1
|
He Y, Zhu Y, Yin Z, Shi J, Shang K, Tian T, Shi H, Ding J, Zhang F. Design a novel of Brucellosis preventive vaccine based on IgV_CTLA-4 and multiple epitopes via immunoinformatics approach. Microb Pathog 2024; 195:106909. [PMID: 39218373 DOI: 10.1016/j.micpath.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Brucellosis is a zoonotic disease caused by Brucella, which is difficult to eliminate by conventional drugs. Therefore, a novel multi-epitope vaccine (MEV) was designed to prevent human Brucella infection. Based on the method of "reverse vaccinology", cytotoxic T lymphocyte epitopes (CTLEs), helper T lymphocyte epitopes (HTLEs), linear B-cell epitopes (LBEs) and conformational B-cell epitopes (CBEs) of four Brucella proteins (VirB9, VirB10, Omp 19 and Omp 25) were obtained. In order to keep the correct protein folding, the multiple epitopes was constructed by connecting epitopes through linkers. In view of the significant connection between human leukocyte antigen CTLA-4 and B7 molecules found on antigen presenting cells (APCs), a new vaccine (V_C4MEV) for preventing brucellosis was created by combining CTLA-4 immunoglobulin variable region (IgV_CTLA-4) with MEV protein. Immunoinformatics analysis showed that V_C4MEV has a good secondary and tertiary structure. Additionally, molecular docking and molecular dynamics simulation (MD) revealed a robust binding affinity between IgV_ CTLA-4 and the B7 molecule. Notably, the vaccine V_C4MEV was demonstrated favorable immunogenicity and antigenicity in both in vitro and in vivo experiments. V_C4MEV had the potential to activate defensive cells and immune responses, offering a hopeful approach for developing vaccines against Brucella in the upcoming years.
Collapse
Affiliation(s)
- Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China; Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - YueJie Zhu
- Department of Reproductive Assistance, Center for Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhengwei Yin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaiyu Shang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huidong Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
2
|
Fattahi AS, Jafari M, Farahavar G, Abolmaali SS, Tamaddon AM. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit Rev Oncol Hematol 2024; 201:104437. [PMID: 38977144 DOI: 10.1016/j.critrevonc.2024.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Immunoconjugates are promising molecules combining antibodies with different agents, such as toxins, drugs, radionuclides, or cytokines that primarily aim to target tumor cells. However, tumor microenvironment (TME), which comprises a complex network of various cells and molecular cues guiding tumor growth and progression, remains a major challenge for effective cancer therapy. Our review underscores the pivotal role of TME in cancer therapy with immunoconjugates, examining the intricate interactions with TME and recent advancements in TME-targeted immunoconjugates. We explore strategies for targeting TME components, utilizing diverse antibodies such as neutralizing, immunomodulatory, immune checkpoint inhibitors, immunostimulatory, and bispecific antibodies. Additionally, we discuss different immunoconjugates, elucidating their mechanisms of action, advantages, limitations, and applications in cancer immunotherapy. Furthermore, we highlight emerging technologies enhancing the safety and efficacy of immunoconjugates, such as antibody engineering, combination therapies, and nanotechnology. Finally, we summarize current advancements, perspectives, and future developments of TME-targeted immunoconjugates.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
3
|
Morihara H, Yamada T, Tona Y, Akasaka M, Okuyama H, Chatani N, Shinonome S, Ueyama A, Kuwabara K, Fujio Y. Anti-CTLA-4 treatment suppresses hepatocellular carcinoma growth through Th1-mediated cell cycle arrest and apoptosis. PLoS One 2024; 19:e0305984. [PMID: 39106430 PMCID: PMC11302986 DOI: 10.1371/journal.pone.0305984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/09/2024] [Indexed: 08/09/2024] Open
Abstract
