1
|
Newnes HV, Armitage JD, Buzzai AC, de Jong E, Audsley KM, Barnes SA, Srinivasan S, Serralha M, Fear VS, Guo BB, Jones ME, Forrest ARR, Foley B, Darcy PK, Beavis PA, Bosco A, Waithman J. Interleukin-4 modulates type I interferon to augment antitumor immunity. SCIENCE ADVANCES 2025; 11:eadt3618. [PMID: 40367186 PMCID: PMC12077506 DOI: 10.1126/sciadv.adt3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Despite advances in immunotherapy, metastatic melanoma remains a considerable therapeutic challenge due to the complexity of the tumor microenvironment. Intratumoral type I interferon (IFN-I) has long been associated with improved clinical outcomes. However, several IFN-I subtypes can also paradoxically promote tumor growth in some contexts. We investigated this further by engineering murine B16 melanoma cells to overexpress various IFN-I subtypes, where a spectrum of outcomes was observed. Characterization of these tumors by RNA sequencing revealed a tumor immune phenotype, where potent IFN-I signaling concomitant with diminished type 2 inflammation failed to confer durable tumor control. T cell-mediated rejection of these tumors was restored by introducing interleukin-4 (IL-4) into the tumor microenvironment, either through ectopic expression or in a preclinical adoptive T cell therapy model. Collectively, our findings highlight the IFN-I/IL-4 axis in promoting antitumor immunity, which could be harnessed to target and stratify solid tumors that are nonresponsive to frontline therapies.
Collapse
Affiliation(s)
- Hannah V. Newnes
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Jesse D. Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Anthony C. Buzzai
- Department of Dermatology, Otto-von-Guericke University, Magdeburg, Germany
| | - Emma de Jong
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Katherine M. Audsley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Samantha A. Barnes
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Michael Serralha
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Vanessa S. Fear
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Belinda B. Guo
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Matt E. Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Bree Foley
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Phil K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Paul A. Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Anthony Bosco
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Corica DA, Bell SD, Miller PJ, Kasperbauer DT, Lawler NJ, Wakefield MR, Fang Y. Into the Future: Fighting Melanoma with Immunity. Cancers (Basel) 2024; 16:4002. [PMID: 39682188 DOI: 10.3390/cancers16234002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Immunotherapy offers a novel and promising option in the treatment of late-stage melanoma. By utilizing the immune system to assist in tumor destruction, patients have additional options after tumor progression. Immune checkpoint inhibitors reduce the ability for tumors to evade the immune system by inhibiting key surface proteins used to inactivate T-cells. Without these surface proteins, T-cells can induce cytotoxic responses against tumors. Tumor infiltrating lymphocyte therapy is a form of adoptive cell therapy that takes advantage of a small subset of T-cells that recognize and infiltrate tumors. Isolation and rapid expansion of these colonies assist the immune system in mounting a charged response that can induce remission. Tumor vaccines deliver a high dose of unique antigens expressed by tumor cells to the entire body. The introduction of large quantities of tumor antigens upregulates antigen presenting cells and leads to effective activation of the immune system against tumors. Cytokine therapy introduces high amounts of chemical messengers that are endogenous to the immune system and support T-cell expansion. While other methods of immunotherapy exist, immune checkpoint inhibitors, tumor infiltrating lymphocytes, tumor vaccines, and cytokine therapy are commonly used to treat melanoma. Like many other cancer treatments, immunotherapy is not without adverse effects, as toxicities represent a major obstacle. However, immunotherapy has been efficacious in the treatment of melanoma.
