1
|
Peng W, Shi M, Hu B, Jia J, Li X, Wang N, Man S, Ye S, Ma L. Nanotechnology-leveraged CRISPR/Cas systems: icebreaking in trace cancer-related nucleic acids biosensing. Mol Cancer 2025; 24:78. [PMID: 40087758 PMCID: PMC11908094 DOI: 10.1186/s12943-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/31/2024] [Indexed: 03/17/2025] Open
Abstract
As promising noninvasive biomarkers, nucleic acids provide great potential to innovate cancer early detection methods and promote subsequent diagnosis to improve the survival rates of patient. Accurate, straightforward and sensitive detection of such nucleic acid-based cancer biomarkers in complex biological samples holds significant clinical importance. However, the low abundance creates huge challenges for their routine detection. As the next-generation diagnostic tool, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) with their high programmability, sensitivity, fidelity, single-base resolution, and precise nucleic acid positioning capabilities are extremely attractive for trace nucleic acid-based cancer biomarkers (NABCBs), permitting rapid, ultra-sensitive and specific detection. More importantly, by combing with nanotechnology, it can solve the long-lasting problems of poor sensitivity, accuracy and simplicity, as well as to achieve integrated miniaturization and portable point-of-care testing (POCT) detection. However, existing literature lacks specific emphasis on this topic. Thus, we intend to propose a timely one for the readers. This review will bridge this gap by providing insights for CRISPR/Cas-based nano-biosensing development and highlighting the current state-of-art, challenges, and prospects. We expect that it can provide better understanding and valuable insights for trace NABCBs detection, thereby facilitating advancements in early cancer screening/detection/diagnostics and win practical applications in the foreseeable future.
Collapse
Affiliation(s)
- Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Mengting Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jingyu Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xinyue Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Tianjin, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
2
|
Exposito F, Redrado M, Serrano D, Calabuig-Fariñas S, Bao-Caamano A, Gallach S, Jantus-Lewintre E, Diaz-Lagares A, Rodriguez-Casanova A, Sandoval J, San Jose-Eneriz E, Garcia J, Redin E, Senent Y, Leon S, Pio R, Lopez R, Oyarzabal J, Pineda-Lucena A, Agirre X, Montuenga LM, Prosper F, Calvo A. G9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1. Cell Death Dis 2024; 15:787. [PMID: 39488528 PMCID: PMC11531574 DOI: 10.1038/s41419-024-07156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) patients has significantly improved with recent therapeutic strategies; however, many patients still do not benefit from them. As a result, new treatment approaches are urgently needed. In this study, we evaluated the antitumor efficacy of co-targeting G9a and DNMT1 enzymes and its potential as a cancer drug sensitizer. We observed co-expression and overexpression of G9a and DNMT1 in NSCLC, which were associated with poor prognosis. Co-targeting G9a/DNMT1 with the drug CM-272 reduced proliferation and induced cell death in a panel of human and murine NSCLC cell lines. Additionally, the transcriptomes of these cells were reprogrammed to become highly responsive to chemotherapy (cisplatin), targeted therapy (trametinib), and epigenetic therapy (vorinostat). In vivo, CM-272 reduced tumor volume in human and murine cell-derived cancer models, and this effect was synergistically enhanced by cisplatin. The expression of SCARA5 and AOX1 was induced by CM-272, and both proteins were found to be essential for the antiproliferative response, as gene silencing decreased cytotoxicity. Furthermore, the expression of SCARA5 and AOX1 was positively correlated with each other and inversely correlated with G9a and DNMT1 expression in NSCLC patients. SCARA5 and AOX1 DNA promoters were hypermethylated in NSCLC, and SCARA5 methylation was identified as an epigenetic biomarker in tumors and liquid biopsies from NSCLC patients. Thus, we demonstrate that co-targeting G9a/DNMT1 is a promising strategy to enhance the efficacy of cancer drugs, and SCARA5 methylation could serve as a non-invasive biomarker to monitor tumor progression.