Inhibiting the cytotoxic T-lymphocyte-associated protein-4 (CTLA-4)-mediated immune checkpoint system using an anti-CTLA-4 antibody (Ab) can suppress the growth of various cancers, but the detailed mechanisms are unclear. In this study, we established a monoclonal hepatocellular carcinoma cell line (Hepa1-6 #12) and analyzed the mechanisms associated with anti-CTLA-4 Ab treatment. Depletion of CD4+ T cells, but not CD8+ T cells, prevented anti-CTLA-4 Ab-mediated anti-tumor effects, suggesting dependence on CD4+ T cells. Anti-CTLA-4 Ab treatment resulted in recruitment of interferon-gamma (IFN-g)-producing CD4+ T cells, called T-helper 1 (Th1), into tumors, and neutralization of IFN-g abrogated the anti-tumor effects. Moreover, tumor growth suppression did not require major histocompatibility complex (MHC)-I or MHC-II expression on cancer cells. In vitro studies showed that IFN-g can induce cell cycle arrest and apoptosis in tumor cells. Taken together, these data demonstrate that anti-CTLA-4 Ab can exert its anti-tumor effects through Th1-mediated cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Hitomi Morihara
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Tomomi Yamada
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Yumi Tona
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Marina Akasaka
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirohisa Okuyama
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Natsumi Chatani
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Satomi Shinonome
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Azumi Ueyama
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Kenji Kuwabara
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Zhu Y, Yu M, Aisikaer M, Zhang C, He Y, Chen Z, Yang Y, Han R, Li Z, Zhang F, Ding J, Lu X. Contriving a novel of CHB therapeutic vaccine based on IgV_CTLA-4 and L protein via immunoinformatics approach. J Biomol Struct Dyn 2024; 42:6323-6341. [PMID: 37424209 DOI: 10.1080/07391102.2023.2234043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chronic infection induced by immune tolerance to hepatitis B virus (HBV) is one of the most common causes of hepatic cirrhosis and hepatoma. Fortunately, the application of therapeutic vaccine can not only reverse HBV-tolerance, but also serve a potentially effective therapeutic strategy for treating chronic hepatitis B (CHB). However, the clinical effect of the currently developed CHB therapeutic vaccine is not optimistic due to the weak immunogenicity. Given that the human leukocyte antigen CTLA-4 owns strong binding ability to the surface B7 molecules (CD80 and CD86) of antigen presenting cell (APCs), the immunoglobulin variable region of CTLA-4 (IgV_CTLA-4) was fused with the L protein of HBV to contrive a novel therapeutic vaccine (V_C4HBL) for CHB in this study. We found that the addition of IgV_CTLA-4 did not interfere with the formation of L protein T cell and B cell epitopes after analysis by means of immunoinformatics approaches. Meanwhile, we also found that the IgV_CTLA-4 had strong binding force to B7 molecules through molecular docking and molecular dynamics (MD) simulation. Notably, our vaccine V_C4HBL showed good immunogenicity and antigenicity by in vitro and in vivo experiments. Therefore, the V_C4HBL is promising to again effectively activate the cellular and humoral immunity of CHB patients, and provides a potentially effective therapeutic strategy for the treatment of CHB in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Maierhaba Aisikaer
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Chuntao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Yinyin Yang
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Rui Han
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Xiaobo Lu
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Ayass MA, Tripathi T, Griko N, Okyay T, Ramankutty Nair R, Zhang J, Zhu K, Melendez K, Pashkov V, Abi-Mosleh L. Dual Checkpoint Aptamer Immunotherapy: Unveiling Tailored Cancer Treatment Targeting CTLA-4 and NKG2A. Cancers (Basel) 2024; 16:1041. [PMID: 38473398 DOI: 10.3390/cancers16051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Recent strides in immunotherapy have illuminated the crucial role of CTLA-4 and PD-1/PD-L1 pathways in contemporary oncology, presenting both promises and challenges in response rates and adverse effects. This study employs a computational biology tool (in silico approach) to craft aptamers capable of binding to dual receptors, namely, inhibitory CTLA4 and NKG2A, thereby unleashing both T and NK cells and enhancing CD8+ T and NK cell functions for tumor cell lysis. Computational analysis highlighted AYA22T-R2-13 with HADDOCK scores of -78.2 ± 10.2 (with CTLA4), -60.0 ± 4.2 (with NKG2A), and -77.5 ± 5.6 (with CD94/NKG2A). Confirmation of aptamer binding to targeted proteins was attained via ELISA and flow cytometry methods. In vitro biological functionality was assessed using lactate dehydrogenase (LDH) cytotoxicity assay. Direct and competitive