1
|
Wu J, Luo D, Tou L, Xu H, Jiang C, Wu D, Que H, Zheng J. NEK2 affects the ferroptosis sensitivity of gastric cancer cells by regulating the expression of HMOX1 through Keap1/Nrf2. Mol Cell Biochem 2025; 480:425-437. [PMID: 38503948 PMCID: PMC11695390 DOI: 10.1007/s11010-024-04960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
NEK2 is a serine/threonine protein kinase that is involved in regulating the progression of various tumors. Our previous studies have found that NEK2 is highly expressed in gastric cancer and suggests that patients have a worse prognosis. However, its role and mechanism in gastric cancer are only poorly studied. In this study, we established a model of ferroptosis induced by RSL3 or Erastin in AGS cells in vitro, and konckdown NEK2, HOMX1, Nrf2 by siRNA. The assay kit was used to analyzed cell viability, MDA levels, GSH and GSSG content, and FeRhoNox™-1 fluorescent probe, BODIPY™ 581/591 C11 lipid oxidation probe, CM-H2DCFDA fluorescent probe were used to detected intracellular Fe2+, lipid peroxidation, and ROS levels, respectively. Calcein-AM/PI staining was used to detect the ratio of live and dead cells, qRT-PCR and Western blot were used to identify the mRNA and protein levels of genes in cells, immunofluorescence staining was used to analyze the localization of Nrf2 in cells, RNA-seq was used to analyze changes in mRNA expression profile, and combined with the FerrDb database, ferroptosis-related molecules were screened to elucidate the impact of NEK2 on the sensitivity of gastric cancer cells to ferroptosis. We found that inhibition of NEK2 could enhance the sensitivity of gastric cancer cells to RSL3 and Erastin-induced ferroptosis, which was reflected in the combination of inhibition of NEK2 and ferroptosis induction compared with ferroptosis induction alone: cell viability and GSH level were further decreased, while the proportion of dead cells, Fe2+ level, ROS level, lipid oxidation level, MDA level, GSSG level and GSSG/GSH ratio were further increased. Mechanism studies have found that inhibiting NEK2 could promote the expression of HMOX1, a gene related to ferroptosis, and enhance the sensitivity of gastric cancer cells to ferroptosis by increasing HMOX1. Further mechanism studies have found that inhibiting NEK2 could promote the ubiquitination and proteasome degradation of Keap1, increase the level of Nrf2 in the nucleus, and thus promote the expression of HMOX1. This study confirmed that NEK2 can regulate HMOX1 expression through Keap1/Nrf2 signal, and then affect the sensitivity of gastric cancer cells to ferroptosis, enriching the role and mechanism of NEK2 in gastric cancer.
Collapse
Affiliation(s)
- Jianyong Wu
- Gastroenterology Department, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Desheng Luo
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Laizhen Tou
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Hongtao Xu
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Chuan Jiang
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Dan Wu
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Haifeng Que
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Jingjing Zheng
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China.
| |
Collapse
|
2
|
Cui F, Chen Y, Wu X, Zhao W. Mesenchymal stem cell-derived exosomes carrying miR-486-5p inhibit glycolysis and cell stemness in colorectal cancer by targeting NEK2. BMC Cancer 2024; 24:1356. [PMID: 39506654 PMCID: PMC11539302 DOI: 10.1186/s12885-024-13086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Colorectal cancer (CRC) is a major global concern. Mesenchymal stem cell-derived exosomes (MSC-EXOs) have demonstrated efficacy as a therapeutic approach for colorectal cancer. However, the precise mechanism by which MSC-EXOs treat colorectal cancer remains unclear. Human umbilical cord (hUC)-MSC-EXOs were isolated and identified. Cell Counting Kit-8 (CCK-8), Transwell, and colony formation assays were used to assess the activity of CRC cells. Glucose consumption, lactic acid production, and extracellular acidification rate (ECAR) were measured to assess glycolytic activity. Cell stemness was assessed using a sphere-formation assay. Furthermore, MSC-exosomal microRNAs (miRNAs) in CRC tissues were analyzed using the EVmiRNA database, and aberrantly expressed miRNAs in CRC cells were obtained from the Gene Expression Omnibus (GEO) database. The binding relationship between miR-486-5p and the never in mitosis gene A-related kinase 2 (NEK2) was predicted using the Starbase database and validated through RNA binding protein immunoprecipitation (RIP) and dual luciferase assays. These results showed that hUC-MSC-EXOs inhibited the proliferation and metastasis of CRC cells. Moreover, glycolysis and stemness abilities of CRC cells also decreased after treatment with hUC-MSC-EXOs. miR-486-5p was found to be enriched in hUC-MSC-EXOs and significantly downregulated in CRC cells. miR-486-5p directly bound to NEK2. Overexpression of NEK2 reversed the inhibitory effect of miR-486-5p on CRC cell glycolysis and stemness. Our study highlights that hUC-MSC-EXO miR-486-5p inhibits glycolysis and cell stemness in CRC by targeting NEK2. This finding offers compelling evidence supporting the potential application of hUC-MSC-EXOs in the treatment of CRC.