Collapse
Affiliation(s)
- Derek A Corica
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Scott D Bell
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Peyton J Miller
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Daniel T Kasperbauer
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Nicholas J Lawler
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Oli AN, Adejumo SA, Rowaiye AB, Ogidigo JO, Hampton-Marcell J, Ibeanu GC. Tumour Immunotherapy and Applications of Immunological Products: A Review of Literature. J Immunol Res 2024; 2024:8481761. [PMID: 39483536 PMCID: PMC11527548 DOI: 10.1155/2024/8481761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant tumors, characterized by uncontrolled cell proliferation, are a leading global health challenge, responsible for over 9.7 million deaths in 2022, with new cases expected to rise to 35 million annually by 2050. Immunotherapy is preferred to other cancer therapies, offering precise targeting of malignant cells while simultaneously strengthening the immune system's complex responses. Advances in this novel field of science have been closely linked to a deeper knowledge of tumor biology, particularly the intricate interplay between tumor cells, the immune system, and the tumor microenvironment (TME), which are central to cancer progression and immune evasion. This review offers a comprehensive analysis of the molecular mechanisms that govern these interactions, emphasizing their critical role in the development of effective immunotherapeutic products. We critically evaluate the current immunotherapy approaches, including cancer vaccines, adoptive T cell therapies, and cytokine-based treatments, highlighting their efficacy and safety. We also explore the latest advancements in combination therapies, which synergistically integrate multiple immunotherapeutic strategies to overcome resistance and enhance therapeutic outcomes. This review offers key insights into the future of cancer immunotherapy with a focus on advancing more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 420211, Nigeria
| | - Samson Adedeji Adejumo
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Adekunle Babajide Rowaiye
- National Biotechnology Development Agency, Abuja 900211, Nigeria
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| | | | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
| | - Gordon C. Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| |
Collapse
|
4
|
Sari G, Dhatchinamoorthy K, Orellano-Ariza L, Ferreira LM, Brehm MA, Rock K. IRF2 loss is associated with reduced MHC I pathway transcripts in subsets of most human cancers and causes resistance to checkpoint immunotherapy in human and mouse melanomas. J Exp Clin Cancer Res 2024; 43:276. [PMID: 39354629 PMCID: PMC11446056 DOI: 10.1186/s13046-024-03187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND In order for cancers to progress, they must evade elimination by CD8 T cells or other immune mechanisms. CD8 T cells recognize and kill tumor cells that display immunogenic tumor peptides bound to MHC I molecules. One of the ways that cancers can escape such killing is by reducing expression of MHC I molecules, and loss of MHC I is frequently observed in tumors. There are multiple different mechanisms that can underly the loss of MHC I complexes on tumor and it is currently unclear whether there are particular mechanisms that occur frequently and, if so, in what types of cancers. Also of importance to know is whether the loss of MHC I is reversible and how such loss and/or its restoration would impact responses to immunotherapy. Here, we investigate these issues for loss of IRF1 and IRF2, which are transcription factors that drive expression of MHC I pathway genes and some killing mechanisms. METHODS Bioinformatics analyses of IRF2 and IRF2-dependent gene transcripts were performed for all human cancers in the TCGA RNAseq database. IRF2 protein-DNA-binding was analyzed in ChIPseq databases. CRISRPcas9 was used to knock out IRF1 and IRF2 genes in human and mouse melanoma cells and the resulting phenotypes were analyzed in vitro and in vivo. RESULTS Transcriptomic analysis revealed that IRF2 expression was reduced in a substantial subset of cases in almost all types of human cancers. When this occurred there was a corresponding reduction in the expression of IRF2-regulated genes that were needed for CD8 T cell recognition. To test cause and effect for these IRF2 correlations and the consequences of IRF2 loss, we gene-edited IRF2 in a patient-derived melanoma and a mouse melanoma. The IRF2 gene-edited melanomas had reduced expression of transcripts for genes in the MHC I pathway and decreased levels of MHC I complexes on the cell surface. Levels of Caspase 7, an IRF2 target gene involved in CD8 T cell killing of tumors, were also reduced. This loss of IRF2 caused both human and mouse melanomas to become resistant to immunotherapy with a checkpoint inhibitor. Importantly, these effects were reversible. Stimulation of the IRF2-deficient melanomas with interferon induced the expression of a functionally homologous transcription factor, IRF1, which then restored the MHC I pathway and responsiveness to CPI. CONCLUSIONS Our study shows that a subset of cases within most types of cancers downregulates IRF2 and that this can allow cancers to escape immune control. This can cause resistance to checkpoint blockade immunotherapy and is reversible with currently available biologics.
