1
|
Guo S, Zhang Q, Ge H, Wang H. Baicalin plays a protective role by regulating ferroptosis in multiple diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4837-4849. [PMID: 39661143 DOI: 10.1007/s00210-024-03704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Ferroptosis is a new kind of cell death discovered in recent years, usually accompanied by a large number of lipid peroxidation and iron accumulation in the process of cell death. Ferroptosis has been proven to play an important role in various diseases, including ischemic reperfusion injury, cancer, and neurodegeneration. Therefore, the regulation of ferroptosis will have a vital impact on the occurrence and development of diseases. Baicalin is a flavonoid compound extracted and isolated from the dried roots of Scutellaria baicalensis Georgi, a plant in the family Lamiaceae. It has various biological activities such as antioxidant, anti-proliferative, anti-inflammatory, anti-thrombotic, and regulates apoptosis and ferroptosis. Recently, increasing evidence indicates that baicalin regulation of ferroptosis is involved in multiple diseases. However, the relevant mechanisms are not yet fully understood. Here, we summarized the role of baicalin regulation of ferroptosis in different kinds of diseases, and conducted an in-depth analysis of the relevant mechanisms, hoping to provide the theoretical references for future related researches.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Hangwei Ge
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Fan X, Yan Y, Li Y, Song Y, Li B. Anti-tumor mechanism of artesunate. Front Pharmacol 2024; 15:1483049. [PMID: 39525639 PMCID: PMC11549674 DOI: 10.3389/fphar.2024.1483049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Artesunate (ART) is a classic antimalarial drug with high efficiency, low toxicity and tolerance. It has been shown to be safe and has good anti-tumor effect. Existing clinical studies have shown that the anti-tumor mechanisms of ART mainly include inducing apoptosis and autophagy of tumor cells, affecting tumor microenvironment, regulating immune response, overcoming drug resistance, as well as inhibiting tumor cell proliferation, migration, invasion, and angiogenesis. ART has been proven to fight against lung cancer, hepatocarcinoma, lymphoma, multiple myeloma, leukemia, colorectal cancer, ovarian cancer, cervical cancer, malignant melanoma, oral squamous cell carcinoma, bladder cancer, prostate cancer and other neoplasms. In this review, we highlight the effects of ART on various tumors with an emphasis on its anti-tumor mechanism, which is helpful to propose the potential research directions of ART and expand its clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Li Z, Sun M, Yang R, Wang Z, Zhu Q, Zhang Y, Yang H, Meng Z, Hu L, Sui L. Mediator complex subunit 1 promotes oral squamous cell carcinoma progression by activating MMP9 transcription and suppressing CD8 + T cell antitumor immunity. J Exp Clin Cancer Res 2024; 43:270. [PMID: 39343952 PMCID: PMC11440895 DOI: 10.1186/s13046-024-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The role of Mediator complex subunit 1 (MED1), a pivotal transcriptional coactivator implicated in diverse biological pathways, remains unexplored in the context of oral squamous cell carcinoma (OSCC). This study aims to elucidate the contributory mechanisms and potential impact of MED1 on the progression of OSCC. METHODS The expression and clinical significance of MED1 in OSCC tissues were evaluated through the bioinformatics analyses. The effects of MED1 on the biological behavior of OSCC cancer cells were assessed both in vitro and in vivo. Dual-luciferase reporter assay, chromatin immunoprecipitation (ChIP) assay, bioinformatic analysis, CD8+ T cell isolation experiment, coculture experiment, enzyme-linked immunosorbent assay (ELISA), and flow cytometric analysis were employed to elucidate the underlying mechanism through which MED1 operates in the progression of OSCC. RESULTS MED1 exhibited upregulation in both OSCC tissues and multiple OSCC cell lines, which correlated with decreased overall survival in patients. In vitro experiments demonstrated that knockdown of MED1 in metastatic OSCC cell lines SCC-9 and UPCI-SCC-154 hindered cell migration and invasion, while overexpression of MED1 promoted these processes. Whereas, MED1 knockdown had no impact on proliferation of cell lines mentioned above. In vivo studies further revealed that downregulation of MED1 effectively suppressed distant metastasis in OSCC. Mechanistically, MED1 enhanced the binding of transcription factors c-Jun and c-Fos to the matrix metalloprotein 9 (MMP9) promoters, resulting in a significant upregulation of MMP9 transcription. This process contributes to the migration and invasion of SCC-9 and UPCI-SCC-154 cells. Furthermore, MED1 modulated the expression of programmed death-ligand 1 (PD-L1) through the Notch signaling pathway, consequently impacting the tumor-killing capacity of CD8+ T cells in the tumor microenvironment. CONCLUSIONS Our findings indicate that MED1 plays a pivotal role in OSCC progression through the activation of MMP9 transcription and suppression of CD8+ T cell antitumor immunity, suggesting that MED1 may serve as a novel prognostic marker and therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zhe Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Mengke Sun
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Ruimeng Yang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zheng Wang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yue Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Haosun Yang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institue of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
4
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
6
|
Lagzian A, Askari M, Haeri MS, Sheikhi N, Banihashemi S, Nabi-Afjadi M, Malekzadegan Y. Increased V-ATPase activity can lead to chemo-resistance in oral squamous cell carcinoma via autophagy induction: new insights. Med Oncol 2024; 41:108. [PMID: 38592406 DOI: 10.1007/s12032-024-02313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors' microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.
