCID: PMC10252041 DOI: 10.3390/cancers15113020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers. Developing biomarkers for chemotherapeutic response prediction is crucial for improving the dismal prognosis of advanced-PC patients (pts). To evaluate the potential of plasma metabolites as predictors of the response to chemotherapy for PC patients, we analyzed plasma metabolites using high-performance liquid chromatography-mass spectrometry from 31 cachectic, advanced-PC subjects enrolled into the PANCAX-1 (NCT02400398) prospective trial to receive a jejunal tube peptide-based diet for 12 weeks and who were planned for palliative chemotherapy. Overall, there were statistically significant differences in the levels of intermediates of multiple metabolic pathways in pts with a partial response (PR)/stable disease (SD) vs. progressive disease (PD) to chemotherapy. When stratified by the chemotherapy regimen, PD after 5-fluorouracil-based chemotherapy (e.g., FOLFIRINOX) was associated with decreased levels of amino acids (AAs). For gemcitabine-based chemotherapy (e.g., gemcitabine/nab-paclitaxel), PD was associated with increased levels of intermediates of glycolysis, the TCA cycle, nucleoside synthesis, and bile acid metabolism. These results demonstrate the feasibility of plasma metabolomics in a prospective cohort of advanced-PC patients for assessing the effect of enteral feeding as their primary source of nutrition. Metabolic signatures unique to FOLFIRINOX or gemcitabine/nab-paclitaxel may be predictive of a patient's response and warrant further study.
Collapse
Affiliation(s)
- Hayato Muranaka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Hendifar
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Natalie Moshayedi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Veronica Placencio-Hickok
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nicholas Tatonetti
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Aleksandr Stotland
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.S.); (S.P.); (J.V.E.)
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.S.); (S.P.); (J.V.E.)
| | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.S.); (S.P.); (J.V.E.)
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jun Gong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (A.H.); (A.O.); (N.M.); (V.P.-H.); (S.J.P.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Ogunleye AO, Nimmakayala RK, Batra SK, Ponnusamy MP. Metabolic Rewiring and Stemness: A Critical Attribute of Pancreatic Cancer Progression. Stem Cells 2023; 41:417-430. [PMID: 36869789 PMCID: PMC10183971 DOI: 10.1093/stmcls/sxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases with a poor 5-year survival rate. PDAC cells rely on various metabolic pathways to fuel their unlimited proliferation and metastasis. Reprogramming glucose, fatty acid, amino acid, and nucleic acid metabolisms contributes to PDAC cell growth. Cancer stem cells are the primary cell types that play a critical role in the progression and aggressiveness of PDAC. Emerging studies indicate that the cancer stem cells in PDAC tumors are heterogeneous and show specific metabolic dependencies. In addition, understanding specific metabolic signatures and factors that regulate these metabolic alterations in the cancer stem cells of PDAC paves the way for developing novel therapeutic strategies targeting CSCs. In this review, we discuss the current understanding of PDAC metabolism by specifically exploring the metabolic dependencies of cancer stem cells. We also review the current knowledge of targeting these metabolic factors that regulate CSC maintenance and PDAC progression.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Xiao Z, Deng S, Liu H, Wang R, Liu Y, Dai Z, Gu W, Ni Q, Yu X, Liu C, Luo G. Glutamine deprivation induces ferroptosis in pancreatic cancer cells. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1288-1300. [PMID: 36942991 PMCID: PMC10449637 DOI: 10.3724/abbs.2023029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Ferroptosis is a type of programmed cell death closely related to amino acid metabolism. Pancreatic cancer cells have a strong dependence on glutamine, which serves as a carbon and nitrogen substrate to sustain rapid growth. Glutamine also aids in self-protection mechanisms. However, the effect of glutamine on ferroptosis in pancreatic cancer remains largely unknown. Here, we aim to explore the association between ferroptosis and glutamine deprivation in pancreatic cancer. The growth of pancreatic cancer cells in culture media with or without glutamine is evaluated using Cell Counting Kit-8. Reactive oxygen species (ROS) are measured by 2',7'-dichlorodihydrofluorescein diacetate staining. Ferroptosis is assessed by BODIPY-C11 dye using confocal microscopy and flow cytometry. Amino acid concentrations are measured using ultrahigh-performance liquid chromatography-tandem mass spectrometry. Isotope-labelled metabolic flux analysis is performed to track the metabolic flow of glutamine. Additionally, RNA sequencing is performed to analyse the genetic alterations. Glutamine deprivation inhibits pancreatic cancer growth and induces ferroptosis both in vitro and in vivo. Additionally, glutamine decreases ROS formation via glutathione production in pancreatic cancer cells. Interestingly, glutamine inhibitors (diazooxonorleucine and azaserine) promotes ROS formation and ferroptosis in pancreatic cancer cells. Furthermore, ferrostatin, a ferroptosis inhibitor, rescues ferroptosis in pancreatic cancer cells. Glutamine deprivation leads to changes in molecular pathways, including cytokine-cytokine receptor interaction pathways ( CCL5, CCR4, LTA, CXCR4, IL-6R, and IL-7R). Thus, exogenous glutamine is required for the detoxification of ROS in pancreatic cancer cells, thereby preventing ferroptosis.