Collapse
Affiliation(s)
- Francisco Exposito
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
- Yale Cancer Center, New Haven, CT, USA
| | - Miriam Redrado
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- IDISNA, Pamplona, Spain
| | - Diego Serrano
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014, Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014, Valencia, Spain
- Department of Pathology, Universitat de València, 46010, Valencia, Spain
| | - Aida Bao-Caamano
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Sandra Gallach
- CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014, Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014, Valencia, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014, Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014, Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Angel Diaz-Lagares
- CIBERONC, ISCIII, Madrid, Spain
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026, Valencia, Spain
| | - Edurne San Jose-Eneriz
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Division of Hemato-Oncology, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Javier Garcia
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Esther Redin
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Yaiza Senent
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Sergio Leon
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
| | - Ruben Pio
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Rafael Lopez
- CIBERONC, ISCIII, Madrid, Spain
- Epigenomics Units, Cancer Epigenomics, Translational Medical Oncology Group (ONCOGAL), Health Research Institute of Santiago de Compostela (IDIS), and Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Roche-CHUS Joint Unit (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain, 15706, Santiago de Compostela, Spain
| | - Julen Oyarzabal
- Molecular Therapeutics Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - Xabier Agirre
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Division of Hemato-Oncology, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- CIBERONC, ISCIII, Madrid, Spain
- IDISNA, Pamplona, Spain
- Hematology and Cell Therapy Service, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain.
- CIBERONC, ISCIII, Madrid, Spain.
- IDISNA, Pamplona, Spain.
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Liang G, Hu JY, Liu RJ, Chao YP, Hu YF, Zheng H, Pan XY, Li YJ, Gong YH, Lin C, Lin JH, Wang JD, Li TX, Pan JP, Guo DY. α-Ketoglutarate plays an inflammatory inhibitory role by regulating scavenger receptor class a expression through N6-methyladenine methylation during sepsis. Eur J Immunol 2024; 54:e2350655. [PMID: 38973083 DOI: 10.1002/eji.202350655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.
Collapse
Affiliation(s)
- Gang Liang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Zhejiang University school of medicine, Hangzhou, P. R. China
| | - Jia-Yan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Rou-Jun Liu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yu-Peng Chao
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yi-Fan Hu
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Hong Zheng
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Xin-Yu Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yuan-Jing Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Yang-Hui Gong
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Chi Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Hao Lin
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jia-Dong Wang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Tong-Xin Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
| | - Jian-Ping Pan
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| | - Dong-Yang Guo
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, P.R. China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou, P.R. China
| |
Collapse
|
4
|
Zhang C, Zhang J, Guo K. Paeonol upregulates expression of tumor suppressors TNNC1 and SCARA5, exerting anti-tumor activity in non-small cell lung cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5241-5251. [PMID: 38265681 DOI: 10.1007/s00210-024-02963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Paeonol, a naturally bioactive phenolic ingredient predominantly isolated from Paeonia suffruticosa, has recently garnered significant interest as an anti-tumor agent against diverse carcinomas including non-small cell lung cancer (NSCLC). However, the anti-tumor mechanism of paeonol in NSCLC remains unclear. Cell viability, caspase-3 activity, and apoptosis were evaluated using CCK-8 assay, Caspase-3 Colorimetric Assay Kit, and flow cytometry analysis, respectively. GSE186218 was downloaded from NCBI Gene Expression Omnibus (GEO). The common genes were screened using GEO2R and Draw Venn Diagram software. Expression of troponin C type 1 (TNNC1), scavenger receptor class A member 5 (SCARA5), phosphorylated protein kinase B (AKT) (p-AKT) and AKT was examined using GEPIA database, qRT-PCR and western blot analysis. Paeonol treatment concentration-dependently inhibited cell viability and increased caspase-3 activity and apoptotic rate in NSCLC cells. Only 5 overlapping genes including TNNC1 and SCARA5 were obtained among 232 upregulated genes in GSE186218, 200 underexpressed genes in TCGA-LUAD, and 200 underexpressed genes in TCGA-LUSC according to the Venn diagram software. TNNC1 and SCARA5, two known tumor suppressors, were significantly downregulated in LUAD and LUSC tissues and NSCLC cells. Paeonol dose-dependently upregulated TNNC1 and SCARA5 expression in NSCLC cells. Paeonol suppressed the AKT pathway by upregulating TNNC1 and SCARA5 expression. AKT inhibitor attenuated the effects of TNNC1 or SCARA5 knockdown on the anti-tumor activity of paeonol. In conclusion, paeonol exhibited anti-cancer activity in NSCLC cells through inactivating the AKT pathway by upregulating TNNC1 or SCARA5.