Collapse
Affiliation(s)
- Ahmadreza Lagzian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Marziye Askari
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nastaran Sheikhi
- Biotechnology Department, Biological Sciences Faculty, Alzahra University, Tehran, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham, UK
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
7
|
Steffen C, Schallenberg S, Dernbach G, Dielmann A, Dragomir MP, Schweiger-Eisbacher C, Klauschen F, Horst D, Tinhofer I, Heiland M, Keilholz U. Spatial heterogeneity of tumor cells and the tissue microenvironment in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:379-390. [PMID: 38281880 DOI: 10.1016/j.oooo.2023.12.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE This study describes the morphologic and phenotypic spatial heterogeneity of tumor cells and the tissue microenvironment (TME), focusing on immune infiltration in OSCCs. STUDY DESIGN Patients with OSCCs and planned surgical tumor resection were eligible for the study. Two biopsies each from the tumor center and the tumor rim were obtained. Immunohistochemical characterization of tumor and immune cells was performed using a panel of immunohistochemical markers. RESULTS Thirty-six biopsies were obtained from the 9 patients. All patients showed an individual marker expression profile with ITH. Within the same biopsy, the CPS and TPS scores showed relevant variations in PD-L1 expression. Comparisons between the tumor center and rim revealed significant differences in the up/downregulation of p53. Marker expression of patients with recurrences clustered similarly, with the higher expression of FoxP3, IDO, CD4, CD68, and CD163 at the tumor rim. CONCLUSION OSCCs were found to exhibit relevant ITH involving both tumor cells and TME, suggesting that biomarker analysis of multiple tumor regions may be helpful for clinical decision making and tumor characterization. The analysis of multiple spots within a biopsy is recommended for a reliable determination of PD-L1 expression and other biomarkers, impacting current clinical assessments.
Collapse
Affiliation(s)
- Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Gabriel Dernbach
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anastasia Dielmann
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Institute of Pathology, Ludwig-Maximilians-University Munich, München, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingeborg Tinhofer
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
8
|
Shi M, Huang K, Wei J, Wang S, Yang W, Wang H, Li Y. Identification and Validation of a Prognostic Signature Derived from the Cancer Stem Cells for Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:1031. [PMID: 38256104 PMCID: PMC10816075 DOI: 10.3390/ijms25021031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The progression and metastasis of oral squamous cell carcinoma (OSCC) are highly influenced by cancer stem cells (CSCs) due to their unique self-renewal and plasticity. In this study, data were obtained from a single-cell RNA-sequencing dataset (GSE172577) in the GEO database, and LASSO-Cox regression analysis was performed on 1344 CSCs-related genes to establish a six-gene prognostic signature (6-GPS) consisting of ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1. High-risk scores were significantly associated with unfavorable survival outcomes, and these features were thoroughly validated in the ICGC. The results of nomograms, calibration plots, and ROC curves confirmed the good prognostic accuracy of 6-GPS for OSCC. Additionally, the knockdown of ADM or POLR1D genes may significantly inhibit the proliferation, migration, and invasion of OSCC cells through the JAK/HIF-1 pathway. Furthermore, cell-cycle arrest occurred in the G1 phase by suppressing Cyclin D1. In summary, 6-GPS may play a crucial role in the occurrence and development of OSCC and has the potential to be developed further as a diagnostic, therapeutic, and prognostic tool for OSCC.