Collapse
Affiliation(s)
- Zhiwen Xiao
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Shengming Deng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - He Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Ruijie Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Yu Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Zhengjie Dai
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Wenchao Gu
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashiGunma371-8511Japan
| | - Quanxing Ni
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Chen Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Guopei Luo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
22
|
Anand S, Khan MA, Zubair H, Sudan SK, Vikramdeo KS, Deshmukh SK, Azim S, Srivastava SK, Singh S, Singh AP. MYB sustains hypoxic survival of pancreatic cancer cells by facilitating metabolic reprogramming. EMBO Rep 2023; 24:e55643. [PMID: 36592158 PMCID: PMC9986821 DOI: 10.15252/embr.202255643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
Extensive desmoplasia and poor vasculature renders pancreatic tumors severely hypoxic, contributing to their aggressiveness and therapy resistance. Here, we identify the HuR/MYB/HIF1α axis as a critical regulator of the metabolic plasticity and hypoxic survival of pancreatic cancer cells. HuR undergoes nuclear-to-cytoplasmic translocation under hypoxia and stabilizes MYB transcripts, while MYB transcriptionally upregulates HIF1α. Upon MYB silencing, pancreatic cancer cells fail to survive and adapt metabolically under hypoxia, despite forced overexpression of HIF1α. MYB induces the transcription of several HIF1α-regulated glycolytic genes by directly binding to their promoters, thus enhancing the recruitment of HIF1α to hypoxia-responsive elements through its interaction with p300-dependent histone acetylation. MYB-depleted pancreatic cancer cells exhibit a dramatic reduction in tumorigenic ability, glucose-uptake and metabolism in orthotopic mouse model, even after HIF1α restoration. Together, our findings reveal an essential role of MYB in metabolic reprogramming that supports pancreatic cancer cell survival under hypoxia.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sachin Kumar Deshmukh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shafquat Azim
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
23
|
Liu C, Deng S, Xiao Z, Lu R, Cheng H, Feng J, Shen X, Ni Q, Wu W, Yu X, Luo G. Glutamine is a substrate for glycosylation and CA19-9 biosynthesis through hexosamine biosynthetic pathway in pancreatic cancer. Discov Oncol 2023; 14:20. [PMID: 36797531 PMCID: PMC9935803 DOI: 10.1007/s12672-023-00628-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Carbohydrate antigen 19-9 (CA19-9) is the most widely used biomarker for pancreatic cancer. Since CA19-9 closely correlates with patient outcome and tumor stage in pancreatic cancer, the deciphering of CA19-9 biosynthesis provides a potential clue for treatment. METHODS Concentration of amino acids was detected by ultrahigh-performance liquid chromatography tandem mass spectrometry. Metabolic flux of glutamine was examined by isotope tracing untargeted metabolomics. Label-free quantitative N-glycosylation proteomics was used to examine N-glycosylation alterations. RESULTS Among all amino acids, glutamine was higher in CA19-9-high pancreatic cancers (> 37 U/mL, 66 cases) than in CA19-9-normal clinical specimens (≤ 37 U/mL, 37 cases). The glutamine concentration in clinical specimens was positively correlated with liver metastasis or lymphovascular invasion. Glutamine blockade using diazooxonorleucine suppressed pancreatic cancer growth and intraperitoneal and lymphatic metastasis. Glutamine promotes O-GlcNAcylation, protein glycosylation, and CA19-9 biosynthesis through the hexosamine biosynthetic pathway. UDP-N-acetylglucosamine (UDP-GlcNAc) levels correlated with the glutamine influx through hexosamine biosynthetic pathway and supported CA19-9 biosynthesis. CONCLUSIONS Glutamine is a substrate for CA19-9 biosynthesis in pancreatic cancer. Glutamine blockade may be a potential therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Renquan Lu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jingjing Feng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xuxia Shen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270,Dong'An Rd, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
24
|
Lan C, Yamashita YI, Tsukamoto M, Hayashi H, Nakagawa S, Liu Z, Wu X, Imai K, Mima K, Kaida T, Baba H. The Prognostic Role of Serine Racemase in Patients With Pancreatic Cancer: A New Marker in Cancer Metabolism. Pancreas 2023; 52:e101-e109. [PMID: 37523600 DOI: 10.1097/mpa.0000000000002210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
OBJECTIVES Serine racemase (SRR) participates in serine metabolism in central nervous systems. Serine racemase is only studied in colorectal cancer, and its role in pancreatic cancer (PC) is unknown. This study aims to investigate the role of SRR in PC. METHODS Totally 182 patients with PC were enrolled in this study. Slices from patients were stained for SRR and CD8+ T cells. Kaplan-Meier methods were used to do survival analysis according to SRR expression from immunohistochemical staining. Univariate and multivariate Cox regression analysis was performed to clarify the independent prognostic value of SRR. Bioinformatic tools were used to explore and validate the expression, prognostic value, possible mechanism, and immune interaction of SRR in PC. RESULTS The expression of SRR was lower in tumor tissue than normal tissue, also potentially decreased with the increasing tumor grade. Low SRR expression was an independent risk factor for overall survival (hazards ratio, 1.875; 95% confidence interval, 1.175-2.990; P = 0.008) in patients with PC. Serine racemase was positively correlated with CD8+ T cells infiltration and possibly associated with CCL14 and CXCL12 expression. CONCLUSIONS Serine racemase plays a prognostic role in PC and may be a potentially therapeutic target.