Collapse
Affiliation(s)
- Facai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China.
| | - Yu Chen
- Department of Pathology, Affiliated Tumor Hospital of Zhengzhou University, No. 127 Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| | - Xiaoyu Wu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| | - Weifeng Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan, China
| |
Collapse
|
3
|
McCrury M, Swafford K, Shuttleworth SL, Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu YZ, Doshier C, Patel V, Post GR, De Loose A, Rodriguez A, Shultz LD, Zhan F, Yoon D, Frett B, Kendrick S. Bifunctional Inhibitor Reveals NEK2 as a Therapeutic Target and Regulator of Oncogenic Pathways in Lymphoma. Mol Cancer Ther 2024; 23:316-329. [PMID: 37816504 PMCID: PMC10932871 DOI: 10.1158/1535-7163.mct-23-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.
Collapse
Affiliation(s)
- Mason McCrury
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kennith Swafford
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sydnye L. Shuttleworth
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Syed Hassan Mehdi
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Baku Acharya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin Naceanceno
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ying-Zhi Xu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Claire Doshier
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vijay Patel
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ginell R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Annick De Loose
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Donghoon Yoon
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Gong Y, Tong H, Yu F, Liu Q, Huang X, Ren G, Fan Z, Wang Z, Zhao J, Mao Z, Zhang J, Zhou R. CCDC50, an essential driver involved in tumorigenesis, is a potential severity marker of diffuse large B cell lymphoma. Ann Hematol 2023; 102:3153-3165. [PMID: 37684379 PMCID: PMC10567943 DOI: 10.1007/s00277-023-05409-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Diffuse Large B Cell Lymphoma (DLBCL) is the most common form of blood cancer. Among the subtypes, the activated B-cell (ABC) subtype is typically more aggressive and associated with worse outcomes. However, the underlying mechanisms are not fully understood. In this study, we performed microarray analysis to identify potential ABC-DLBCL-associated genes. We employed Kaplan-Meier methods and cox univariate analysis to explore the prognostic value of the identified candidate gene Coiled-coil domain containing 50 (CCDC50). Additionally, we used DLBCL cell lines and mouse models to explore the functions and mechanisms of CCDC50. Finally, we isolated CCDC50-bearing exosomes from clinical patients to study the correlation between these exosomes and disease severity. Our results demonstrated that CCDC50 not only showed significantly positive correlations with ABC subtype, tumor stage and number of extranodal sites, but also suggested poor outcomes in DLBCL patients. We further found that CCDC50 promoted ABC-DLBCL proliferation in vitro and in vivo. Mechanistically, CCDC50 inhibited ubiquitination-mediated c-Myc degradation by stimulating the PI3K/AKT/GSK-3β pathway. Moreover, CCDC50 expression was positively correlated with c-Myc at protein levels in DLBCL patients. Additionally, in two clinical cohorts, the plasma CCDC50-positive exosomes differentiated DLBCL subtypes robustly (AUC > 0.80) and predicted disease severity effectively (p < 0.05). Our findings suggest that CCDC50 likely drives disease progression in ABC-DLBCL patients, and the CCDC50-bearing exosome holds great potential as a non-invasive biomarker for subtype diagnosis and prognosis prediction of DLBCL patients.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Humans
- Animals
- Female
- Mice
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Middle Aged
- Cell Line, Tumor
- Prognosis
- Exosomes/metabolism
- Exosomes/genetics
- Gene Expression Regulation, Neoplastic
- Carcinogenesis/genetics
- Severity of Illness Index
- Cell Proliferation
Collapse
Affiliation(s)