Collapse
Affiliation(s)
- Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Jiaqi Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Shiqi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Weijia Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Huihui Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| |
Collapse
|
9
|
Peng R, Huang Y, Huang P, Liu L, Cheng L, Peng X. The paradoxical role of transforming growth factor-β in controlling oral squamous cell carcinoma development. Cancer Biomark 2024; 40:241-250. [PMID: 39213051 PMCID: PMC11380267 DOI: 10.3233/cbm-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that plays a vital role in regulating cell growth, differentiation and survival in various tissues. It participates in a variety of cellular processes, including cell apoptosis, cell migration and evasion, and plays a paradoxical role in tumor genesis and development. In the early stage of tumor, TGF-β inhibits the occurrence of tumor by inhibiting cell proliferation and regulating cell apoptosis. In the advanced stage of tumor, TGF-β promotes tumor development and affects prognosis by promoting cell survival and proliferation, cell migration and invasion, participates in immune escape, etc. In this article, we will review the paradoxical role of TGF-β on the occurrence and development of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ruiting Peng
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Yun Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Ping Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Linyi Liu
- Maine Health Institute for Research, Scarborough, ME, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li F, Li PF, Hao XD. Circular RNAs in ferroptosis: regulation mechanism and potential clinical application in disease. Front Pharmacol 2023; 14:1173040. [PMID: 37332354 PMCID: PMC10272566 DOI: 10.3389/fphar.2023.1173040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Ferroptosis, an iron-dependent non-apoptotic form of cell death, is reportedly involved in the pathogenesis of various diseases, particularly tumors, organ injury, and degenerative pathologies. Several signaling molecules and pathways have been found to be involved in the regulation of ferroptosis, including polyunsaturated fatty acid peroxidation, glutathione/glutathione peroxidase 4, the cysteine/glutamate antiporter system Xc-, ferroptosis suppressor protein 1/ubiquinone, and iron metabolism. An increasing amount of evidence suggests that circular RNAs (circRNAs), which have a stable circular structure, play important regulatory roles in the ferroptosis pathways that contribute to disease progression. Hence, ferroptosis-inhibiting and ferroptosis-stimulating circRNAs have potential as novel diagnostic markers or therapeutic targets for cancers, infarctions, organ injuries, and diabetes complications linked to ferroptosis. In this review, we summarize the roles that circRNAs play in the molecular mechanisms and regulatory networks of ferroptosis and their potential clinical applications in ferroptosis-related diseases. This review furthers our understanding of the roles of ferroptosis-related circRNAs and provides new perspectives on ferroptosis regulation and new directions for the diagnosis, treatment, and prognosis of ferroptosis-related diseases.
Collapse
|
11
|
Wu CY, Liu JF, Tsai HC, Tzeng HE, Hsieh TH, Wang M, Lin YF, Lu CC, Lien MY, Tang CH. Interleukin-11/gp130 upregulates MMP-13 expression and cell migration in OSCC by activating PI3K/Akt and AP-1 signaling. J Cell Physiol 2022; 237:4551-4562. [PMID: 36260652 DOI: 10.1002/jcp.30902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is an extremely common head and neck cancer with a poor 5-year survival rate, especially in cases of metastatic disease. Interleukin (IL)-11 reportedly promotes cell growth and the epithelial-mesenchymal transition process in metastasis. However, the molecular mechanisms of IL-11 in OSCC metastasis are unclear. This study found that IL-11 upregulates matrix metalloproteinase 13 (MMP-13) expression in OSCC via the IL-11 receptor alpha subunit/glycoprotein 130 receptors that activate phosphatidyl-inositol 3-kinase, Ak strain transforming, and activator protein 1 signaling, which subsequently enhance MMP-13-induced tumor metastasis. TIMER2.0 analysis revealed a positive correlation between MMP-13 and IL-11 levels (r = 0.454). Moreover, a strong positive association was observed between higher levels of IL-11 expression in OSCC tissue (p < 0.01), lymph node metastasis (p = 0.0154), and clinical disease stage (p = 0.0337). IL-11 knockdown suppressed the migration of OSCC cells (p < 0.05). The evidence indicates that IL-11 can serve as a new molecular therapeutic target in OSCC metastasis.