Collapse
Affiliation(s)
| | - Yo-Ichi Yamashita
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Tsukamoto
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Zhao Liu
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Xiyu Wu
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Mima
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayoshi Kaida
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- From the Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
Lauria G, Curcio R, Lunetti P, Tiziani S, Coppola V, Dolce V, Fiermonte G, Ahmed A. Role of Mitochondrial Transporters on Metabolic Rewiring of Pancreatic Adenocarcinoma: A Comprehensive Review. Cancers (Basel) 2023; 15:411. [PMID: 36672360 PMCID: PMC9857038 DOI: 10.3390/cancers15020411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is among the deadliest cancers worldwide and commonly presents as pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming is a hallmark of PDAC. Glucose and glutamine metabolism are extensively rewired in order to fulfil both energetic and synthetic demands of this aggressive tumour and maintain favorable redox homeostasis. The mitochondrial pyruvate carrier (MPC), the glutamine carrier (SLC1A5_Var), the glutamate carrier (GC), the aspartate/glutamate carrier (AGC), and the uncoupling protein 2 (UCP2) have all been shown to influence PDAC cell growth and progression. The expression of MPC is downregulated in PDAC and its overexpression reduces cell growth rate, whereas the other four transporters are usually overexpressed and the loss of one or more of them renders PDAC cells unable to grow and proliferate by altering the levels of crucial metabolites such as aspartate. The aim of this review is to comprehensively evaluate the current experimental evidence about the function of these carriers in PDAC metabolic rewiring. Dissecting the precise role of these transporters in the context of the tumour microenvironment is necessary for targeted drug development.
Collapse
Affiliation(s)
- Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Paola Lunetti
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
26
|
Peng J, He Z, Yuan Y, Xie J, Zhou Y, Guo B, Guo J. Docetaxel suppressed cell proliferation through Smad3/HIF-1α-mediated glycolysis in prostate cancer cells. Cell Commun Signal 2022; 20:194. [PMID: 36536346 PMCID: PMC9762006 DOI: 10.1186/s12964-022-00950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tumor glycolysis is a critical event for tumor progression. Docetaxel is widely used as a first-line drug for chemotherapy and shown to have a survival advantage. However, the role of docetaxel in tumor glycolysis remained poorly understood. METHODS The effect of Docetaxel in tumor glycolysis and proliferation were performed by CCK-8, Western blotting, real-time PCR, glucose, and lactate detection and IHC. ChIP and luciferase assay were used to analyze the mechanism of Docetaxel on Smad3-mediated HIF-1α transactivity. RESULTS In this study, we showed that docetaxel treatment led to a significant inhibition of cell proliferation in prostate cancer cells through PFKP-mediated glycolysis. Addition of lactate, a production of glycolysis, could reverse the inhibitory effect of docetaxel on cell proliferation. Further analysis has demonstrated that phosphorylation of Smad3 (Ser213) was drastically decreased in response to docetaxel stimulation, leading to reduce Smad3 nuclear translocation. Luciferase and Chromatin immunoprecipitation (ChIP) analysis revealed that docetaxel treatment inhibited the binding of Smad3 to the promoter of the HIF-1α gene, suppressing transcriptional activation of HIF-1α. Moreover, ectopic expression of Smad3 in prostate cancer cells could overcome the decreased HIF-1α expression and its target gene PFKP caused by docetaxel treatment. Most importantly, endogenous Smad3 regulated and interacted with HIF-1α, and this interaction was destroyed in response to docetaxel treatment. What's more, both HIF-1α and PFKP expression were significantly reduced in prostate cancer received docetaxel treatment in vivo. CONCLUSION These findings extended the essential role of docetaxel and revealed that docetaxel inhibited cell proliferation by targeting Smad3/HIF-1α signaling-mediated tumor Warburg in prostate cancer cells. Video Abstract.
Collapse
Affiliation(s)
- Junming Peng
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Zhijun He
- Department of Pharmacy, Zhuhai Center for Maternal and Child Health Care, Zhuhai, 519000 China
| | - Yeqing Yuan
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China ,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China
| | - Jing Xie
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Yu Zhou
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Baochun Guo
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China ,grid.440218.b0000 0004 1759 7210Shenzhen Key Laboratory of Kidney Diseases (ZDSYS201504301616234), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518055 Guangdong China ,grid.440218.b0000 0004 1759 7210Department of Nephrology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong China
| | - Jinan Guo
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China ,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China ,grid.258164.c0000 0004 1790 3548Department of Urology, Shenzhen People’s Hospital, The Second Clinical College of Jinan University, Shenzhen, 518000 China
| |
Collapse
|
27
|
Liu H, Zhang J, Wei C, Liu Z, Zhou W, Yang P, Gong Y, Zhao Y. Prognostic signature construction of energy metabolism-related genes in pancreatic cancer. Front Oncol 2022; 12:917897. [PMID: 36248974 PMCID: PMC9559226 DOI: 10.3389/fonc.2022.917897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is the 7th leading cause of cancer death worldwide, and its incidence and mortality rate have been on the rise in recent years in Western developed countries. The specificity of the disease and the lack of appropriate treatments have resulted in a 5-year overall survival rate of only 9%. In this study, we conducted a study based on the TCGA database and GEO database and analyzed using the energy metabolism gene set to establish a prognostic model with the least absolute shrinkage and selection operator to identify 7-genes prognostic signature, and the gene expression was verified by Real-time PCR. The model was validated using a risk score calculation, and the OS rates of the 7 genes were analyzed using one-way Cox regression. The prognostic relationship between vesicle-associated membrane protein 2 (VAMP2) and pancreatic cancer patients was analyzed by OS and progression-free survival, and the prognosis was found to be significantly worse in the high-expression group. A Nomogram showed that VAMP2 was an independent prognostic factor in pancreatic cancer. Gene set enrichment analysis showed that VAMP2 upregulation was enriched in pathways associated with immune response and that VAMP2 downregulation was enriched in metabolism-related pathways. The association of VAMP2 with immune cell infiltration was analyzed for the enrichment results, and VAMP2 was found to be positively associated with all 6 immune cells. The results of this study suggest that VAMP2 is an independent prognostic factor associated with energy metabolism in pancreatic cancer and may be involved in the immune response.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Jianhua Zhang