Collapse
Affiliation(s)
- Chongnan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jing Zhang
- Department of Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Kai Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
5
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
6
|
Lu X, Chen L, Liu S, Cao Y, Huang Z. m 6A-mediated upregulation of lncRNA RMRP boosts the progression of bladder cancer via epigenetically suppressing SCARA5. Epigenomics 2023; 15:401-415. [PMID: 37337726 DOI: 10.2217/epi-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aim: This study aimed to elucidate the relationship between SCARA5 and RMRP in bladder cancer and their underlying mechanism. Methods: Biological functions were evaluated using cell-counting kit 8 assay, 5-ethynyl-2'-deoxyuridine incorporation, wound healing and Transwell assays. RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation were employed. A xenograft tumor model in nude mice was also conducted. Results & conclusion: RMRP and SCARA5 exhibited an inverse correlation. Downregulation of RMRP significantly suppressed bladder cancer cell proliferation, migration and invasion, which was reversed by SCARA5 overexpression. RMRP recruited DNA methyltransferases to the promoter region of SCARA5, thereby triggering the methylation of the SCARA5 promoter to epigenetically suppress its expression. Our findings elucidate the machinery by which RMRP, stabilized by METTL3, exerts a promoter role in bladder cancer tumorigenesis by triggering SCARA5 methylation.
Collapse
Affiliation(s)
- Xinsheng Lu
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Libo Chen
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Shucheng Liu
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Zhongxin Huang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| |
Collapse
|
7
|
Pan RH, Zhang X, Chen ZP, Liu YJ. Arachidonate lipoxygenases 5 is a novel prognostic biomarker and correlates with high tumor immune infiltration in low-grade glioma. Front Genet 2023; 14:1027690. [PMID: 36777735 PMCID: PMC9911666 DOI: 10.3389/fgene.2023.1027690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Objective: To investigate the prognostic value of arachidonate lipoxygenases 5 (ALOX5) expression and methylation, and explore the immune functions of arachidonate lipoxygenases 5 expression in low-grade glioma (LGG). Materials and Methods: Using efficient bioinformatics approaches, the differential expression of arachidonate lipoxygenases 5 and the association of its expression with clinicopathological characteristics were evaluated. Then, we analyzed the prognostic significance of arachidonate lipoxygenases 5 expression and its methylation level followed by immune cell infiltration analysis. The functional enrichment analysis was conducted to determine the possible regulatory pathways of arachidonate lipoxygenases 5 in low-grade glioma. Finally, the drug sensitivity analysis was performed to explore the correlation between arachidonate lipoxygenases 5 expression and chemotherapeutic drugs. Results: arachidonate lipoxygenases 5 mRNA expression was increased in low-grade glioma and its expression had a notable relation with age and subtype (p < 0.05). The elevated mRNA level of arachidonate lipoxygenases 5 could independently predict the disease-specific survival (DSS), overall survival (OS), and progression-free interval (PFI) (p < 0.05). Besides, arachidonate lipoxygenases 5 expression was negatively correlated with its methylation level and the arachidonate lipoxygenases 5 hypomethylation led to a worse prognosis (p < 0.05). The arachidonate lipoxygenases 5 expression also showed a positive connection with immune cells, while low-grade glioma patients with higher immune cell infiltration had poor survival probability (p < 0.05). Further, arachidonate lipoxygenases 5 might be involved in immune- and inflammation-related pathways. Importantly, arachidonate lipoxygenases 5 expression was negatively related to drug sensitivity. Conclusion: arachidonate lipoxygenases 5 might be a promising biomarker, and it probably occupies a vital role in immune cell infiltration in low-grade glioma.