Collapse
Affiliation(s)
- Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Huey-En Tzeng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ming Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Chi Lu
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yu Lien
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
12
|
Patra S, Patil S, Das S, Bhutia SK. Epigenetic dysregulation in autophagy signaling as a driver of viral manifested oral carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166517. [DOI: 10.1016/j.bbadis.2022.166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
|
13
|
Hou D, Hu F, Mao Y, Yan L, Zhang Y, Zheng Z, Wu A, Forouzanfar T, Pathak JL, Wu G. Cationic antimicrobial peptide NRC-03 induces oral squamous cell carcinoma cell apoptosis via CypD-mPTP axis-mediated mitochondrial oxidative stress. Redox Biol 2022; 54:102355. [PMID: 35660629 PMCID: PMC9511698 DOI: 10.1016/j.redox.2022.102355] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Pleurocidin-family cationic antimicrobial peptide NRC-03 exhibits potent and selective cytotoxicity towards cancer cells. However, the anticancer effect of NRC-03 in oral squamous cell carcinoma (OSCC) and the molecular mechanism of NRC-03 induced cancer cell death is still unclear. This study focused to investigate mitochondrial oxidative stress-mediated altered mitochondrial function involved in NRC-03-induced apoptosis of OSCC cells. NRC-03 entered the OSCC cells more easily than that of normal cells and bound to mitochondria as well as the nucleus, causing cell membrane blebbing, mitochondria swelling, and DNA fragmentation. NRC-03 induced high oxygen consumption, reactive oxygen species (ROS) release, mitochondrial dysfunction, and apoptosis in OSCC cells. Non-specific antioxidant N-acetyl-l-cysteine (NAC), or mitochondria-specific antioxidant mitoquinone (MitoQ) alleviated NRC-03-induced apoptosis and mitochondrial dysfunction indicated that NRC-03 exerts a cytotoxic effect in cancer cells via inducing cellular and mitochondrial oxidative stress. Moreover, the expression of cyclophilin D (CypD), the key component of mitochondrial permeability transition pore (mPTP), was upregulated in NRC-03-treated cancer cells. Blockade of CypD by siRNA-mediated depletion or pharmacological inhibitor cyclosporine A (CsA) significantly suppressed NRC-03-induced mitochondrial oxidative stress, mitochondrial dysfunction, and apoptosis. NRC-03 also activated MAPK/ERK and NF-κB pathways. Importantly, intratumoral administration of NRC-03 inhibited the growth of CAL-27 cells-derived tumors on xenografted animal models. Taken together, our study indicates that NRC-03 induces apoptosis in OSCC cells via the CypD-mPTP axis mediated mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China; Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC/VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, 1081 HZ, the Netherlands
| | - Fengjun Hu
- Institute of Information Technology, Zhejiang Shuren University, Hangzhou, Zhejiang, 310000, China
| | - Yixin Mao
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 HZ, Netherlands
| | - Liang Yan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuhui Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Antong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC/VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, 1081 HZ, the Netherlands
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC/VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, 1081 HZ, the Netherlands; Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University van Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081LA, Netherlands.
| |
Collapse
|
14
|
Robin HP, Trudeau CN, Robbins AJ, Chung EJ, Rahman E, Strickland OLG, Jordan S, Licari FW, Winden DR, Reynolds PR, Arroyo JA. Inflammation and Invasion in Oral Squamous Cell Carcinoma Cells Exposed to Electronic Cigarette Vapor Extract. Front Oncol 2022; 12:917862. [PMID: 35936727 PMCID: PMC9354529 DOI: 10.3389/fonc.2022.917862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Electronic cigarettes (eCig) represent a new avenue of tobacco exposure that involves heating oil-based liquids and the delivery of aerosolized flavors with or without nicotine, yet little is known about their overall health impact. The oral cavity is an anatomic gateway for exposure that can be compromised by activating myriad of signaling networks. Oral squamous cell carcinoma (OSSC) is a common malignancy affecting 30,000 people in the United States each year. Our objective was to determine the impact of eCig and nicotine on gingival OSSC invasion and their secretion of pro-inflammatory molecules. Gingiva-derived Ca9-22 cells and tongue-derived Cal27 cells were exposed to eCig vapor extract (EVE) generated from Red Hot or Green Apple (Apple) flavored eCig solution +/- nicotine for 6 hours. Isolation of protein lysates and collection conditioned media was done after treatment. Real-time cellular invasion was assessed using a RTCA DP instrument. Protein expression was determined using western blot. Compared to controls, we observed: elevated NF-kB, TNF-α, ERK, JNK, MMP-13 and cell invasion by Ca9-22 treated with Apple EVE; increased TNF-α and JNK by Ca9-22 treated with Red Hot EVE; and increased TNF-α and JNK by Cal27 cells treated with both Apple and Red Hot EVE. We conclude that eCig flavoring and nicotine orchestrated differential cell invasion and inflammatory effects. This study provides an important initial step in dissecting mechanisms of cancerous invasion and molecular avenues employed by OSCC.