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Chaoguang Wei
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Zhao Liu
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
| | - Wei Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pan Yang
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Yuxiang Zhao, ; Yifu Gong,
| | - Yuxiang Zhao
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
- *Correspondence: Yuxiang Zhao, ; Yifu Gong,
| |
Collapse
|
28
|
Liu C, Qin H, Liu H, Wei T, Wu Z, Shang M, Liu H, Wang A, Liu J, Shang D, Yin P. Tissue metabolomics identified new biomarkers for the diagnosis and prognosis prediction of pancreatic cancer. Front Oncol 2022; 12:991051. [PMID: 36119530 PMCID: PMC9479084 DOI: 10.3389/fonc.2022.991051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) is burdened with a low 5-year survival rate and high mortality due to a severe lack of early diagnosis methods and slow progress in treatment options. To improve clinical diagnosis and enhance the treatment effects, we applied metabolomics using ultra-high-performance liquid chromatography with a high-resolution mass spectrometer (UHPLC-HRMS) to identify and validate metabolite biomarkers from paired tissue samples of PC patients. Results showed that the metabolic reprogramming of PC mainly featured enhanced amino acid metabolism and inhibited sphingolipid metabolism, which satisfied the energy and biomass requirements for tumorigenesis and progression. The altered metabolism results were confirmed by the significantly changed gene expressions in PC tissues from an online database. A metabolites biomarker panel (six metabolites) was identified for the differential diagnosis between PC tumors and normal pancreatic tissues. The panel biomarker distinguished tumors from normal pancreatic tissues in the discovery group with an area under the curve (AUC) of 1.0 (95%CI, 1.000−1.000). The biomarker panel cutoff was 0.776. In the validation group, an AUC of 0.9000 (95%CI = 0.782–1.000) using the same cutoff, successfully validated the biomarker signature. Moreover, this metabolites panel biomarker had a great capability to predict the overall survival (OS) of PC. Taken together, this metabolomics method identifies and validates metabolite biomarkers that can diagnose the onsite progression and prognosis of PC precisely and sensitively in a clinical setting. It may also help clinicians choose proper therapeutic interventions for different PC patients and improve the survival of PC patients.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiying Liu
- Key Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tianfu Wei
- Key Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zeming Wu
- iPhenome biotechnology (Yun Pu Kang) Inc., Dalian, China
| | - Mengxue Shang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haihua Liu
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Dong Shang, ; Jiwei Liu,
| | - Dong Shang
- Key Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Dong Shang, ; Jiwei Liu,
| | - Peiyuan Yin
- Key Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Dong Shang, ; Jiwei Liu,
| |
Collapse
|
29
|
Carneiro TJ, Pinto J, Serrao EM, Barros AS, Brindle KM, Gil AM. Metabolic profiling of induced acute pancreatitis and pancreatic cancer progression in a mutant Kras mouse model. Front Mol Biosci 2022; 9:937865. [PMID: 36090050 PMCID: PMC9452780 DOI: 10.3389/fmolb.2022.937865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Untargeted Nuclear Magnetic Resonance (NMR) metabolomics of polar extracts from the pancreata of a caerulin-induced mouse model of pancreatitis (Pt) and of a transgenic mouse model of pancreatic cancer (PCa) were used to find metabolic markers of Pt and to characterize the metabolic changes accompanying PCa progression. Using multivariate analysis a 10-metabolite metabolic signature specific to Pt tissue was found to distinguish the benign condition from both normal tissue and precancerous tissue (low grade pancreatic intraepithelial neoplasia, PanIN, lesions). The mice pancreata showed significant changes in the progression from normal tissue, through low-grade and high-grade PanIN lesions to pancreatic ductal adenocarcinoma (PDA). These included increased lactate production, amino acid changes consistent with enhanced anaplerosis, decreased concentrations of intermediates in membrane biosynthesis (phosphocholine and phosphoethanolamine) and decreased glycosylated uridine phosphates, reflecting activation of the hexosamine biosynthesis pathway and protein glycosylation.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Joana Pinto
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Eva M. Serrao
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - António S. Barros
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Kevin M. Brindle
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana M. Gil
- CICECO - Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
30
|
Takikawa T, Hamada S, Matsumoto R, Tanaka Y, Kataoka F, Sasaki A, Masamune A. Senescent Human Pancreatic Stellate Cells Secrete CXCR2 Agonist CXCLs to Promote Proliferation and Migration of Human Pancreatic Cancer AsPC-1 and MIAPaCa-2 Cell Lines. Int J Mol Sci 2022; 23:ijms23169275. [PMID: 36012531 PMCID: PMC9409091 DOI: 10.3390/ijms23169275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Interactions between pancreatic cancer cells and pancreatic stellate cells (PSCs) play an important role in the progression of pancreatic cancer. Recent studies have shown that cellular senescence and senescence-associated secretory phenotype factors play roles in the progression of cancer. This study aimed to clarify the effects of senescence-induced PSCs on pancreatic cancer cells. Senescence was induced in primary-cultured human PSCs (hPSCs) through treatment with hydrogen peroxide or gemcitabine. Microarray and Gene Ontology analyses showed the alterations in genes and pathways related to cellular senescence and senescence-associated secretory phenotype factors, including the upregulation of C-X-C motif chemokine ligand (CXCL)-1, CXCL2, and CXCL3 through the induction of senescence in hPSCs. Conditioned media of senescent hPSCs increased the proliferation—as found in an assessment with a BrdU incorporation assay—and migration—as found in an assessment with wound-healing and two-chamber assays—of pancreatic cancer AsPC-1 and MIAPaca-2 cell lines. SB225002, a selective CXCR2 antagonist, and SCH-527123, a CXCR1/CXCR2 antagonist, attenuated the effects of conditioned media of senescent hPSCs on the proliferation and migration of pancreatic cancer cells. These results suggest a role of CXCLs as senescence-associated secretory phenotype factors in the interaction between senescent hPSCs and pancreatic cancer cells. Senescent PSCs might be novel therapeutic targets for pancreatic cancer.