assays using ELISA and flow cytometry demonstrated the selective binding of AYA22T-R2-13 to CTLA4 and NKG2A proteins, as well as to the cell surface receptors of IL-2-stimulated T cells and NK cells. This binding was inhibited in the presence of competition from CTLA4 or NKG2A proteins. Remarkably, the blockade of CTLA4 or NKG2A by AYA22T-R2-13 augmented human CD8 T cell- and NK cell-mediated tumor cell lysis in vitro. Our findings highlight the precise binding specificity of AYA22T-R2-13 for CTLA4-B7-1/B7-2 (CD80/CD86) or CD94/NKG2A-HLA-E interactions, positioning it as a valuable tool for immune checkpoint blockade aptamer research in murine tumor models. These in vitro studies establish a promising foundation for further enhancing binding capacity and establishing efficacy and safety in animal models. Consequently, our results underscore the potential of AYA22T-R2-13 in cancer immunotherapy, offering high specificity, low toxicity, and the potential for cost-effective production.
Collapse
Affiliation(s)
| | | | - Natalya Griko
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Tutku Okyay
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | | | - Jin Zhang
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kevin Zhu
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kristen Melendez
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Victor Pashkov
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| |
Collapse
|
6
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Meyblum L, Chevaleyre C, Susini S, Jego B, Deschamps F, Kereselidze D, Bonnet B, Marabelle A, de Baere T, Lebon V, Tselikas L, Truillet C. Local and distant response to intratumoral immunotherapy assessed by immunoPET in mice. J Immunother Cancer 2023; 11:e007433. [PMID: 37949616 PMCID: PMC10649793 DOI: 10.1136/jitc-2023-007433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Despite the promising efficacy of immune checkpoint blockers (ICB), tumor resistance and immune-related adverse events hinder their success in cancer treatment. To address these challenges, intratumoral delivery of immunotherapies has emerged as a potential solution, aiming to mitigate side effects through reduced systemic exposure while increasing effectiveness by enhancing local bioavailability. However, a comprehensive understanding of the local and systemic distribution of ICBs following intratumoral administration, as well as their impact on distant tumors, remains crucial for optimizing their therapeutic potential.To comprehensively investigate the distribution patterns following the intratumoral and intravenous administration of radiolabeled anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and to assess its corresponding efficacy in both injected and non-injected tumors, we conducted an immunoPET imaging study. METHODS CT26 and MC38 syngeneic colorectal tumor cells were implanted subcutaneously on both flanks of Balb/c and C57Bl/6 mice, respectively. Hamster anti-mouse CTLA-4 antibody (9H10) labeled with zirconium-89 ([89Zr]9H10) was intratumorally or intravenously administered. Whole-body distribution of the antibody was monitored by immunoPET imaging (n=12 CT26 Balb/c mice, n=10 MC38 C57Bl/6 mice). Tumorous responses to injected doses (1-10 mg/kg) were correlated with specific uptake of [89Zr]9H10 (n=24). Impacts on the tumor microenvironment were assessed by immunofluorescence and flow cytometry. RESULTS Half of the dose was cleared into the blood 1 hour after intratumoral administration. Despite this, 7 days post-injection, 6-8% of the dose remained in the intratumoral-injected tumors. CT26 tumors with prolonged ICB exposure demonstrated complete responses. Seven days post-injection, the contralateral non-injected tumor uptake of the ICB was comparable to the one achieved through intravenous administration (7.5±1.7% ID.cm-3 and 7.6±2.1% ID.cm-3, respectively) at the same dose in the CT26 model. This observation was confirmed in the MC38 model. Consistent intratumoral pharmacodynamic effects were observed in both intratumoral and intravenous treatment groups, as evidenced by a notable increase in CD8+T cells within the CT26 tumors following treatment. CONCLUSIONS ImmunoPET-derived pharmacokinetics supports intratumoral injection of ICBs to decrease systemic exposure while maintaining efficacy compared with intravenous. Intratumoral-ICBs lead to high local drug exposure while maintaining significant therapeutic exposure in non-injected tumors. This immunoPET approach is applicable for clinical practice to support evidence-based drug development.