- Yuqi Gong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongqin Fan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Mao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ren Zhou
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Chen L, Ballout F, Lu H, Hu T, Zhu S, Chen Z, Peng D. Differential Expression of NEK Kinase Family Members in Esophageal Adenocarcinoma and Barrett's Esophagus. Cancers (Basel) 2023; 15:4821. [PMID: 37835513 PMCID: PMC10571661 DOI: 10.3390/cancers15194821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) has risen rapidly during the past four decades, making it the most common type of esophageal cancer in the USA and Western countries. The NEK (Never in mitosis A (NIMA) related kinase) gene family is a group of serine/threonine kinases with 11 members. Aberrant expression of NEKs has been recently found in a variety of human cancers and plays important roles in tumorigenesis, progression, and drug-resistance. However, the expression of the NEKs in EAC and its precancerous condition (Barrett's esophagus, BE) has not been investigated. In the present study, we first analyzed the TCGA and 9 GEO databases (a total of 10 databases in which 8 contain EAC and 6 contain BE) using bioinformatic approaches for NEKs expression in EAC and BE. We identified that several NEK members, such as NEK2 (7/8), NEK3 (6/8), and NEK6 (6/8), were significantly upregulated in EAC as compared to normal esophagus samples. Alternatively, NEK1 was downregulated in EAC as compared to the normal esophagus. On the contrary, genomic alterations of these NEKs are not frequent in EAC. We validated the above findings using qRT-PCR and the protein expression of NEKs in EAC cell lines using Western blotting and in primary EAC tissues using immunohistochemistry and immunofluorescence. Our data suggest that frequent upregulation of NEK2, NEK3, and NEK7 may be important in EAC.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Tianling Hu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
6
|
Elsayed WSH, Harb OA, Alabiad MA, Faraj Saad RH, Anbaig A, Alorini M, Hemeda R, Negm M, Gertallah LM, Abdelhady WA, Ali RM. Protein Expression of NEK2, JMJD4, and REST in Clear Cell Renal Cell Carcinoma (ccRCC): Clinical, Pathological, and Prognostic Findings. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:180-192. [PMID: 37600577 PMCID: PMC10439757 DOI: 10.30699/ijp.2023.1974154.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023]
Abstract
Background & Objective Cells of renal cell carcinoma (RCC) are resistant to the most currently used chemotherapeutic agents and targeted therapies; hence, we evaluated the expression of NEK2, JMJD4, and REST in cases of clear cell renal cell carcinoma (ccRCC) and benign adjacent tissues of kidney to detect associations between their expression and clinicopathological features, prognostic data, tumor recurrence, and survival rates. Methods We collected 200 samples including tumoral and adjacent non-neoplastic tissues related to 100 ccRCC patients. All samples were evaluated for the expression of NEK2, JMJD4, and REST, and the patients were followed up for about 5 years. Tumor recurrence and survival data were documented and analyzed. Results NEK2 and JMJD4 expression showed increase in ccRCC tissues (P=0.002 and 0.006), while REST was downregulated (P<0.001). The elevated expression of NEK2 was positively related ro the tumor size (P=0.015), higher grades (P=0.002), higher stages (P=0.013), distant spread (P=0.004), tumor recurrence, shorter progression-free survival (PFS) rate, and overall survival (OS) rate (P<0.001). Likewise, the high expression of JMJD4 showed positive correlation with the tumor size (P=0.047), higher grades (P=0.003), higher stages (P=0.043), distant spread (P=0.001), tumor recurrence, shorter PFS rate, and OS rate (P<0.001). Conversely, low expression of REST demonstrated positive relationship with the tumor size, higher grades, higher stages, distant spread, tumor recurrence, and shorter PFS and OS rates (P<0.001). Conclusion Overexpression of NEK2 and JMJD4 and downregulation of REST may be noted in malignant renal tissues compared to benign renal tissues and may be correlated with unfavorable pathological findings, poor clinical parameters, and poor patient outcomes.