Collapse
Affiliation(s)
- Hannah P. Robin
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Courtney N. Trudeau
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Adam J. Robbins
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Emily J. Chung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Erum Rahman
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | | | - Scott Jordan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Frank W. Licari
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Duane R. Winden
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
- *Correspondence: Juan A. Arroyo,
| |
Collapse
|
15
|
Balachander K, Paramasivam A. Selective autophagy as a potential therapeutic target for oral cancer. Oral Oncol 2022; 130:105934. [DOI: 10.1016/j.oraloncology.2022.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
16
|
Identification of Candidate Target Genes and Immune Cells in Oral Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:5802110. [PMID: 35003322 PMCID: PMC8739923 DOI: 10.1155/2021/5802110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
Background The advance of new treatment strategies for more effective management of oral cancer requires identification of novel biological targets. Therefore, the purpose of this study is to identify novel biomarkers associated with oral tumorigenesis and prognostic signature by comparing gene expression profile of oral squamous cell carcinomas (OSCCs). Methods Four datasets including GSE25099, GSE30784, GSE37991, and GSE41613 were collected from Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Cox model analysis, identification of key genes, and Kaplan-Meier analysis were also performed. The xCell was utilized to analyze the infiltration levels of immune cells. Results A total of 235 differentially expressed genes (DEGs) were found to be dysregulated in OSCC. These genes were mainly enriched in ECM receptor interaction and focal adhesion. Cox regression analysis identified 10 genes considered as key genes. Kaplan-Meier analysis showed that low expression of SERPINE1 (also known as PAI-1), high expression of CD1C, and C-X3-C motif chemokine receptor 1 (CX3CR1) were associated with well prognostic status in OSCC patients. In addition, we constructed a 3-immune-cell signature (myeloid dendritic cell, T cell CD4+ central memory, and common myeloid progenitor) that may be used to predict the survival status of OSCC patients. Conclusion Three key genes and 3-immune-cell signature were potential biomarkers for the prognosis of OSCC, and they may serve as potential targets for the treatment of OSCC patients.
Collapse
|
17
|
A Novel Autophagy-Related Prognostic Risk Model and a Nomogram for Survival Prediction of Oral Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2067540. [PMID: 35036428 PMCID: PMC8758260 DOI: 10.1155/2022/2067540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/11/2021] [Indexed: 12/26/2022]
Abstract
Background. This study is aimed at constructing a risk signature to predict survival outcomes of ORCA patients. Methods. We identified differentially expressed autophagy-related genes (DEARGs) based on the RNA sequencing data in the TCGA database; then, four independent survival-related ARGs were identified to construct an autophagy-associated signature for survival prediction of ORCA patients. The validity and robustness of the prognostic model were validated by clinicopathological data and survival data. Subsequently, four independent prognostic DEARGs that composed the model were evaluated individually. Results. The expressions of 232 autophagy-related genes (ARGs) in 127 ORCA and 13 control tissues were compared, and 36 DEARGs were filtered out. We performed functional enrichment analysis and constructed protein–protein interaction network for 36 DEARGs. Univariate and multivariate Cox regression analyses were adopted for searching prognostic ARGs, and an autophagy-associated signature for ORCA patients was constructed. Eventually, 4 desirable independent survival-related ARGs (WDR45, MAPK9, VEGFA, and ATIC) were confirmed and comprised the prognostic model. We made use of multiple ways to verify the accuracy of the novel autophagy-related signature for survival evaluation, such as receiver-operator characteristic curve, Kaplan–Meier plotter, and clinicopathological correlational analyses. Four independent prognostic DEARGs that formed the model were also associated with the prognosis of ORCA patients. Conclusions. The autophagy-related risk model can evaluate OS for ORCA patients independently since it is accurate and stable. Four prognostic ARGs that composed the model can be studied deeply for target treatment.