Collapse
|
31
|
Metabolic Pathways as a Novel Landscape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153799. [PMID: 35954462 PMCID: PMC9367608 DOI: 10.3390/cancers14153799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolism plays a fundamental role in both human physiology and pathology, including pancreatic ductal adenocarcinoma (PDAC) and other tumors. Anabolic and catabolic processes do not only have energetic implications but are tightly associated with other cellular activities, such as DNA duplication, redox reactions, and cell homeostasis. PDAC displays a marked metabolic phenotype and the observed reduction in tumor growth induced by calorie restriction with in vivo models supports the crucial role of metabolism in this cancer type. The aggressiveness of PDAC might, therefore, be reduced by interventions on bioenergetic circuits. In this review, we describe the main metabolic mechanisms involved in PDAC growth and the biological features that may favor its onset and progression within an immunometabolic context. We also discuss the need to bridge the gap between basic research and clinical practice in order to offer alternative therapeutic approaches for PDAC patients in the more immediate future.
Collapse
|
32
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
33
|
Rahman MA, Ahmed KR, Rahman MDH, Parvez MAK, Lee IS, Kim B. Therapeutic Aspects and Molecular Targets of Autophagy to Control Pancreatic Cancer Management. Biomedicines 2022; 10:1459. [PMID: 35740481 PMCID: PMC9220066 DOI: 10.3390/biomedicines10061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer (PC) begins within the organ of the pancreas, which produces digestive enzymes, and is one of the formidable cancers for which appropriate treatment strategies are urgently needed. Autophagy occurs in the many chambers of PC tissue, including cancer cells, cancer-related fibroblasts, and immune cells, and can be fine-tuned by various promotive and suppressive signals. Consequently, the impacts of autophagy on pancreatic carcinogenesis and progression depend greatly on its stage and conditions. Autophagy inhibits the progress of preneoplastic damage during the initial phase. However, autophagy encourages tumor formation during the development phase. Several studies have reported that both a tumor-promoting and a tumor-suppressing function of autophagy in cancer that is likely cell-type dependent. However, autophagy is dispensable for pancreatic ductal adenocarcinoma (PDAC) growth, and clinical trials with autophagy inhibitors, either alone or in combination with other therapies, have had limited success. Autophagy's dual mode of action makes it therapeutically challenging despite autophagy inhibitors providing increased longevity in medical studies, highlighting the need for a more rigorous review of current findings and more precise targeting strategies. Indeed, the role of autophagy in PC is complicated, and numerous factors must be considered when transitioning from bench to bedside. In this review, we summarize the evidence for the tumorigenic and protective role of autophagy in PC tumorigenesis and describe recent advances in the understanding of how autophagy may be regulated and controlled in PDAC.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | | | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
34
|
Xie LY, Huang HY, Fang T, Liang JY, Hao YL, Zhang XJ, Xie YX, Wang C, Tan YH, Zeng L. A Prognostic Survival Model of Pancreatic Adenocarcinoma Based on Metabolism-Related Gene Expression. Front Genet 2022; 13:804190. [PMID: 35664305 PMCID: PMC9158121 DOI: 10.3389/fgene.2022.804190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Accurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES, AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework attained the robust predictive performance, with 2-year survival areas under the curve (AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse survival outcome. The metabolic risk score increased the accuracy of survival prediction in patients suffering from PAAD.