Collapse
Affiliation(s)
- G Sari
- Department of Pathology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - K Dhatchinamoorthy
- Department of Pathology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - L Orellano-Ariza
- Department of Pathology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - L M Ferreira
- Program in Molecular Medicine, Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - M A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - K Rock
- Department of Pathology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
5
|
Zhu Z, Liu M, Zhang H, Zheng H, Li J. Adjuvant Therapy in Acral Melanoma: A Systematic Review. Clin Cosmet Investig Dermatol 2024; 17:2141-2150. [PMID: 39345988 PMCID: PMC11439362 DOI: 10.2147/ccid.s477155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Background Acral melanoma presents distinct biological characteristics compared to cutaneous melanoma. While adjuvant therapeutic strategies for high-risk resected acral melanoma closely resemble those for cutaneous melanoma, the evidence supporting the clinical application of adjuvant therapy for acral melanoma remains inadequate. Our aim was to systematically analyze the efficacy and safety profile of adjuvant therapy in acral melanoma. Methods This systematic review adhered to a pre-registered protocol. We comprehensively searched four electronic databases and reference lists of included articles to identify eligible studies. The primary outcome was therapeutic efficacy, and the secondary outcome was adverse events (AEs). Results This systematic review included 11 studies with 758 acral melanoma patients undergoing adjuvant therapy. High-dose interferon α-2b (IFN) regimens showed no significant difference in recurrence-free survival (RFS), though the longer regimen was linked to increased hepatotoxicity. Adjuvant anti-PD-1 therapy demonstrated varying efficacy, with improved RFS in patients who experienced immune-related AEs. Targeted therapy with dabrafenib plus trametinib achieved high 12-month RFS in patients with BRAF-mutated acral melanoma. Comparative studies suggested that adjuvant anti-PD-1 therapy is similarly effective to IFN in prolonging survival for high-risk acral melanoma patients. Additionally, prior treatment with pegylated IFN enhanced RFS in patients receiving adjuvant pembrolizumab. Conclusion High-dose IFN was widely used as adjuvant therapy for acral melanoma, but serious AEs prompted the search for alternatives. Adjuvant anti-PD-1 therapy shows promise, though it may be less effective than in non-acral melanoma. Further prospective studies are needed to determine the optimal adjuvant treatment for acral melanoma.
Collapse
Affiliation(s)
- Zhou Zhu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Mingjuan Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jun Li
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Razaghi A, Durand-Dubief M, Brusselaers N, Björnstedt M. Combining PD-1/PD-L1 blockade with type I interferon in cancer therapy. Front Immunol 2023; 14:1249330. [PMID: 37691915 PMCID: PMC10484344 DOI: 10.3389/fimmu.2023.1249330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
PD-1 and PD-L1 are crucial regulators of immunity expressed on the surface of T cells and tumour cells, respectively. Cancer cells frequently use PD-1/PD-L1 to evade immune detection; hence, blocking them exposes tumours to be attacked by activated T cells. The synergy of PD-1/PD-L1 blockade with type I interferon (IFN) can improve cancer treatment efficacy. Type I IFN activates immune cells boosts antigen presentation and controls proliferation. In addition, type I IFN increases tumour cell sensitivity to the blockade. Combining the two therapies increases tumoral T cell infiltration and activation within tumours, and stimulate the generation of memory T cells, leading to prolonged patient survival. However, limitations include heterogeneous responses, the need for biomarkers to predict and monitor outcomes, and adverse effects and toxicity. Although treatment resistance remains an obstacle, the combined therapeutic efficacy of IFNα/β and PD-1/PD-L1 blockade demonstrated considerable benefits across a spectrum of cancer types, notably in melanoma. Overall, the phases I and II clinical trials have demonstrated safety and efficiency. In future, further investigations in clinical trials phases III and IV are essential to compare this combinatorial treatment with standard treatment and assess long-term side effects in patients.
Collapse
Affiliation(s)
- Ali Razaghi
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mickaël Durand-Dubief
- Discovery & Front-End Innovation, Lesaffre Institute of Science & Technology, Lesaffre International, Marcq-en-Baroeul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
García-Ortega MB, Aparicio E, Griñán-Lisón C, Jiménez G, López-Ruiz E, Palacios JL, Ruiz-Alcalá G, Alba C, Martínez A, Boulaiz H, Perán M, Hackenberg M, Bragança J, Calado SM, Marchal JA, García MÁ. Interferon-Alpha Decreases Cancer Stem Cell Properties and Modulates Exosomes in Malignant Melanoma. Cancers (Basel) 2023; 15:3666. [PMID: 37509327 PMCID: PMC10377490 DOI: 10.3390/cancers15143666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable side effects. In this study, we evaluated the effect of low and high doses of IFN-α on CSCs by analyzing ALDH activity, side population and specific surface markers in established and patient-derived primary cell lines. We also assessed the clonogenicity, migration and tumor initiation capacities of IFN-α treated CSCs. Additionally, we investigated genomic modulations related to stemness properties using microRNA sequencing and microarrays. The effect of IFN-α on CSCs-derived exosomes was also analyzed using NanoSight and liquid chromatography (LC-HRMS)-based metabolomic analysis, among others. Our results showed that even low doses of IFN-α reduced CSC formation and stemness properties, and led to a significant decrease in the ability to form tumors in mice xenotransplants. IFN-α also modulated the expression of genes and microRNAs involved in several cancer processes and metabolomics of released exosomes. Our work suggests the utility of low doses of interferon, combined with the analysis of metabolic biomarkers, as a potential clinical approach against the aggressiveness of CSCs in melanoma.