Collapse
Affiliation(s)
- Walid S H Elsayed
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola A Harb
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rema H Faraj Saad
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Amal Anbaig
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Rehab Hemeda
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Negm
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Loay M Gertallah
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Waleed A Abdelhady
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Ramadan M Ali
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| |
Collapse
|
7
|
Zhu QY. Bioinformatics analysis of the pathogenic link between Epstein-Barr virus infection, systemic lupus erythematosus and diffuse large B cell lymphoma. Sci Rep 2023; 13:6310. [PMID: 37072474 PMCID: PMC10113247 DOI: 10.1038/s41598-023-33585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023] Open
Abstract
Epstein-Barr virus (EBV) is a risk factor for diffuse large B-cell lymphoma (DLBCL) and systemic lupus erythematosus (SLE). While prior research has suggested a potential correlation between SLE and DLBCL, the molecular mechanisms remain unclear. The present study aimed to explore the contribution of EBV infection to the pathogenesis of DLBCL in the individuals with SLE using bioinformatics approaches. The Gene Expression Omnibus database was used to compile the gene expression profiles of EBV-infected B cells (GSE49628), SLE (GSE61635), and DLBCL (GSE32018). Altogether, 72 shared common differentially expressed genes (DEGs) were extracted and enrichment analysis of the shared genes showed that p53 signaling pathway was a common feature of the pathophysiology. Six hub genes were selected using protein-protein interaction (PPI) network analysis, including CDK1, KIF23, NEK2, TOP2A, NEIL3 and DEPDC1, which showed preferable diagnostic values for SLE and DLBCL and involved in immune cell infiltration and immune responses regulation. Finally, TF-gene and miRNA-gene regulatory networks and 10 potential drugs molecule were predicted. Our study revealed the potential molecular mechanisms by which EBV infection contribute to the susceptibility of DLBCL in SLE patients for the first time and identified future biomarkers and therapeutic targets for SLE and DLBCL.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, People's Republic of China.
| |
Collapse
|
8
|
Alfaifi A, Refai MY, Alsaadi M, Bahashwan S, Malhan H, Al-Kahiry W, Dammag E, Ageel A, Mahzary A, Albiheyri R, Almehdar H, Qadri I. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel) 2023; 13:861. [PMID: 36900005 PMCID: PMC10000528 DOI: 10.3390/diagnostics13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Enas Dammag
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ageel Ageel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Amjed Mahzary
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Gong Y, Zhou L, Ding L, Zhao J, Wang Z, Ren G, Zhang J, Mao Z, Zhou R. KIF23 is a potential biomarker of diffuse large B cell lymphoma: Analysis based on bioinformatics and immunohistochemistry. Medicine (Baltimore) 2022; 101:e29312. [PMID: 35713434 PMCID: PMC9276187 DOI: 10.1097/md.0000000000029312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Diffuse Large B Cell Lymphoma (DLBCL), the most common form of blood cancer. The genetic and clinical heterogeneity of DLBCL poses a major barrier to diagnosis and treatment. Hence, we aim to identify potential biomarkers for DLBCL.Differentially expressed genes were screened between DLBCL and the corresponding normal tissues. Kyoto Encyclopedia of Genes and Genomes and Gene oncology analyses were performed to obtain an insight into these differentially expressed genes. PPI network was constructed to identify hub genes. survival analysis was applied to evaluate the prognostic value of those hub genes. DNA methylation analysis was implemented to explore the epigenetic dysregulation of genes in DLBCL.In this study, Kinesin family member 23 (KIF23) showed higher expression in DLBCL and was identified as a risk factor in DLBCL. The immunohistochemistry experiment further confirmed this finding. Subsequently, the univariate and multivariate analysis indicated that KIF23 might be an independent adverse factor in DLBCL. Upregulation of KIF23 might be a risk factor for the overall survival of patients who received an R-CHOP regimen, in late-stage, whatever with or without extranodal sites. Higher expression of KIF23 also significantly reduced 3, 5, 10-year overall survival. Furthermore, functional enrichment analyses (Kyoto Encyclopedia of Genes and Genomes, Gene oncology, and Gene Set Enrichment Analysis) showed that KIF23 was mainly involved in cell cycle, nuclear division, PI3K/AKT/mTOR, TGF-beta, and Wnt/beta-catenin pathway in DLBCL. Finally, results of DNA methylation analysis indicated that hypomethylation in KIF23's promoter region might be the result of its higher expression in DLBCL.The findings of this study suggested that KIF23 is a potential biomarker for the diagnosis and prognosis of DLBCL. However, further studies were needed to validate these findings.