Collapse
Affiliation(s)
- Lin-Ying Xie
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tian Fang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ying Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yu-Lei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xue-Jiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi-Xin Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ye-Hui Tan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Differential Effects of Dietary Macronutrients on the Development of Oncogenic KRAS-Mediated Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14112723. [PMID: 35681705 PMCID: PMC9179355 DOI: 10.3390/cancers14112723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
KRAS mutations are prevalent in patients with pancreatic ductal adenocarcinoma (PDAC) and are critical to fostering tumor growth in part by aberrantly rewiring glucose, amino acid, and lipid metabolism. Obesity is a modifiable risk factor for pancreatic cancer. Corroborating this epidemiological observation, mice harboring mutant KRAS are highly vulnerable to obesogenic high-fat diet (HFD) challenges leading to the development of PDAC with high penetrance. However, the contributions of other macronutrient diets, such as diets rich in carbohydrates that are regarded as a more direct source to fuel glycolysis for cancer cell survival and proliferation than HFD, to pancreatic tumorigenesis remain unclear. In this study, we compared the differential effects of a high-carbohydrate diet (HCD), an HFD, and a high-protein diet (HPD) in PDAC development using a mouse model expressing an endogenous level of mutant KRASG12D specifically in pancreatic acinar cells. Our study showed that although with a lower tumorigenic capacity than chronic HFD, chronic HCD promoted acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions with increased inflammation, fibrosis, and cell proliferation compared to the normal diet (ND) in KrasG12D/+ mice. By contrast, chronic HPD showed no significant adverse effects compared to the ND. Furthermore, ablation of pancreatic acinar cell cyclooxygenase 2 (Cox-2) in KrasG12D/+ mice abrogated the adverse effects induced by HCD, suggesting that diet-induced pancreatic inflammation is critical for promoting oncogenic KRAS-mediated neoplasia. These results indicate that diets rich in different macronutrients have differential effects on pancreatic tumorigenesis in which the ensuing inflammation exacerbates the process. Management of macronutrient intake aimed at thwarting inflammation is thus an important preventive strategy for patients harboring oncogenic KRAS.
Collapse
|
36
|
Yin C, Alqahtani A, Noel MS. The Next Frontier in Pancreatic Cancer: Targeting the Tumor Immune Milieu and Molecular Pathways. Cancers (Basel) 2022; 14:2619. [PMID: 35681599 PMCID: PMC9179513 DOI: 10.3390/cancers14112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with abysmal prognosis. It is currently the third most common cause of cancer-related mortality, despite being the 11th most common cancer. Chemotherapy is standard of care in all stages of pancreatic cancer, yet survival, particularly in the advanced stages, often remains under one year. We are turning to immunotherapies and targeted therapies in PDAC in order to directly attack the core features that make PDAC notoriously resistant to chemotherapy. While the initial studies of these agents in PDAC have generally been disappointing, we find optimism in recent preclinical and early clinical research. We find that despite the immunosuppressive effects of the PDAC tumor microenvironment, new strategies, such as combining immune checkpoint inhibitors with vaccine therapy or chemokine receptor antagonists, help elicit strong immune responses. We also expand on principles of DNA homologous recombination repair and highlight opportunities to use agents, such as PARP inhibitors, that exploit deficiencies in DNA repair pathways. Lastly, we describe advances in direct targeting of driver mutations and metabolic pathways and highlight some technological achievements such as novel KRAS inhibitors.
Collapse
Affiliation(s)
| | | | - Marcus S. Noel
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (A.A.)
| |
Collapse
|
37
|
Schniers BK, Wachtel MS, Sharma M, Korac K, Rajasekaran D, Yang S, Sniegowski T, Ganapathy V, Bhutia YD. Deletion of Slc6a14 reduces cancer growth and metastatic spread and improves survival in KPC mouse model of spontaneous pancreatic cancer. Biochem J 2022; 479:719-730. [PMID: 35212370 PMCID: PMC9022989 DOI: 10.1042/bcj20210855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is lethal. There is a dire need for better therapeutic targets. Cancer cells have increased demand for sugars, amino acids, and lipids and therefore up-regulate various nutrient transporters to meet this demand. In PDAC, SLC6A14 (an amino acid transporter (AAT)) is up-regulated, affecting overall patient survival. Previously we have shown using in vitro cell culture models and in vivo xenograft mouse models that pharmacological inhibition of SLC6A14 with α-methyl-l-tryptophan (α-MLT) attenuates PDAC growth. Mechanistically, blockade of SLC6A14-mediated amino acid transport with α-MLT leads to amino acid deprivation, eventually inhibiting mTORC1 signaling pathway, in tumor cells. Here, we report on the effect of Slc6a14 deletion on various parameters of PDAC in KPC mice, a model for spontaneous PDAC. Pancreatic tumors in KPC mice show evidence of Slc6a14 up-regulation. Deletion of Slc6a14 in this mouse attenuates PDAC growth, decreases the metastatic spread of the tumor, reduces ascites fluid accumulation, and improves overall survival. At the molecular level, we show lower proliferation index and reduced desmoplastic reaction following Slc6a14 deletion. Furthermore, we find that deletion of Slc6a14 does not lead to compensatory up-regulation in any of the other amino transporters. In fact, some of the AATs are actually down-regulated in response to Slc6a14 deletion, most likely related to altered mTORC1 signaling. Taken together, these results underscore the positive role SLC6A14 plays in PDAC growth and metastasis. Therefore, SLC6A14 is a viable drug target for the treatment of PDAC and also for any other cancer that overexpresses this transporter.