Collapse
|
18
|
Dai H, Yan H, Dong F, Zhang L, Du N, Sun L, Li N, Yu G, Yang Z, Wang Y, Huang M. Tumor-targeted Biomimetic Nanoplatform Precisely Integrate Photodynamic Therapy and Autophagy Inhibiton for Collaborative Treatment of Oral Cancer. Biomater Sci 2022; 10:1456-1469. [PMID: 35048086 DOI: 10.1039/d1bm01780b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral cancer is a common malignant tumor in the maxillofacial regions. Surgical resection is the preferred treatment, but severe functional impairment after surgery forces us to look for noninvasive treatments....
Collapse
Affiliation(s)
- Hao Dai
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Han Yan
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Fan Dong
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100081, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Ludan Zhang
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100081, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Ning Du
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lisha Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ningyu Li
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100081, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Guohui Yu
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100081, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Zeyuan Yang
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100081, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yuguang Wang
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Beijing 100081, China
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Mingwei Huang
- Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
19
|
Sun H, Wei X, Zeng C. Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside. Mol Cell Biochem 2021; 476:4231-4244. [PMID: 34345999 DOI: 10.1007/s11010-021-04235-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) characterized by the rearrangement of the TFE3 is recently identified as a unique subtype of RCC that urgently requires effective prevention and treatment strategies. Therefore, determining suitable therapeutic targets and fully understanding the biological significance of tRCC is essential. The importance of autophagy is increasingly acknowledged because it shows carcinogenic activity or suppressor effect. Autophagy is a physiological cellular process critical to maintaining cell homeostasis, which is involved in the lysosomal degradation of cytoplasmic organelles and macromolecules via the lysosomal pathway, suggesting that targeting autophagy is a potential therapeutic approach for cancer therapies. However, the underlying mechanism of autophagy in tRCC is still ambiguous. In this review, we summarize the autophagy-related signaling pathways associated with tRCC. Moreover, we examine the roles of autophagy and the immune response in tumorigenesis and investigate how these factors interact to facilitate or prevent tumorigenesis. Besides, we review the findings regarding the treatment of tRCC via induction or inhibition of autophagy. Hopefully, this study will shed some light on the functions and implications of autophagy and emphasize its role as a potential molecular target for therapeutic intervention in tRCC.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Xing Wei
- Department of Nephrology and Rheumatology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
20
|
Shetty SS, Padam KSR, Hunter KD, Kudva A, Radhakrishnan R. Biological implications of the immune factors in the tumour microenvironment of oral cancer. Arch Oral Biol 2021; 133:105294. [PMID: 34735925 DOI: 10.1016/j.archoralbio.2021.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this review is to decipher the biological implications of the immune factors in the tumour microenvironment in oral cancer. The restoration of balance between tumour tolerance and tumour eradication by the host immune cells is critical to provide effective therapeutic strategies. DESIGN The specific role of the stromal and the immune components in oral cancer was reviewed with a tailored search strategy using relevant keywords. The articles were retrieved from bibliometric databases indexed in PubMed, Scopus, and Embase. An in silico analysis was performed to identify potential drug candidates for immunotherapy, by accessing the Drug-Gene Interactions Database (DGIdb) using the rDGIdb package. RESULTS There is compelling evidence for the role of the cellular and extracellular components of the tumour microenvironment in inducing immunosuppression and progression of oral cancer. The druggable candidates specifically targeting the immune system are a viable option in the treatment of oral cancer as they can regulate the tumour microenvironment. CONCLUSION A complex interaction between the tumour and the immunological microenvironment influences the disease outcome in oral cancer. Targeting specific components of the immune system might be relevant, as immunotherapy may become the new standard of care for oral cancer.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