Collapse
Affiliation(s)
- Yuqi Gong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingna Zhou
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Ding
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Mao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Alfaifi A, Bahashwan S, Alsaadi M, Malhan H, Aqeel A, Al-Kahiry W, Almehdar H, Qadri I. Metabolic Biomarkers in B-Cell Lymphomas for Early Diagnosis and Prediction, as Well as Their Influence on Prognosis and Treatment. Diagnostics (Basel) 2022; 12:394. [PMID: 35204484 PMCID: PMC8871334 DOI: 10.3390/diagnostics12020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
B-cell lymphomas exhibit a vast variety of clinical and histological characteristics that might complicate the diagnosis. Timely diagnosis is crucial, as treatments for aggressive subtypes are considered successful and frequently curative, whereas indolent B-cell lymphomas are incurable and often need several therapies. The purpose of this review is to explore the current advancements achieved in B-cell lymphomas metabolism and how these indicators help to early detect metabolic changes in B-cell lymphomas and the use of predictive biological markers in refractory or relapsed disease. Since the year 1920, the Warburg effect has been known as an integral part of metabolic reprogramming. Compared to normal cells, cancerous cells require more glucose. These cancer cells undergo aerobic glycolysis instead of oxidative phosphorylation to metabolize glucose and form lactate as an end product. With the help of these metabolic alterations, a novel biomass is generated by the formation of various precursors. An aggressive metabolic phenotype is an aerobic glycolysis that has the advantage of producing high-rate ATP and preparing the biomass for the amino acid, as well as fatty acid, synthesis needed for a rapid proliferation of cells, while aerobic glycolysis is commonly thought to be the dominant metabolism in cancer cells. Later on, many metabolic biomarkers, such as increased levels of lactate dehydrogenase (LDH), plasma lactate, and deficiency of thiamine in B-cell lymphoma patients, were discovered. Various kinds of molecules can be used as biomarkers, such as genes, proteins, or hormones, because they all refer to body health. Here, we focus only on significant metabolic biomarkers in B-cell lymphomas. In conclusion, many metabolic biomarkers have been shown to have clinical validity, but many others have not been subjected to extensive testing to demonstrate their clinical usefulness in B-cell lymphoma. Furthermore, they play an essential role in the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
- Department of Hematology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- King AbdulAziz University Hospital, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Aqeel Aqeel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| |
Collapse
|
11
|
Wang C, Huang Y, Ma X, Wang B, Zhang X. Overexpression of NEK2 is correlated with poor prognosis in human clear cell renal cell carcinoma. Int J Immunopathol Pharmacol 2021; 35:20587384211065893. [PMID: 34910592 PMCID: PMC8689635 DOI: 10.1177/20587384211065893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives: Never in mitosis gene A-related kinase 2 (NEK2) has been implicated in tumorigenesis in various tissues, but its function in clear cell renal cell carcinoma (ccRCC) tumorigenesis is unclear. We evaluated the correlation between NEK2 expression and ccRCC. Methods: Immunohistochemistry analysis of NEK2 protein was done on high-density multi-organ Human Cancer tissue microarray derived from the patient samples from clear cell renal cell carcinoma. We used multiple clinical cohorts to analyze the NEK2 immunohistochemical staining expression across human cancers. The cancer genome atlas (TCGA) data analysis of NEK2 was done through UALCAN web servers. Association of NEK2 and Kaplan–Meier survival analysis was done on both of our clinical database and available TCGA datasets. Results: Using the UALCAN cancer transcriptional data analysis website, we found that NEK2 is overexpressed in ccRCC, and its expression was associated with overall survival. According to the analyses of our own clinical database and immunohistochemical staining, protein levels of NEK2 were elevated in renal carcinoma compared to adjacent normal tissues. Kaplan–Meier survival analysis of both UALCAN and our database showed that high expression of NEK2 was associated with a poor prognosis. Multivariate and univariate analyses showed that NEK2 expression was closely related to a poor prognosis. The findings suggest that NEK2 is associated with ccRCC. Conclusion: These studies show that NEK2 is over-expressed in clear cell renal cell carcinoma and plays an essential role in cancer cell survival, as such NEK2 could serve as a novel potential target for therapeutic intervention in ccRCC.
Collapse
Affiliation(s)
- Chenfeng Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Huang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baojun Wang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|