Collapse
Affiliation(s)
- María Belén García-Ortega
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain;
| | - Ernesto Aparicio
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Genetics, University of Granada, 18100 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
- GENYO-Centre for Genomics and Oncological Research-Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Elena López-Ruiz
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, 23071 Jaén, Spain
| | - José Luis Palacios
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Gloria Ruiz-Alcalá
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Cristina Alba
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain;
| | - Antonio Martínez
- Department of Dermatology, Virgen de las Nieves University Hospital, 18014 Granada, Spain;
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Macarena Perán
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, 23071 Jaén, Spain
| | - Michael Hackenberg
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Genetics, University of Granada, 18100 Granada, Spain
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal; (J.B.); (S.M.C.)
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal; (J.B.); (S.M.C.)
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Juan A. Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (M.B.G.-O.); (E.A.); (C.G.-L.); (G.J.); (J.L.P.); (G.R.-A.); (H.B.); (M.P.); (M.H.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain;
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Molecular Biology and Biochemistry III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
García-Ortega MB, Aparicio E, Griñán-Lisón C, Jiménez G, López-Ruiz E, Palacios JL, Ruiz-Alcalá G, Alba C, Martínez A, Boulaiz H, Perán M, Hackenberg M, Bragança J, Calado SM, Marchal JA, García MÁ. Interferon-Alpha Decreases Cancer Stem Cell Properties and Modulates Exosomes in Malignant Melanoma. Cancers (Basel) 2023; 15:3666. [DOI: https:/doi.org/10.3390/cancers15143666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable side effects. In this study, we evaluated the effect of low and high doses of IFN-α on CSCs by analyzing ALDH activity, side population and specific surface markers in established and patient-derived primary cell lines. We also assessed the clonogenicity, migration and tumor initiation capacities of IFN-α treated CSCs. Additionally, we investigated genomic modulations related to stemness properties using microRNA sequencing and microarrays. The effect of IFN-α on CSCs-derived exosomes was also analyzed using NanoSight and liquid chromatography (LC-HRMS)-based metabolomic analysis, among others. Our results showed that even low doses of IFN-α reduced CSC formation and stemness properties, and led to a significant decrease in the ability to form tumors in mice xenotransplants. IFN-α also modulated the expression of genes and microRNAs involved in several cancer processes and metabolomics of released exosomes. Our work suggests the utility of low doses of interferon, combined with the analysis of metabolic biomarkers, as a potential clinical approach against the aggressiveness of CSCs in melanoma.
Collapse
Affiliation(s)
- María Belén García-Ortega
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Ernesto Aparicio
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Genetics, University of Granada, 18100 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
- GENYO-Centre for Genomics and Oncological Research-Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Elena López-Ruiz
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, 23071 Jaén, Spain
| | - José Luis Palacios
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Gloria Ruiz-Alcalá
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Cristina Alba
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Antonio Martínez
- Department of Dermatology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Macarena Perán
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, 23071 Jaén, Spain
| | - Michael Hackenberg
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Genetics, University of Granada, 18100 Granada, Spain
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Juan A. Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Molecular Biology and Biochemistry III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
9
|
Wu Z, Cao Z, Yao H, Yan X, Xu W, Zhang M, Jiao Z, Zhang Z, Chen J, Liu Y, Zhang M, Wang D. Coupled deglycosylation-ubiquitination cascade in regulating PD-1 degradation by MDM2. Cell Rep 2023; 42:112693. [PMID: 37379210 DOI: 10.1016/j.celrep.2023.112693] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Posttranslational modifications represent a key step in modulating programmed death-1 (PD-1) functions, but the underlying mechanisms remain incompletely defined. Here, we report crosstalk between deglycosylation and ubiquitination in regulating PD-1 stability. We show that the removal of N-linked glycosylation is a prerequisite for efficient PD-1 ubiquitination and degradation. Murine double minute 2 (MDM2) is identified as an E3 ligase of deglycosylated PD-1. In addition, the presence of MDM2 facilitates glycosylated PD-1 interaction with glycosidase NGLY1 and promotes subsequent NGLY1-catalyzed PD-1 deglycosylation. Functionally, we demonstrate that the absence of T cell-specific MDM2 accelerates tumor growth by primarily upregulating PD-1. By stimulating the p53-MDM2 axis, interferon-α (IFN-α) reduces PD-1 levels in T cells, which, in turn, exhibit a synergistic effect on tumor suppression by sensitizing anti-PD-1 immunotherapy. Our study reveals that MDM2 directs PD-1 degradation via a deglycosylation-ubiquitination coupled mechanism and sheds light on a promising strategy to boost cancer immunotherapy by targeting the T cell-specific MDM2-PD-1 regulatory axis.