21
|
Chen CC, Chen CY, Cheng SF, Shieh TM, Leu YL, Chuang WY, Liu KT, Ueng SH, Shih YH, Chou LF, Wang TH. Hydroxygenkwanin Increases the Sensitivity of Liver Cancer Cells to Chemotherapy by Inhibiting DNA Damage Response in Mouse Xenograft Models. Int J Mol Sci 2021; 22:ijms22189766. [PMID: 34575923 PMCID: PMC8471855 DOI: 10.3390/ijms22189766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Kuang-Ting Liu
- Department of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| |
Collapse
|
22
|
Guo Q, Zhang X, Shen T, Wang X. Identification of Autophagy- and Ferroptosis-Related lncRNAs Functioned through Immune-Related Pathways in Head and Neck Squamous Carcinoma. Life (Basel) 2021; 11:life11080835. [PMID: 34440579 PMCID: PMC8399325 DOI: 10.3390/life11080835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The interplay between autophagy and ferroptosis has been highlighted as an important event to decide cancer cell fate. However, the underlying mechanisms remain largely unclear. In this study, we systematically explored the expression, prognostic value and functional roles of lncRNA in autophagy and ferroptosis. By a set of bioinformatics analyses, we identified 363 autophagy- and ferroptosis-related lncRNAs (AF-lncRNAs) and found 17 of them are dramatically related to the prognosis of head and neck squamous cell carcinoma (HNSC) patients, named as prognosis-related AF-lncRNAs (PAF-lncRNAs). Based on six key PAF-lncRNAs, a risk score model was developed and used to categorize the TCGA-retrieved HNSC patients into two groups (high-risk vs. low-risk). Functional analysis showed the differentially expressed genes (DEGs) between the two groups were mainly enriched in immune-related pathways and regulated by a PAF-lncRNA-directed ceRNA (competitive endogenous RNA) network. Combined with a variety of immune infiltration analyses, we also found a decreased landscape of immune cell infiltration in high-risk groups. Together, by revealing PAF-lncRNAs with tumor prognostic features functioned through immune-related pathways, our work would contribute to show the pathogenesis of a lncRNA-directed interplay among autophagy, ferroptosis and tumor immunity in HNSC and to develop potential prognostic biomarkers and targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xuehan Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tao Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| |
Collapse
|
23
|
Cui SH, Hu XD, Yan Y. Wnt/β-catenin signaling pathway participates in the effect of miR-626 on oral squamous cell carcinoma by targeting RASSF4. J Oral Pathol Med 2021; 50:1005-1017. [PMID: 34121238 DOI: 10.1111/jop.13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND The role of miR-626 in oral squamous cell carcinoma (OSCC) was investigated by targeting RASSF4. METHODS The miR-626 and RASSF4 expression was detected in normal oral mucosa or OSCC tissues and OSCC or normal cells. The methylation status of RASSF4 was analyzed using methylation-specific polymerase chain reaction (PCR). The cytoplasmic/nuclear ratios (C/N ratios) targeted by miR-626 were examined using microarray, followed by a dual-luciferase reporter assay. The subcellular localization of RASSF4 and miR-626 in OSCC cells was determined using RNA fluorescence in situ hybridization (FISH) and immunocytochemistry (ICC), respectively. Ca9-22 and HSC2 cells were divided into mock, inhibitor NC, miR-626 inhibitor, scramble, RASSF4 and miR-626 mimic + RASSF4 groups, and then CCK-8, Annexin V-FITC/PI, wound healing, Transwell, qRT-PCR and western blotting assays were performed. RESULTS OSCC tissues and cells had increased miR-626 expression and decreased RASSF4 expression. Patients with RASSF4 methylation had lower RASSF4 expression than those without methylation. In addition, a negative correlation between miR-626 and RASSF4 was found in OSCC tissues, both of which were correlated with the pathological grade, pathological stage, lymph node metastasis and patient prognosis. MiR-626 targeted RASSF4 in OSCC cells. Overexpressed RASSF4 inhibited the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of OSCC cells, promoted cell apoptosis, and blocked the Wnt/β-Catenin pathway, which was reversed by miR-626 overexpression. CONCLUSIONS Inhibiting miR-626 can regulate the biological characteristics of OSCC cells, including proliferation, invasion, migration, EMT and apoptosis, by targeting RASSF4, which may be related to the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Sheng-Hai Cui
- Department of Oral and Maxillofacial Surgery, Yantai Stomatological Hospital, Yantai, China
| | - Xiao-Di Hu
- Department of Stomatology, Yantaishan Hospital, Yantai, China
| | - Yan Yan
- Department of Stomatology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
24
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|