Collapse
|
8
|
Qaisar R, Ustrana S, Muhammad T, Shah I. Sarcopenia in pulmonary diseases is associated with elevated sarcoplasmic reticulum stress and myonuclear disorganization. Histochem Cell Biol 2021; 157:93-105. [PMID: 34665327 DOI: 10.1007/s00418-021-02043-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with age-related muscle loss or sarcopenia. However, the exact molecular mechanism of muscle loss in COPD remains elusive. We investigated the association of chronic dysregulation of sarcoplasmic reticulum (SR) protein homeostasis (a condition called SR stress) and myonuclear disorganization with sarcopenia in patients with COPD. Markers of SR stress and their downstream consequences, including apoptosis and inflammation, were upregulated in patients with COPD. The maximal SR Ca2+ ATPase (SERCA) activity was significantly reduced in advanced COPD as compared to healthy controls. Single muscle fiber diameter and cytoplasmic domain per myonucleus were significantly smaller in patients with advanced COPD than in healthy controls. Increased disruption of myonuclear organization was found in the COPD patients as compared to healthy controls. These changes in SR dysfunction were accompanied by elevated global levels of oxidative stress, including lipid peroxidation and mitochondrial reactive oxygen species (ROS) production. Altogether, our data suggest that muscle weakness in advanced COPD is in part associated with the disruption of SR protein and calcium homeostasis and their pathological consequences.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Shahjahan Ustrana
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, 29050, Pakistan
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, 29050, Pakistan
| | - Islam Shah
- Al-Qassimi Hospital, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Liu M, Chen S, Zhang A, Zheng Q, Fu J. PLAUR as a Potential Biomarker Associated with Immune Infiltration in Bladder Urothelial Carcinoma. J Inflamm Res 2021; 14:4629-4641. [PMID: 34552345 PMCID: PMC8450190 DOI: 10.2147/jir.s326559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is one of the most lethal and aggressive malignancies of genitourinary system that affects human health. The urokinase plasminogen activator receptor (PLAUR) plays essential roles in tumorigenesis and immune modulation, and its aberrant expression is closely correlated with cancer progression. However, whether PLAUR has the potential to be one promising biomarker or immunotherapy target for BLCA is unknown. Methodology Various online databases were applied to assess the expression profile and prognostic value of PLAUR, as well as its correlation with immune infiltration in BLCA, including Oncomine, PrognoScan, TCGA, cBioPortal, TIMER, TISIDB, UALCAN, and MethSurv. The expression of PLAUR in BLCA was confirmed with ELISA assay for serum samples and immunohistochemistry for tissue samples. Results The results showed that the expression of PLAUR was elevated in BLCA, which was further confirmed by ELISA and immunohistochemistry. Patients with higher PLAUR level were predicted to have lower overall survival and disease specific survival rates, which were not impacted by the genetic alterations of PLAUR. In addition, the expression of PLAUR was positively associated with immune infiltration, and also the expression levels of gene markers of various immune cells. The negative correlation between PLAUR expression and PLAUR methylation level was observed, among which PLAUR expression was positively correlated with the abundance of 28 kinds of tumor-infiltrating lymphocytes, while PLAUR methylation level was negatively correlated with the abundance of 11 types of tumor-infiltrating lymphocytes. Moreover, the methylation level of PLAUR was closely correlated with patients’ clinicopathological features, and hypomethylation of PLAUR was associated with better outcomes of BLCA patients. Conclusion These findings suggested that PLAUR had the potential to serve as a valuable detection and prognostic biomarker or immunotherapeutic target for BLCA.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People's Republic of China
| | - Siyi Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Aihui Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Juan Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|