Collapse
Affiliation(s)
- Bradley K. Schniers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Mitchell S. Wachtel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Meenu Sharma
- Department of Surgical Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Ksenija Korac
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Devaraja Rajasekaran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Shengping Yang
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, U.S.A
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| |
Collapse
|
38
|
Ma Y, Ma Y. Hypergraph-based logistic matrix factorization for metabolite-disease interaction prediction. Bioinformatics 2022; 38:435-443. [PMID: 34499104 DOI: 10.1093/bioinformatics/btab652] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Function-related metabolites, the terminal products of the cell regulation, show a close association with complex diseases. The identification of disease-related metabolites is critical to the diagnosis, prevention and treatment of diseases. However, most existing computational approaches build networks by calculating pairwise relationships, which is inappropriate for mining higher-order relationships. RESULTS In this study, we presented a novel approach with hypergraph-based logistic matrix factorization, HGLMF, to predict the potential interactions between metabolites and disease. First, the molecular structures and gene associations of metabolites and the hierarchical structures and GO functional annotations of diseases were extracted to build various similarity measures of metabolites and diseases. Next, the kernel neighborhood similarity of metabolites (or diseases) was calculated according to the completed interactive network. Second, multiple networks of metabolites and diseases were fused, respectively, and the hypergraph structures of metabolites and diseases were built. Finally, a logistic matrix factorization based on hypergraph was proposed to predict potential metabolite-disease interactions. In computational experiments, HGLMF accurately predicted the metabolite-disease interaction, and performed better than other state-of-the-art methods. Moreover, HGLMF could be used to predict new metabolites (or diseases). As suggested from the case studies, the proposed method could discover novel disease-related metabolites, which has been confirmed in existing studies. AVAILABILITY AND IMPLEMENTATION The codes and dataset are available at: https://github.com/Mayingjun20179/HGLMF. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China
| | - Yuanyuan Ma
- School of Computer & Information Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
39
|
Rajagopal MU, Bansal S, Kaur P, Jain SK, Altadil T, Hinzman CP, Li Y, Moulton J, Singh B, Bansal S, Chauthe SK, Singh R, Banerjee PP, Mapstone M, Fiandaca MS, Federoff HJ, Unger K, Smith JP, Cheema AK. TGFβ Drives Metabolic Perturbations during Epithelial Mesenchymal Transition in Pancreatic Cancer: TGFβ Induced EMT in PDAC. Cancers (Basel) 2021; 13:cancers13246204. [PMID: 34944824 PMCID: PMC8699757 DOI: 10.3390/cancers13246204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with most patients diagnosed at late stages resulting in poor outcomes. While it is known that pancreatic tumor cells undergo epithelial to mesenchymal transition, the metabolic alterations accompanying that transition are not characterized. This study leveraged a metabolomics approach to understand the small molecule and biochemical perturbations that can be targeted for designing strategies for improving outcomes in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy wherein a majority of patients present metastatic disease at diagnosis. Although the role of epithelial to mesenchymal transition (EMT), mediated by transforming growth factor beta (TGFβ), in imparting an aggressive phenotype to PDAC is well documented, the underlying biochemical pathway perturbations driving this behaviour have not been elucidated. We used high-resolution mass spectrometry (HRMS) based molecular phenotyping approach in order to delineate metabolic changes concomitant to TGFβ-induced EMT in pancreatic cancer cells. Strikingly, we observed robust changes in amino acid and energy metabolism that may contribute to tumor invasion and metastasis. Somewhat unexpectedly, TGFβ treatment resulted in an increase in intracellular levels of retinoic acid (RA) that in turn resulted in increased levels of extracellular matrix (ECM) proteins including fibronectin (FN) and collagen (COL1). These findings were further validated in plasma samples obtained from patients with resectable pancreatic cancer. Taken together, these observations provide novel insights into small molecule dysregulation that triggers a molecular cascade resulting in increased EMT-like changes in pancreatic cancer cells, a paradigm that can be potentially targeted for better clinical outcomes.
Collapse
Affiliation(s)
- Meena U. Rajagopal
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Prabhjit Kaur
- Department of Botany, Khalsa College, Amritsar 143002, India; (P.K.); (R.S.)
| | - Shreyans K. Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India;
| | - Tatiana Altadil
- Biomedical Research Group in Gynaecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Charles P. Hinzman
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (C.P.H.); (P.P.B.)
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Joanna Moulton
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Baldev Singh
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Siddheshwar Kisan Chauthe
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 380054, India;
| | - Rajbir Singh
- Department of Botany, Khalsa College, Amritsar 143002, India; (P.K.); (R.S.)
| | - Partha P. Banerjee
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (C.P.H.); (P.P.B.)
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA 92697, USA; (M.M.); (M.S.F.); (H.J.F.)
| | - Massimo S. Fiandaca
- Department of Neurology, University of California, Irvine, CA 92697, USA; (M.M.); (M.S.F.); (H.J.F.)
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA
| | - Howard J. Federoff
- Department of Neurology, University of California, Irvine, CA 92697, USA; (M.M.); (M.S.F.); (H.J.F.)
| | - Keith Unger
- Radiation Medicine, Med-Star Georgetown University Hospital, Washington, DC 20057, USA;
| | - Jill P. Smith
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Amrita K. Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (C.P.H.); (P.P.B.)