Collapse
Affiliation(s)
- Louis Meyblum
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
| | - Céline Chevaleyre
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Sandrine Susini
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
| | - Benoit Jego
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Frederic Deschamps
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
| | - Dimitri Kereselidze
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Baptiste Bonnet
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
| | - Aurelien Marabelle
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Saint Aubin, France
| | - Thierry de Baere
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
- Université Paris Saclay, Saint Aubin, France
| | - Vincent Lebon
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| | - Lambros Tselikas
- Département d'Anesthésie, Chirurgie et Interventionnel (DACI), Service de Radiologie Interventionnelle, Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
- BIOTHERIS, Centre d'Investigation Clinique, INSERM U1428, Villejuif, France
- Université Paris Saclay, Saint Aubin, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, INSERM UMR1281, Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay (BioMaps), Orsay, France
| |
Collapse
|
8
|
Liu K, Wang YH, Luo N, Gong J, Wang J, Chen B. Treatment-related gastrointestinal adverse events of nivolumab plus ipilimumab in randomized clinical trials: a systematic review and meta-analysis. Future Oncol 2023; 19:1865-1875. [PMID: 37753664 DOI: 10.2217/fon-2022-0615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The authors used a meta-analysis to evaluate the risks of gastrointestinal adverse events in the cotreatment of malignant tumors with nivolumab and ipilimumab. The meta-analysis revealed that the most common gastrointestinal adverse event at all grades was diarrhea, followed by nausea, decreased appetite, vomiting, constipation, colitis and abdominal pain. The most common severe gastrointestinal adverse events were colitis and diarrhea. Different administration schemes differ in the risk of such events, and thus these events may be minimized by modulating the administration scheme of the cotreatment.
Collapse
Affiliation(s)
- Ke Liu
- Department of Gastrointestinal Surgery, People's Hospital of Leshan, Sichuan, China
- Department of Nursing, People's Hospital of Leshan, Sichuan, China
| | - Yong-Hong Wang
- Department of Gastrointestinal Surgery, People's Hospital of Leshan, Sichuan, China
| | - Na Luo
- Department of Nursing, People's Hospital of Leshan, Sichuan, China
| | - Juan Gong
- Department of Nursing, People's Hospital of Leshan, Sichuan, China
| | - Jun Wang
- Department of Nursing, People's Hospital of Leshan, Sichuan, China
| | - Bing Chen
- Department of Nursing, People's Hospital of Leshan, Sichuan, China
| |
Collapse
|
9
|
Nishida H, Kusaba T, Kawamura K, Oyama Y, Daa T. Histopathological Aspects of the Prognostic Factors for Salivary Gland Cancers. Cancers (Basel) 2023; 15:cancers15041236. [PMID: 36831578 PMCID: PMC9954716 DOI: 10.3390/cancers15041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Salivary gland cancers (SGCs) are diagnosed using histopathological examination, which significantly contributes to their progression, including lymph node/distant metastasis or local recurrence. In the current World Health Organization (WHO) Classification of Head and Neck Tumors: Salivary Glands (5th edition), malignant and benign epithelial tumors are classified into 21 and 15 tumor types, respectively. All malignant tumors have the potential for lymph node/distant metastasis or local recurrence. In particular, mucoepidermoid carcinoma (MEC), adenoid cystic carcinoma (AdCC), salivary duct carcinoma, salivary carcinoma, not otherwise specified (NOS, formerly known as adenocarcinoma, NOS), myoepithelial carcinoma, epithelial-myoepithelial carcinoma, and carcinoma ex pleomorphic adenoma (PA) are relatively prevalent. High-grade transformation is an important aspect of tumor progression in SGCs. MEC, AdCC, salivary carcinoma, and NOS have a distinct grading system; however, a universal histological grading system for SGCs has not yet been recommended. Conversely, PA is considered benign; nonetheless, it should be cautiously treated to avoid the development of metastasizing/recurrent PA. The aim of this review is to describe the current histopathological aspects of the prognostic factors for SGCs and discuss the genes or molecules used as diagnostic tools that might have treatment target potential in the future.