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhijie Cao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wenbin Xu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Mi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Zishan Jiao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zijing Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jianyuan Chen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yajing Liu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
10
|
Ba H, Zhu F, Zhang X, Mei Z, Zhu Y. Comparison of efficacy and tolerability of adjuvant therapy for resected high-risk stage III-IV cutaneous melanoma: a systemic review and Bayesian network meta-analysis. Ther Adv Med Oncol 2023; 15:17588359221148918. [PMID: 36743526 PMCID: PMC9893404 DOI: 10.1177/17588359221148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) and targeted therapies have been widely used as adjuvant treatment for resected melanoma, the optimal therapy remains controversial. Therefore, we conducted this updated network meta-analysis (NMA) to assess the efficacy and tolerability of adjuvant therapies for cutaneous melanoma. METHODS PubMed, Embase, Cochrane library, and Web of Science were systematically searched for relevant literatures published in the last 30 years. Disease-free survival (DFS), overall survival (OS), and serious adverse events were considered as the efficacy and tolerability outcomes. RESULTS In all, 27 randomized controlled trials (RCTs) including 16,709 stage III-IV melanoma patients were enrolled in this NMA. For BRAF wild-type melanoma, our analysis showed that both nivolumab and pembrolizumab demonstrated significantly better DFS and tolerability than ipilimumab (10 mg/kg). Nivolumab, pembrolizumab, ipilimumab (3 mg/kg), and ipilimumab (10 mg/kg) all appeared to be effective in prolonging OS, but no therapy demonstrated significantly better OS than ipilimumab (10 mg/kg). Nivolumab + ipilimumab showed the best DFS, but did not appear to be effective in improving OS and ranked only seventh in tolerability. Vaccines and granulocyte-macrophage colony-stimulating factor therapies were well tolerated, but all failed to improve the DFS or OS in stage III melanoma patients. In terms of BRAF mutation-positive melanoma, ICIs (nivolumab + ipilimumab, nivolumab, pembrolizumab, ipilimumab; 10 mg/kg) exhibited comparable efficacy to dabrafenib + trametinib, and all these therapies showed significantly better DFS than placebo. CONCLUSION Considering efficacy and tolerability, nivolumab and pembrolizumab seem to be preferable adjuvant therapies for patients with stage III-IV melanoma. For BRAF mutation-positive patients, more RCTs are still required to determine which is better between ICIs and targeted therapy.
Collapse
Affiliation(s)
- He Ba
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| | - Fangyuan Zhu
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| | - Xiaoze Zhang
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Yaodong Zhu
- Department Chinese and Western Medicine Integrated Oncology, the First Affiliated Hospital of Anhui Medical University, No. 120 Wansui Road, Hefei 230000, Anhui Province, China
| |
Collapse
|
11
|
Advanced Acral Melanoma Therapies: Current Status and Future Directions. Curr Treat Options Oncol 2022; 23:1405-1427. [PMID: 36125617 PMCID: PMC9526689 DOI: 10.1007/s11864-022-01007-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Melanoma is one of the deadliest malignancies. Its incidence has been significantly increasing in most countries in recent decades. Acral melanoma (AM), a peculiar subgroup of melanoma occurring on the palms, soles, and nails, is the main subtype of melanoma in people of color and is extremely rare in Caucasians. Although great progress has been made in melanoma treatment in recent years, patients with AM have shown limited benefit from current therapies and thus consequently have worse overall survival rates. Achieving durable therapeutic responses in this high-risk melanoma subtype represents one of the greatest challenges in the field. The frequency of BRAF mutations in AM is much lower than that in cutaneous melanoma, which prevents most AM patients from receiving treatment with BRAF inhibitors. However, AM has more frequent mutations such as KIT and CDK4/6, so targeted therapy may still improve the survival of some AM patients in the future. AM may be less susceptible to immune checkpoint inhibitors because of the poor immunogenicity. Therefore, how to enhance the immune response to the tumor cells may be the key to the application of immune checkpoint inhibitors in advanced AM. Anti-angiogenic drugs, albumin paclitaxel, or interferons are thought to enhance the effectiveness of immune checkpoint inhibitors. Combination therapies based on the backbone of PD-1 are more likely to provide greater clinical benefits. Understanding the molecular landscapes and immune microenvironment of AM will help optimize our combinatory strategies.
Collapse
|