- Correspondence: ; Tel.: +1-202-687-2756; Fax: +1-202-687-8860
| |
Collapse
|
40
|
Kang BW, Chau I. Emerging agents for metastatic pancreatic cancer: spotlight on early phase clinical trials. Expert Opin Investig Drugs 2021; 30:1089-1107. [PMID: 34727804 DOI: 10.1080/13543784.2021.1995354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite the recent development of new chemotherapeutic regimens and combination strategies, metastatic pancreatic cancer (mPC) still shows only a modest response to conventional cytotoxic agents. However, several novel therapeutic agents targeting the unique features of mPC are showing promise in clinical trials. AREA COVERED This article reviews the current state of development of new agents targeting various systems and molecular pathways. We searched PubMed and clinicaltrials.gov in September 2021 with a special focus on ongoing early phase clinical trials to identify the promising therapeutic strategies for mPC. EXPERT OPINION Extensive tumor heterogeneity, complex tumor microenvironment, genetic alterations of the oncogenic signaling pathways, metabolic dysregulation, and a low immunogenicity are hurdles for current treatment approaches. Ongoing research efforts strive to overcome these hurdles and are showing some promising early results.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Kyungpook National University, Daegu, Republic of Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, Surrey, UK
| |
Collapse
|
41
|
Ma J, Xue H, He LH, Wang LY, Wang XJ, Li X, Zhang L. The Role and Mechanism of Autophagy in Pancreatic Cancer: An Update Review. Cancer Manag Res 2021; 13:8231-8240. [PMID: 34754243 PMCID: PMC8572014 DOI: 10.2147/cmar.s328786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/18/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer, with high morbidity and mortality rates, is one of the most malignant tumors worldwide. Despite extensive research, the prognosis remains poor. Autophagy, a lysosomal-mediated, highly conserved degradation process that removes abnormal proteins and damaged organelles from the body, is upregulated in pancreatic ductal adenocarcinoma. Based on differences in the tumor microenvironment and tumor stage, the functions of autophagy in the pathophysiology and treatment of pancreatic cancer differ. In the initial phase, autophagy inhibits the transformation of precancerous lesions to cancer. However, in the progressive stage, autophagy promotes tumor growth. Autophagy is also one of the main mechanisms of drug resistance during treatment. Here, we describe the role of autophagy in pancreatic cancer progression and discuss relevant treatment strategies for this disease.
Collapse
Affiliation(s)
- Jian Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Huan Xue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Li-Hong He
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Ling-Yun Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Xiao-Juan Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, Gansu Province, 730000, People’s Republic of China
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People’s Republic of China
| |
Collapse
|
42
|
Manoukian P, Bijlsma M, van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front Cell Dev Biol 2021; 9:743907. [PMID: 34646829 PMCID: PMC8502878 DOI: 10.3389/fcell.2021.743907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic tumors are known to harbor an abundant and highly desmoplastic stroma. Among the various cell types that reside within tumor stroma, cancer-associated fibroblasts (CAFs) have gained a lot of attention in the cancer field due to their contributions to carcinogenesis and tumor architecture. These cells are not a homogeneous population, but have been shown to have different origins, phenotypes, and contributions. In pancreatic tumors, CAFs generally emerge through the activation and/or recruitment of various cell types, most notably resident fibroblasts, pancreatic stellate cells (PSCs), and tumor-infiltrating mesenchymal stem cells (MSCs). In recent years, single cell transcriptomic studies allowed the identification of distinct CAF populations in pancreatic tumors. Nonetheless, the exact sources and functions of those different CAF phenotypes remain to be fully understood. Considering the importance of stromal cells in pancreatic cancer, many novel approaches have aimed at targeting the stroma but current stroma-targeting therapies have yielded subpar results, which may be attributed to heterogeneity in the fibroblast population. Thus, fully understanding the roles of different subsets of CAFs within the stroma, and the cellular dynamics at play that contribute to heterogeneity in CAF subsets may be essential for the design of novel therapies and improving clinical outcomes. Fortunately, recent advances in technologies such as microfluidics and bio-printing have made it possible to establish more advanced ex vivo models that will likely prove useful. In this review, we will present the different roles of stromal cells in pancreatic cancer, focusing on CAF origin as a source of heterogeneity, and the role this may play in therapy failure. We will discuss preclinical models that could be of benefit to the field and that may contribute to further clinical development.
Collapse
Affiliation(s)
- Paul Manoukian
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten Bijlsma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanneke van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
44
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan X, Zhang M, Song J, Cai H, Zheng J, Liu Y. Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin Transl Med 2021; 11:e411. [PMID: 34047477 PMCID: PMC8114150 DOI: 10.1002/ctm2.411] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Abnormal energy metabolism, including enhanced aerobic glycolysis and lipid synthesis, is a well-established feature of glioblastoma (GBM) cells. Thus, targeting the cellular glycolipid metabolism can be a feasible therapeutic strategy for GBM. This study aimed to evaluate the roles of MSI2, SNORD12B, and ZBTB4 in regulating the glycolipid metabolism and proliferation of GBM cells. MSI2 and SNORD12B expression was significantly upregulated and ZBTB4 expression was significantly low in GBM tissues and cells. Knockdown of MSI2 or SNORD12B or overexpression of ZBTB4 inhibited GBM cell glycolipid metabolism and proliferation. MSI2 may improve SNORD12B expression by increasing its stability. Importantly, SNORD12B increased utilization of the ZBTB4 mRNA transcript distal polyadenylation signal in alternative polyadenylation processing by competitively combining with FIP1L1, which decreased ZBTB4 expression because of the increased proportion of the 3' untranslated region long transcript. ZBTB4 transcriptionally suppressed the expression of HK2 and ACLY by binding directly to the promoter regions. Additionally, ZBTB4 bound the MSI promoter region to transcriptionally suppress MSI2 expression, thereby forming an MSI2/SNORD12B/FIP1L1/ZBTB4 feedback loop to regulate the glycolipid metabolism and proliferation of GBM cells. In conclusion, MSI2 increased the stability of SNORD12B, which regulated ZBTB4 alternative polyadenylation processing by competitively binding to FIP1L1. Thus, the MSI2/SNORD12B/FIP1L1/ZBTB4 positive feedback loop plays a crucial role in regulating the glycolipid metabolism of GBM cells and provides a potential drug target for glioma treatment.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Mengyang Zhang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Jian Song
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Heng Cai
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Jian Zheng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| |
Collapse
|