Collapse
|
10
|
Hajihassan Z, Afsharian NP, Ansari-Pour N. In silico engineering a CD80 variant with increased affinity to CTLA-4 and decreased affinity to CD28 for optimized cancer immunotherapy. J Immunol Methods 2023; 513:113425. [PMID: 36638881 DOI: 10.1016/j.jim.2023.113425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/20/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
CD80 or cluster of differentiation 80, also known as B7-1, is a member of the immunoglobulin super family, which binds to CTLA-4 and CD28 T cell receptors and induces inhibitory and inductive signals respectively. Although CTLA-4 and CD28 receptors belong to the same protein family, slight differences in their structures leads to CD80 having a higher binding affinity to CTLA-4 (-14.55 kcal/mol) compared with CD28(-12.51 kcal/mol). In this study, we constructed a variant of CD80 protein with increased binding affinity to CTLA-4 and decreased binding affinity to CD28. This variant has no signaling capability, and can act as a cap for these receptors to protect them from natural CD80 proteins existing in the body. The first step was the evolutionary and alanine scanning analysis of CD80 protein to determine conserved regions in this protein. Next, complex alanine scanning technique was employed to determine CD80 protein hotspots in CD80-CTLA-4 and CD80-CD28 protein complexes. This information was fed into a computational model developed in R for in silico mutagenesis and CD80 variant library construction. The 3D structures of variants were modeled using the Swiss model webserver. After modeling the 3D structures, HADDOCK server was employed to build all protein-protein complexes, which contain CTLA-4-CD80 variant complexes, Wild type CD80-CD28 complexes and CD28-CD80 variant complexes. Protein-protein binding free energy was determined using FoldX and the variant number 316 with mutations at 29, 31, 33 positions showed increased binding affinity to CTLA-4 (-21.43 kcal/mol) and decreased binding affinity to CD28 (- 9.54 kcal/mol). Finally, molecular dynamics (MD) simulations confirmed the stability of variant 316. In conclusion, we designed a new CD80 protein variant with potential immunotherapeutic applications.
Collapse
Affiliation(s)
- Zahra Hajihassan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Nessa Pesaran Afsharian
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Naser Ansari-Pour
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Matas-Céspedes A, Lapointe JM, Elder MJ, Browne GJ, Dovedi SJ, de Haan L, Maguire S, Stebbings R. Characterization of a novel potency endpoint for the evaluation of immune checkpoint blockade in humanized mice. Front Immunol 2023; 14:1107848. [PMID: 36936963 PMCID: PMC10020612 DOI: 10.3389/fimmu.2023.1107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Humanized mice are emerging as valuable models to experimentally evaluate the impact of different immunotherapeutics on the human immune system. These immunodeficient mice are engrafted with human cells or tissues, that then mimic the human immune system, offering an alternative and potentially more predictive preclinical model. Immunodeficient NSG mice engrafted with human CD34+ cord blood stem cells develop human T cells educated against murine MHC. However, autoimmune graft versus host disease (GvHD), mediated by T cells, typically develops 1 year post engraftment. Methods Here, we have used the development of GvHD in NSG mice, using donors with HLA alleles predisposed to autoimmunity (psoriasis) to weight in favor of GvHD, as an endpoint to evaluate the relative potency of monoclonal and BiSpecific antibodies targeting PD-1 and CTLA-4 to break immune tolerance. Results We found that treatment with either a combination of anti-PD-1 & anti-CTLA-4 mAbs or a quadrivalent anti-PD-1/CTLA-4 BiSpecific (MEDI8500), had enhanced potency compared to treatment with anti-PD-1 or anti-CTLA-4 monotherapies, increasing T cell activity both in vitro and in vivo. This resulted in accelerated development of GvHD and shorter survival of the humanized mice in these treatment groups commensurate with their on target activity. Discussion Our findings demonstrate the potential of humanized mouse models for preclinical evaluation of different immunotherapies and combinations, using acceleration of GvHD development as a surrogate of aggravated antigenic T-cell response against host.
Collapse
Affiliation(s)
- Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
- *Correspondence: Alba Matas-Céspedes, ; Richard Stebbings,
| | - Jean-Martin Lapointe
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
| | | | - Gareth J. Browne
- Antibody Discovery and Protein Engineering, R&D , AstraZeneca, Cambridge,
United Kingdom
| | | | - Lolke de Haan
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
| | - Shaun Maguire
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
- *Correspondence: Alba Matas-Céspedes, ; Richard Stebbings,
| |
Collapse
|
12
|
Hua Y, Sun X, Luan K, Wang C. Prognostic signature related to the immune environment of oral squamous cell carcinoma. Open Life Sci 2022; 17:1135-1147. [PMID: 36185403 PMCID: PMC9482419 DOI: 10.1515/biol-2022-0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) prognosis remains poor. Here we aimed to identify an effective prognostic signature for predicting the survival of patients with OSCC. Gene-expression and clinical data were obtained from the Cancer Genome Atlas database. Immune microenvironment-associated genes were identified using bioinformatics. Subtype and risk-score analyses were performed for these genes. Kaplan–Meier analysis and immune cell infiltration level were explored in different subtypes and risk-score groups. The prognostic ability, independent prognosis, and clinical features of the risk score were assessed. Furthermore, immunotherapy response based on the risk score was explored. Finally, a conjoint analysis of the subtype and risk-score groups was performed to determine the best prognostic combination. We found 11 potential prognostic genes and constructed a risk-score model. The subtype cluster 2 and a high-risk group showed the worst overall survival; differences in survival status might be due to the different immune cell infiltration levels. The risk score showed good performance, independent prognostic value, and valuable clinical application. Higher risk scores showed higher Tumor Immune Dysfunction and Exclusion scores, indicating that patients with a high-risk score were less likely to benefit from immunotherapy. Finally, conjoint analysis for the subgroups and risk groups showed the best predictive ability.
Collapse
Affiliation(s)
- Yingjie Hua
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| | - Xuehui Sun
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| | - Kefeng Luan
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| | - Changlei Wang
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| |
Collapse
|
13
|
Khandekar D, Dahunsi DO, Manzanera Esteve IV, Reid S, Rathmell JC, Titze J, Tiriveedhi V. Low-Salt Diet Reduces Anti-CTLA4 Mediated Systemic Immune-Related Adverse Events while Retaining Therapeutic Efficacy against Breast Cancer. BIOLOGY 2022; 11:810. [PMID: 35741331 PMCID: PMC9219826 DOI: 10.3390/biology11060810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the breast cancer treatment landscape. However, ICI-induced systemic inflammatory immune-related adverse events (irAE) remain a major clinical challenge. Previous studies in our laboratory and others have demonstrated that a high-salt (HS) diet induces inflammatory activation of CD4+T cells leading to anti-tumor responses. In our current communication, we analyzed the impact of dietary salt modification on therapeutic and systemic outcomes in breast-tumor-bearing mice following anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) monoclonal antibody (mAb) based ICI therapy. As HS diet and anti-CTLA4 mAb both exert pro-inflammatory activation of CD4+T cells, we hypothesized that a combination of these would lead to enhanced irAE response, while low-salt (LS) diet through blunting peripheral inflammatory action of CD4+T cells would reduce irAE response. We utilized an orthotopic murine breast tumor model by injecting Py230 murine breast cancer cells into syngeneic C57Bl/6 mice. In an LS diet cohort, anti-CTLA4 mAb treatment significantly reduced tumor progression (day 35, 339 ± 121 mm3), as compared to isotype mAb (639 ± 163 mm3, p < 0.05). In an HS diet cohort, treatment with anti-CTLA4 reduced the survival rate (day 80, 2/15) compared to respective normal/regular salt (NS) diet cohort (8/15, p < 0.05). Further, HS plus anti-CTLA4 mAb caused an increased expression of inflammatory cytokines (IFNγ and IL-1β) in lung infiltrating and peripheral circulating CD4+T cells. This inflammatory activation of CD4+T cells in the HS plus anti-CTLA4 cohort was associated with the upregulation of inflammasome complex activity. However, an LS diet did not induce any significant irAE response in breast-tumor-bearing mice upon treatment with anti-CTLA4 mAb, thus suggesting the role of high-salt diet in irAE response. Importantly, CD4-specific knock out of osmosensitive transcription factor NFAT5 using CD4cre/creNFAT5flox/flox transgenic mice caused a downregulation of high-salt-mediated inflammatory activation of CD4+T cells and irAE response. Taken together, our data suggest that LS diet inhibits the anti-CTLA4 mAb-induced irAE response while retaining its anti-tumor efficacy.
Collapse
Affiliation(s)
- Durga Khandekar
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Debolanle O. Dahunsi
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.O.D.); (J.C.R.)
| | | | - Sonya Reid
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Jeffrey C. Rathmell
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.O.D.); (J.C.R.)
| | - Jens Titze
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
- Division of Nephrology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
14
|
Aghanejad A, Bonab SF, Sepehri M, Haghighi FS, Tarighatnia A, Kreiter C, Nader ND, Tohidkia MR. A review on targeting tumor microenvironment: The main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol 2022; 207:592-610. [PMID: 35296439 DOI: 10.1016/j.ijbiomac.2022.03.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) as biological macromolecules have been remarked the large and growing pipline of the pharmaceutical market and also the most promising tool in modern medicine for cancer therapy. These therapeutic entities, which consist of whole mAbs, armed mAbs (i.e., antibody-toxin conjugates, antibody-drug conjugates, and antibody-radionuclide conjugates), and antibody fragments, mostly target tumor cells. However, due to intrinsic heterogeneity of cancer diseases, tumor cells targeting mAb have been encountered with difficulties in their unpredictable efficacy as well as variability in remission and durable clinical benefits among cancer patients. To address these pitfalls, the area has undergone two major evolutions with the intent of minimizing anti-drug responses and addressing limitations experienced with tumor cell-targeted therapies. As a novel hallmark of cancer, the tumor microenvironment (TME) is becoming the great importance of attention to develop innovative strategies based on therapeutic mAbs. Here, we underscore innovative strategies targeting TME by mAbs which destroy tumor cells indirectly through targeting vasculature system (e.g., anti-angiogenesis), immune system modulation (i.e., stimulation, suppression, and depletion), the targeting and blocking of stroma-based growth signals (e.g., cancer-associated fibroblasts), and targeting cancer stem cells, as well as, their effector mechanisms, clinical uses, and relevant mechanisms of resistance.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Farashi Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sepehri
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Haghighi
- Yazd Diabetes Research Center, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Kreiter
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Vukadin S, Khaznadar F, Kizivat T, Vcev A, Smolic M. Molecular Mechanisms of Resistance to Immune Checkpoint Inhibitors in Melanoma Treatment: An Update. Biomedicines 2021; 9:835. [PMID: 34356899 PMCID: PMC8301472 DOI: 10.3390/biomedicines9070835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICI) have revolutionized the treatment of advanced melanoma and ensured significant improvement in overall survival versus chemotherapy. ICI or targeted therapy are now the first line treatment in advanced melanoma, depending on the tumor v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutational status. While these new approaches have changed the outcomes for many patients, a significant proportion of them still experience lack of response, known as primary resistance. Mechanisms of primary drug resistance are not fully elucidated. However, many alterations have been found in ICI-resistant melanomas and possibly contribute to that outcome. Furthermore, some tumors which initially responded to ICI treatment ultimately developed mechanisms of acquired resistance and subsequent tumor progression. In this review, we give an overview of tumor primary and acquired resistance mechanisms to ICI and discuss future perspectives with regards to new molecular targets and combinatorial therapies.
Collapse
Affiliation(s)
- Sonja Vukadin
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Farah Khaznadar
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Nuclear Medicine and Oncology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandar Vcev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Department of Pathophysiology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Internal Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|